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Credal networks: basic setup
A finite
@ \ number of
S x,€X,

variables

@ Every variable X, takes values x,
in some finite non-empty set X,



Credal networks: basic setup
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e Graphical structure:
Directed Acyclic Network (DAG)

G={1,2,3,4,5,6,7}



Credal networks: basic setup
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@ Graphical structure:
Directed Acyclic Network (DAG)

G={1,2,3,4,5,6,7}




Credal networks: local uncertainty models
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K (X xP(S)) credal set

@ P ( xP(s)) lower prevision
@S set of desirable gambles

JXP(S)



Credal networks: epistemic irrelevance

K(X; xP(s)) = K(X; ‘xP UN(S))
(%, P(-lxps)) = Ps(-[xps)un(s)
@SJXP(s) ~ '@SJXP (S)UN(s)



Credal networks: a joint model
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Credal networks: a joint model
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K(X; xP(s)) = K(X; ‘xP UN(S))
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Credal networks: a joint model
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Credal networks using credal sets

@ Kirr ( XG)
R
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natural extension

The most conservative one |

K (Xs|xp(s)) = K(Xs|Xp(s)un(s) )}—

@ Introduced by Cozman (2000) under the
assumption of positive lower probability.
Description in terms of linear constraints!




Credal networks using credal sets

Kirr ( XG)

Evidence nodes

()

" |nference problems can be reduced to solving a

(potentialy large) linear program! o
\_/

" Lots of potential to derive both outer and inner
approximations



Credal networks using lower previsions
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The most conservative one |

P(-lxps)) = Ps(-[xpis)un(s) }'

Introduced for trees by de Cooman et al. (2010)
and extended to general networks by De Bock &
de Cooman (2013), without positivity assumptions.

The joint is still described by the same linear constraints!



Credal networks using SDGs
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The most conservative one |

‘@SJ XP(s) — Zs] AP(s)UN(s) }

e Introduced by De Bock & de Cooman (2013)
= Simplifies coherence proofs for LPs
" (conditional) marginalisation properties
= AD-separation implies irrelevance




efficient algorithms (linear for trees!)

. (the joint can be constructed recursively by
Evidence applying marginal extension and

- independent natural extension)

Single query node
(for credal trees: de Cooman
et al. 2010; more general
cases are unpublished)



efficient algorithms (linear for trees!)

Evidence

Single query node
(de Cooman et al. 2010)

Example:

ﬂ—. kalman filtering
\/ (Benavoli et al. 2011)



efficient algorithms (linear for trees!)

) (the joint can be constructed recursively by
Evidence applying marginal extension and

- @ independent natural extension)

Query nodes on

a directed path
(unpublished work)



efficient algorithms (linear for trees!)

Evidence

Query nodes on

a directed path
(unpublished work)

ﬂ { Example: finding maximin
\_/ solution in imprecise Viterbi



efficient algorithms (linear for trees!)

(the joint can be constructed recursively by
_ applying marginal extension and

independent natural extension)
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Sum of gambles
(unpublished work)




efficient algorithms (linear for trees!)
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Sum of gambles
(unpublished work)

ﬂ g Example: time averages in
N gueueing systems



efficient algorithms (linear for trees!)

Non-negative gamb|es (the joint can be constructed recursively by

applying marginal extension and
_ independent natural extension)

Product of gambles
(unpublished work) p
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