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Abstract

We present an efficient exact algorithm for estimating state sequences from outputs or observa-
tions in imprecise hidden Markov models (iHMMs). The uncertainty linking one state to the next,
and that linking a state to its output, is represented by a set of probability mass functions instead
of a single such mass function. We consider as best estimates for state sequences the maximal se-
quences for the posterior joint state model conditioned on the observed output sequence, associated
with a gain function that is the indicator of the state sequence. This corresponds to and generalises
finding the state sequence with the highest posterior probability in (precise-probabilistic) HMMs,
thereby making our algorithm a generalisation of the one by Viterbi. We argue that the computa-
tional complexity of our algorithm is at worst quadratic in the length of the iHMM, cubic in the
number of states, and essentially linear in the number of maximal state sequences. An important
feature of our imprecise approach is that there may be more than one maximal sequence, typically
in those instances where its precise-probabilistic counterpart is sensitive to the choice of prior. For
binary iHMMs, we investigate experimentally how the number of maximal state sequences de-
pends on the model parameters. We also present an application in optical character recognition,
demonstrating that our algorithm can be usefully applied to robustify the inferences made by its
precise-probabilistic counterpart.

1. Introduction

In the field of Artificial Intelligence, probabilistic graphical models have become a powerful tool,
especially in domains where reasoning under uncertainty is needed (Koller & Friedman, 2009;
Pearl, 1988). Usually, this uncertainty is expressed by probabilities, which are estimated from data
or elicited from domain experts. However, the assumption that such probabilities can be obtained,
or for that matter, that they exist, is not always realistic. This can for example happen when multiple
experts disagree, when rounding errors occur, or when the available data is limited; the latter can
either be inherent to the problem or a consequence of economic and temporal constraints.

In order to relax this assumption, one can use the theory of imprecise probabilities. The basic
idea is to allow for sets of probability distributions rather than requiring the specification of a single
one. In this way, partial probabilistic information can be expressed easily, for example, by means
of linear constraints on probability distributions. This theory of imprecise probability encompasses
a number of different, but closely related frameworks; coherent lower previsions (Walley, 1991),
interval probabilities (Weichselberger, 2000) and belief functions (Dempster, 1967; Shafer, 1976)
are well-known examples.

c©2014 AI Access Foundation. All rights reserved.
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In the context of graphical models, these imprecise-probabilistic ideas have been used to develop
the notion of a credal network (Cozman, 2000, 2005). It is similar to a Bayesian network, but more
general in the sense that it allows for local uncertainty models that are imprecisely specified, such
as sets of probability distributions. This gain in generality, however, comes at the price of added
computational complexity and most existing algorithms are either approximative or cannot handle
large networks. In fact, inferences in credal networks are proven to be NP-hard even for singly
connected networks with ternary variables (Mauá, de Campos, Benavoli, & Antonucci, 2013).

A notable exception to the intractability of inference problems in credal networks occurs when
we drop the so-called strong independence assumption that is usually associated with credal net-
works and replace it by an assessment of epistemic irrelevance. Strong independence requires that
the credal network is a convex hull of (precise) Bayesian networks, whereas epistemic irrelevance
is a less restrictive property, which is imposed on the imprecise model itself instead of on the indi-
vidual precise models it consists of; for more information about the difference between these two
approaches, see for example the pioneering work of Cozman (2000). Recent work (De Cooman,
Hermans, Antonucci, & Zaffalon, 2010) has shown that the use of epistemic irrelevance guaran-
tees that there is an efficient algorithm for updating beliefs about a single target node of a credal
tree, that is essentially linear in the number of nodes in the tree. For imprecise-probabilistic hid-
den Markov models (iHMMs), which are the credal network equivalent of hidden Markov models
(HMMs), this efficiency for single target node inferences has been succesfully exploited to develop
an imprecise-probabilistic counterpart to the Kalman filter (Benavoli, Zaffalon, & Miranda, 2011).

In this paper, we tackle the imprecise-probabilistic counterpart of another important application
of HMMs: finding the sequence of hidden states that has the highest posterior probability condi-
tional on an observed sequence of outputs (Rabiner, 1989). For HMMs with precise local transition
and emission probabilities, an efficient dynamic programming algorithm for performing this task
was developed by Viterbi (1967). For imprecise-probabilistic HMMs however, we know of no algo-
rithm in the literature for which the computational complexity comes even close to that of Viterbi’s.
We remedy this situation by developing an efficient exact algorithm, called EstiHMM1, that solves
the following imprecise-probabilistic generalisation of the state estimation problem: given an ob-
served sequence of outputs, which are the maximal (Troffaes, 2007; Walley, 1991) state sequences
for the posterior joint model?

An important difference between our imprecise approach and the more conventional precise-
probabilistic approach is that the EstiHMM algorithm may sometimes return more than one solution,
whereas the Viterbi algorithm will always produce only a single one. The more imprecise the iHMM
is, the more maximal state sequences there will be. For precise HMMs, the EstiHMM and Viterbi
algorithms produce identical results. The advantage of this behaviour is that the EstiHMM algorithm
will typically return more than one maximal sequence only in those instances where the precise
approach is sensitive to the choice of prior. In those cases, the set-valued solution of the EstiHMM
algorithm is more likely to contain the correct hidden sequence. Our application in optical character
recognition (see Section 9) illustrates this advantage convincingly.

From a credal network point of view, the main contribution of this paper is the EstiHMM al-
gorithm itself. What is especially surprising about this algorithm, is that it provides an efficient
solution to an inference problem that deals with multiple target nodes at once, a situation which, in
general, is very difficult to handle for current state of the art algorithms in the field. We think that

1. EstiHMM: Estimation in imprecise Hidden Markov Models
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the promising results in this paper motivate the study of similar problems for network topologies
that go beyond HMMs.

The importance of our results to the HMM community and, by extension, to the field of AI
in general, is that they illustrate that model uncertainty—not to be confused with the probabilistic
uncertainty that is intrinsic to the model itself—can be dealt with efficiently and can, at the same
time, lead to informative, set-valued estimates (sets of maximal state sequences) that can be usefully
applied in real-life problems. We believe that model uncertainty is relevant in all subfields of AI
where it is difficult—if not impossible—to accurately pinpoint a single probability distribution.
Such model uncertainty might have a severe impact on the resulting inferences and, if so, this
should be taken into account when basing decisions on these inferences.

We start of in Section 3 by describing imprecise hidden Markov models as a special case of
credal trees under epistemic irrelevance. We show in particular how we can use the ideas underlying
the MePiCTIr2 algorithm (De Cooman et al., 2010) to construct a most conservative joint model
from imprecise local transition and emission models. We also derive a number of interesting and
useful formulas from that construction. The results in this section assume basic knowledge of the
theory of coherent lower previsions. We include a short introduction to this theory in Section 2.

In Section 4, we explain the maximality criterion and show how it leads to a set of optimal
estimates for the hidden state sequence. Finding all the maximal state sequences seems a daunting
task at first: it has a search space that grows exponentially in the length of the Markov chain.
However, as shown in Section 5, we can use the basic formulas of Section 3 to derive an appropriate
version of Bellman’s Principle of Optimality (Bellman, 1957), resulting in an exponential reduction
of the search space. By using a number of additional tricks, including a clever reformulation of
the maximality criterion, this enables us in Section 6 to devise the EstiHMM algorithm, which
efficiently constructs the set of all maximal state sequences.

Section 7 discusses the computational complexity of this EstiHMM algorithm. We show that it
is essentially linear in the number of maximal sequences, quadratic in the length of the chain, and
cubic in the number of states. We perceive this complexity to be comparable to that of the Viterbi
algorithm, especially after realising that the latter makes the simplifying step of resolving ties more
or less arbitrarily in order to produce only a single optimal state sequence.

In Section 8, we consider the special case of binary iHMMs, and investigate experimentally how
the number of maximal state sequences depends on the model parameters. We comment on the in-
teresting structures that emerge, and provide an heuristic explanation for them. We also demonstrate
the algorithm’s efficiency by calculating the maximal sequences for an iHMM of length 100.

Finally, in Section 9, we present an application in optical character recognition. It clearly
demonstrates the advantages of our algorithm and gives a clear indication that the EstiHMM al-
gorithm is able to robustify the results of the existing Viterbi algorithm in an intelligent manner.

We conclude the paper in Section 10 and discuss a number of possible avenues for future re-
search. In order to make our main argumentation as readable as possible, all technical proofs are
relegated to an appendix.

2. Freshening Up on Coherent Lower Previsions

We begin with some basic theory of coherent lower previsions; for more information, we refer to
Walley’s book (1991) and the more recent survey by Miranda (2008).

2. MePiCTIr: Message Passing in Credal Trees under Irrelevance.
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Coherent lower previsions are a special type of imprecise probability model. Roughly speaking,
whereas classical probability theory assumes that a subject’s uncertainty can be represented by a
single probability mass function, the theory of imprecise probabilities effectively works with sets
of possible probability mass functions, and thereby allows for imprecision as well as indecision to
be modelled and represented. For people who are unfamiliar with the theory, looking at it as a way
of robustifying the classical theory is perhaps the easiest way to understand and interpret it, and we
will use this approach here.

2.1 Unconditional Lower Previsions

Let X be any non-empty, finite3 set of possible states. We call a real-valued function f on X a
gamble and denote the set of all gambles on X as G (X). Consider now a set M of probability mass
functions on X. Then with each mass function p ∈M , we can associate a linear prevision—or ex-
pectation functional—Pp, defined on G (X). For every gamble f ∈ G (X) , Pp( f ) :=∑x∈X p(x) f (x)
is the expected value of f , associated with the probability mass function p. We now define the lower
prevision—or lower expectation functional—PM that corresponds with the set M as the following
lower envelope of linear previsions:

PM ( f ) := inf{Pp( f ) : p ∈M } for all f ∈ G (X). (1)

Similarly, we define the upper prevision—or upper expectation functional—PM as

PM ( f ) :=sup{Pp( f ) : p ∈M }=− inf{Pp(− f ) : p ∈M }=−PM (− f ) for all f ∈ G (X). (2)

We will mostly talk about lower previsions, since it follows from the conjugacy relation (2) that the
two models are mathematically equivalent.

An event A is a subset of the set of possible values X: A ⊆X. With such an event, we can
associate an indicator IA, which is the gamble on X that assumes the value 1 on A, and 0 outside A.
We call

PM (A) := PM (IA) = inf
{

∑
x∈A

p(x) : p ∈M

}
the lower probability of the event A, and similarly PM (A) := PM (IA) its upper probability.

It can be shown (Walley, 1991) that the functional PM satisfies the following set of interesting
mathematical properties, which define a coherent lower prevision:

C1. PM ( f )≥min f for all f ∈ G (X),

C2. PM (λ f ) = λPM ( f ) for all f ∈ G (X) and real λ ≥ 0, [non-negative homogeneity]

C3. PM ( f +g)≥ PM ( f )+PM (g) for all f ,g ∈ G (X). [superadditivity]

Every set of mass functions M uniquely defines a coherent lower prevision PM , but in general
the converse does not hold. However, if we limit ourselves to sets of mass functions M that are
closed and convex—which makes them credal sets—they are in a one-to-one correspondence with
coherent lower previsions (Walley, 1991). This implies that we can use the theory of coherent

3. The theory of coherent lower previsions is applicable to non-finite sets as well, at the expense of some complications.
However, for our present purposes, it suffices to consider the finitary case only.
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lower previsions as a tool for reasoning with closed convex sets of probability mass functions.
From now on, we will no longer explicitly refer to credal sets M , but we will simply talk about
coherent lower previsions P. It is useful to keep in mind that there always is a unique credal set that
corresponds with such a coherent lower prevision: P = PM for some unique credal set M , given
by M = {p : (∀ f ∈ G (X))Pp( f )≥ P( f )}.

A special kind of imprecise model on X is the vacuous lower prevision. It is a model that
represents complete ignorance and therefore has the set of all possible mass functions on X as its
credal set M . It can be shown easily that for every f ∈ G (X), the corresponding lower prevision is
given by P( f ) = min f .

2.2 Conditional Lower Previsions

Conditional lower and upper previsions, which are extensions of the classical conditional expecta-
tion functionals, can be defined in a similar, intuitively obvious way: as lower envelopes associated
with sets of conditional mass functions.

Consider a variable X in X and a variable Y in Y . A conditional lower prevision P(·|Y ) on the
set G (X) of all gambles on X is a two-place real-valued function. For any gamble f on X, P( f |Y )
is a gamble on Y , whose value P( f |y) in y∈Y is the lower prevision of f , conditional on the event
Y = y. If for any y ∈ Y , the lower prevision P(·|y) is coherent—satisfies conditions C1–C3—then
we call the conditional lower prevision P(·|Y ) separately coherent. It will sometimes be useful to
extend the domain of the conditional lower prevision P(·|y) from G (X) to G (X×Y ) by letting
P( f |y) := P( f (·,y)|y) for all gambles f on X×Y .

If we have a number of conditional lower previsions involving a number of variables, then each
of them must be separately coherent, but we also have to make sure that they satisfy a more stringent
joint coherence requirement. Explaining this in detail would take us too far; Walley (1991) provides
a detailed discussion with motivation. For our present purposes, it suffices to say that joint coherence
is very closely related to making sure that these conditional lower previsions are lower envelopes
associated with conditional mass functions that satisfy Bayes’s Rule.

For a given lower prevision P on G (X×Y ), there may be more than one corresponding con-
ditional lower prevision P(·|Y ) that is jointly coherent with P. Depending on the updating method
that is used, one obtains a different model.

If we use natural extension, then the conditional coherent lower prevision P(·|Y ) is defined
by P( f |y) := max

{
µ ∈ R : P(I{y}[ f −µ])≥ 0

}
if P({y}) > 0 and is vacuous and thus given by

P( f |y) := min f if P({y}) = 0. This is the smallest, most conservative coherent way of conditioning
a lower prevision. If P({y}) > 0, it corresponds to conditioning every probability mass function
in the credal set of P on the observation that Y = y and taking the lower envelope of all these
conditioned mass functions.

If we use regular extension, then P(·|Y ) is defined by P( f |y) :=max{µ ∈ R : P(Iy[ f −µ])≥ 0}
if P({y}) > 0 and is vacuous if P({y}) = 0. If P({y}) > 0, then regular extension (a) gives us the
greatest—most informative—conditional lower prevision that is jointly coherent with the original
unconditional lower prevision and (b) corresponds to taking all mass functions p in the credal set
of P for which p(y) 6= 0, conditioning them on the observation that Y = y and taking their lower
envelope.

Natural and regular extension coincide if P({y}) > 0 or P({y}) = 0 but they may differ if
P({y}) > P({y}) = 0. In the latter case, natural extension is vacuous, but regular extension usu-
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ally remains more informative. Furthermore, if P({y}) > 0, then every coherent updating method
yields a conditional lower prevision that lies in between those obtained by natural and regular ex-
tension (Walley, 1991; Miranda, 2009).

2.3 Different Interpretations for Lower Previsions

As we have just seen, a coherent lower prevision P serves as an alternative representation for a
closed and convex set M of probability mass functions. Often, this credal set M is interpreted
as a set of candidates for the one “true” but unknown probability mass function. This interpreta-
tion is particularly intuitive for people that are used to working with classical probability theory.
Walley (1991, Section 2.10.4) calls this the sensitivity analysis interpretation. For the sake of com-
pleteness, we mention here that coherent lower previsions can also be given a behavioural inter-
pretation, without using the notion of a probability mass function. The lower prevision P( f ) of
a gamble f ∈ G (X) is then interpreted as the supremum acceptable buying price that a subject is
willing to pay in order to gain the—possibly negative—reward f (x) after the outcome x ∈X of the
experiment has been determined. Walley discusses this alternative interpretation extensively.

3. Basic Notions

An imprecise hidden Markov model can be depicted using the following probabilistic graphical
model:

X1 X2 Xk Xn

O1 O2 Ok On

Q1 (·) Q2(·|X1) Qk(·|Xk−1) Qn(·|Xn−1)

S1(·|X1) S2(·|X2) Sk(·|Xk) Sn(·|Xn)

State sequence:

Output sequence:

Figure 1: Tree representation of a hidden Markov model

Here n is some natural number. The state variables X1, . . . , Xn assume values in the respective finite
sets X1, . . . , Xn, and the output variables O1, . . . , On assume values in the respective finite sets O1,
. . . , On. We denote generic values of Xk by xk, x̂k or zk, and generic values of Ok by ok.

3.1 Local Uncertainty Models

We assume that we have the following local uncertainty models for these variables. For X1, we have
a marginal lower prevision Q1, defined on the set G (X1) of all real-valued maps—or gambles—
on X1. For the subsequent states Xk, with k ∈ {2, . . . ,n}, we have a conditional lower prevision
Qk(·|Xk−1) defined on G (Xk), called a transition model. In order to maintain uniformity of notation,
we will also denote the marginal lower prevision Q1 as a conditional lower prevision Q1(·|X0),
where X0 denotes a variable that may only assume a single value x0 ∈ X0 := {x0}, and whose
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value is therefore certain. For any gamble fk in G (Xk), Qk( fk|Xk−1) is interpreted as a gamble on
Xk−1, whose value Qk( fk|xk−1) in any xk−1 ∈Xk−1 is the lower prevision of the gamble fk(Xk),
conditional on Xk−1 = xk−1.

In addition, for each output Ok, with k ∈ {1, . . . ,n}, we have a conditional lower prevision
Sk(·|Xk) defined on G (Ok), called an emission model. For any gamble gk in G (Ok), Sk(gk|Xk) is
interpreted as a gamble on Xk, whose value Sk(gk|xk) in any xk ∈Xk is the lower prevision of the
gamble gk(Ok), conditional on Xk = xk.

We take all these local—marginal, transition and emission—uncertainty models to be separately
coherent. Recall that this simply means that for any k ∈ {1, . . . ,n}, the lower prevision Qk(·|xk−1)
should be coherent—as an unconditional lower prevision—for all xk−1 ∈Xk−1 and Sk(·|xk) should
be coherent for all xk ∈Xk.

3.2 Interpretation of the Graphical Structure

We will assume that the graphical representation in Figure 1 represents the following irrelevance
assessments: conditional on its mother variable, the non-parent non-descendants of any variable
in the tree are epistemically irrelevant to this variable and its descendants. We say that a variable
X is epistemically irrelevant to a variable Y if observing X does not affect our beliefs about Y .
Mathematically stated in terms of lower previsions: P( f (Y )) = P( f (Y )|x) for all f ∈ G (Y ) and all
x ∈X.

Before we go on, it will be useful to introduce some mathematical short-hand notation for
describing joint variables in the tree of Figure 1. For any 1 ≤ k ≤ ` ≤ n, we denote the tuple
(Xk,Xk+1, . . . ,X`) by Xk:`, and the tuple (Ok,Ok+1, . . . ,O`) by Ok:`. Xk:` is a variable that can assume
all values in the set Xk:` := ×`

r=kXr, and Ok:` is a variable that can assume all values in the set
Ok:` :=×`

r=kOr. Generic values of Xk:` are denoted by xk:`, x̂k:` or zk:`, and generic values of Ok:` by
ok:`.

Example 1. Consider the variable Xk with mother variable Xk−1 in Figure 1. The variables X1:k−2
and O1:k−1 are its non-parent non-descendants, and the variables Xk+1:n and Ok:n its descendants.
Our interpretation of the graphical structure of Figure 1 implies that once we know—conditional
on—the value xk1 of Xk−1, additionally learning the values of any of the variables X1, . . . , Xk−2 and
O1, . . . , Ok−1 will not change our beliefs about Xk:n and Ok:n. �

3.3 Constructing a Global Uncertainty Model

Using the local uncertainty models, we now want to construct a global model: a joint lower prevision
P on G (X1:n×O1:n) for all the variables (X1:n,O1:n) in the tree. This joint lower prevision should
(i) be jointly coherent with all the local models; (ii) encode all epistemic irrelevance assessments
encoded in the tree; and (iii) be as small, or conservative,4 as possible. This is a special case of
a more general problem for credal trees, discussed and solved in great detail by De Cooman et
al. (2010). In this section, we summarise the solution for iHMMs and give an heuristic justification
for it; De Cooman et al. prove that the joint model that is presented below is indeed the most
conservative lower prevision that is coherent with all the local models and captures all epistemic
irrelevance assessments encoded in the tree.

4. Recall that pointwise smaller lower previsions correspond to larger credal sets.
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We proceed in a recursive manner. For any k ∈ {1, . . . ,n} and any xk−1 ∈Xk−1, we consider the
smallest coherent joint lower prevision Pk(·|xk−1) on G (Xk:n×Ok:n) for the variables (Xk:n,Ok:n) in
the iHMM depicted in Figure 2, representing a subtree of the tree represented in Figure 1, with the
lower prevision Qk(·|xk−1) acting as the marginal model for the ‘first’ state variable Xk. Note that,
due to the notational trick that was introduced in Section 3.1, the global model P can be identified
with the conditional lower prevision P1(·|x0).

Xk Xk+1

Ok Ok+1

Qk(·|xk−1) Qk+1(·|Xk)

Sk(·|Xk) Sk+1(·|Xk+1)

Pk+1(·|Xk)

Ek(·|Xk)

Pk(·|Xk−1)

Figure 2: Subtree of the iHMM involving the variables (Xk:n,Ok:n)

Our aim is now to develop recursive expressions that enable us to construct Pk(·|xk−1) out of
Pk+1(·|Xk), Sk(·|Xk) and Qk(·|xk−1). Using these expressions over and over again will eventually
yield the global model P = P1(·|x0).

As a first step, we consider any xk ∈Xk and combine the joint model Pk+1(·|xk) for the variables
(Xk+1:n,Ok+1:n), defined on G (Xk+1:n×Ok+1:n)—see the thick dotted lines in Figure 2—,with the
local model Sk(·|xk) for the variable Ok, defined on G (Ok). This will lead to a joint model Ek(·|xk)
for the variables (Xk+1:n,Ok:n), defined on G (Xk+1:n×Ok:n)—see the semi-thick dotted lines in
Figure 2. This is trivial for k = n, since we must have that En(·|xn) = Sn(·|xn).

For k 6= n, the solution is less obvious. A joint model can be constructed in many different ways,
so we will have to impose some conditions. A first condition is that Ek(·|xk) should be a coherent
lower prevision that is jointly coherent with the ‘marginal’ models Pk+1(·|xk) and Sk(·|xk). A sec-
ond, rather obvious, condition is that Ek(·|xk) should coincide with Pk+1(·|xk) and Sk(·|xk) on their
respective domains. A third condition is that the model should capture the epistemic irrelevance
assessments encoded in the tree. In particular these state that, conditional on Xk = xk, the two vari-
ables (Xk+1:n,Ok+1:n) and Ok should be epistemically independent, or in other words, epistemically
irrelevant to one another.

Any model that meets all these conditions is called an independent product (De Cooman, Mi-
randa, & Zaffalon, 2011) of Pk+1(·|xk) and Sk(·|xk). Generally speaking, such an independent prod-
uct is not unique. We call the pointwise smallest, most conservative, of all possible independent
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products, which always exists, the independent natural extension (Walley, 1991; De Cooman et al.,
2011) of Pk+1(·|xk) and Sk(·|xk), and we denote it as Pk+1(·|xk)⊗Sk(·|xk).

Summarising, Ek(·|xk) is given by

Ek(·|xk) :=

{
Sn(·|xn) if k = n
Sk(·|xk)⊗Pk+1(·|xk) if k = n−1, . . . ,1.

(3)

The conditionally independent natural extension and its properties were studied in great detail
by De Cooman et al. (2011). For the purposes of this paper, it will suffice to recall from that
study that—very much like independent products of precise probability models—such independent
natural extensions are factorising, which implies in particular that

Ek( f g|xk) = Ek(gEk( f |xk)|xk) = Sk(gPk+1( f |xk)|xk)

=

{
Sk(g|xk)Pk+1( f |xk) if Pk+1( f |xk)≥ 0
Sk(g|xk)Pk+1( f |xk) if Pk+1( f |xk)≤ 0

= Sk(g|xk)�Pk+1( f |xk), (4)

for all f ∈ G (Xk+1:n×Ok+1:n) and all non-negative g ∈ G (Ok)—we call a gamble non-negative if
all its values are. In this expression, the first equality is the actual factorisation property. The second
equality holds because Ek(·|xk) coincides with Pk+1(·|xk) and Sk(·|xk) on their respective domains.
The third equality follows from the conjugacy relation—Equation (2)—and coherence condition
C2, and for the fourth we have used the shorthand notation m� x := mmax{0,x}+mmin{0,x}.
Further on, we will also use the analogous notation mn� x := mnmax{0,x}+mnmin{0,x}.

In a second and final step, we combine the joint model Ek(·|Xk) for the variables (Xk+1:n,Ok:n),
defined on G (Xk+1:n×Ok:n), with the local model Qk(·|xk−1) for the variable Xk, defined on G (Xk),
into the joint model Pk(·|xk−1) for the variables (Xk:n,Ok:n), defined on G (Xk:n×Ok:n). It has been
shown elsewhere (Miranda & de Cooman, 2007; Walley, 1991) that the most conservative coherent
way of doing this, is by means of marginal extension, also known as the law of iterated lower
expectations. This leads to Pk(·|xk−1) := Qk(Ek(·|Xk)|xk−1), or, if we now allow xk−1 to range over
Xk−1:

Pk(·|Xk−1) := Qk(Ek(·|Xk)|Xk−1). (5)

For practical purposes, it is useful to see that this is equivalent with

Pk( f |Xk−1) = Qk

(
∑

xk∈Xk

I{xk}Ek( f (xk,Xk+1:n,Ok:n)|xk)
∣∣∣Xk−1

)

for all f ∈ G (Xk:n×Ok:n). Recall that in this expression, the indicator I{xk} is a gamble on Xk that
assumes the value 1 if Xk = xk and 0 if Xk 6= xk.
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3.4 Interesting Lower and Upper Probabilities

Without too much trouble,5 we can use Equations (3)–(5) to derive the following expressions for a
number of interesting lower and upper probabilities:

Pk({ok:n}×{xk:n}|xk−1) =
n

∏
i=k

Si({oi}|xi)Qi({xi}|xi−1) (6)

Pk({ok:n}×{xk:n}|xk−1) =
n

∏
i=k

Si({oi}|xi)Qi({xi}|xi−1) (7)

for all xk−1 ∈Xk−1, xk:n ∈Xk:n, ok:n ∈ Ok:n and k ∈ {1, . . . ,n}, and

Ek({ok:n}×{xk+1:n}|xk) = Sk({ok}|xk)
n

∏
i=k+1

Si({oi}|xi)Qi({xi}|xi−1) (8)

Ek({ok:n}×{xk+1:n}|xk) = Sk({ok}|xk)
n

∏
i=k+1

Si({oi}|xi)Qi({xi}|xi−1). (9)

for all xk ∈Xk, xk+1:n ∈Xk+1:n, ok:n ∈ Ok:n and k ∈ {1, . . . ,n}. Recall that we equate events with
their indicators, and that the lower and upper prevision of these indicators correspond to the lower
and upper probability of that event; see Section 2. For example, in Equation (6), Pk({ok:n} ×
{xk:n}|xk−1) := Pk(I{ok:n}I{xk:n}|xk−1) is the lower probability that, conditional on Xk−1 = xk−1, the
rest of the hidden sequence has the value xk:n, with corresponding observations ok:n. This joint lower
probablity is obtained simply by multiplying the relevant local lower (transition and emission) prob-
abilities.

We will assume throughout that

P({x1:n}×{o1:n})> 0 for all x1:n ∈X1:n and o1:n ∈ O1:n

or, equivalently—by Equation (7), for k = 1—, that all local upper probabilities are positive, in the
sense that (De Cooman et al., 2010):

Qk({xk}|xk−1)> 0 and Sk({ok}|xk)> 0

for all k ∈ {1, . . . ,n}, xk−1 ∈Xk−1, xk ∈Xk and ok ∈ Ok. (10)

This assumption is very weak and not at all restrictive for practical purposes. The imprecise-
probabilistic local models are often constructed by adding some margin of error around a precise
model, thereby making all upper transition probabilities positive by construction. We will how-
ever allow lower transition probabilities to be zero, which is something that does happen often in
practical problems.

Proposition 1. If all local upper probabilities are positive—Equation (10)—, then we have for all
k∈{1, . . . ,n}, xk ∈Xk, xk−1 ∈Xk−1 and ok:n ∈Ok:n that Pk({ok:n}|xk−1)> 0 and Ek({ok:n}|xk)> 0.

5. As an example, we derive Equations (6) and (7) in Appendix A.
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4. Estimating States from Outputs

In a hidden Markov model, the states are not directly observable, but the outputs are, and the general
aim is to use the outputs to estimate the states. We concentrate on the following problem: Suppose
we have observed the output sequence o1:n, estimate the state sequence x1:n. We will use an essen-
tially Bayesian approach to do so, but need to allow for the fact that we are working with imprecise
rather than precise probability models. We consider as optimal estimates all state sequences that are
maximal, a criterion which we introduce in Section 4.2; see Section 4.3 for two alternative criteria,
which we will not consider further in the context of this paper. The main contribution of this section
is a formulation of maximality that is stated directly in terms of the unconditional global model P,
instead of the conditional model P(·|o1:n) that is conventionally used for this purpose. Furthermore,
and rather surprisingly, this alternative formulation is valid regardless of whether we use regular or
natural extension to derive P(·|o1:n) from P.

4.1 Updating the iHMM

The first step in our approach consists in updating (or conditioning) the joint model P := P1(·|x0)
on the observed outputs O1:n = o1:n. As mentioned in Section 2, there is no unique coherent way
to perform this updating. However, for the particular problem we are solving in this paper, it so
happens that it makes no difference which updating method is used, as long as it is coherent. For
the time being, we use regular extension, but later on in Section 4.2, we will show that any other
coherent updating method yields the same results.

Since it follows from the positivity assumption (10) and Proposition 1 that P({o1:n})> 0, regular
extension leads us to consider the updated lower prevision P(·|o1:n) on G (X1:n), given by:

P( f |o1:n) := max
{

µ ∈ R : P(I{o1:n}[ f −µ])≥ 0
}

for all gambles f on X1:n. (11)

Using the coherence of the joint lower prevision P, it is not hard to prove that when P({o1:n})> 0,
P(I{o1:n}[ f −µ]) is a strictly decreasing and continuous function of µ , which therefore has a unique
zero—see Lemma 7(i)&(iii) in Appendix A. As a consequence, we have for any f ∈ G (X1:n) that

P( f |o1:n)≤ 0⇔ (∀µ > 0)P(I{o1:n}[ f −µ])< 0⇔ P(I{o1:n} f )≤ 0. (12)

In fact, it is not hard to infer from the strictly decreasing and continuous character of P(I{o1:n}[ f−µ])
that P( f |o1:n) and P(I{o1:n} f ) have the same sign. They are either both negative, both positive or
both equal to zero; see also Figure 3.

µ

P(I{o1:n}[ f −µ])

P( f |o1:n)

P(I{o1:n} f )

Figure 3: Conditional versus unconditional lower prevision
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Equation (12) will be of crucial importance further on. However, in general, we want to allow
P({o1:n}) to be zero—since this may happen if you allow lower transition probabilities to be zero—,
while requiring that P({o1:n}) > 0—because this follows from the positivity assumption (10) and
Proposition 1. This will, generally speaking, invalidate the second equivalence in Equation (12): it
turns into an implication only. But, if we limit ourselves to the specific type of gambles on X1:n of
the form f = I{x̂1:n}− I{x1:n}, we can still prove the following important theorem.

Theorem 2. If all local upper probabilities are positive—Equation (10)—, then for fixed values of
x1:n, x̂1:n ∈X1:n and o1:n ∈ O1:n, we have that P(I{o1:n}[I{x1:n}− I{x̂1:n}]) and P(I{x1:n}− I{x̂1:n}|o1:n)
have the same sign. They are both positive, both negative or both zero.

4.2 Maximal State Sequences

The next step now consists in using the posterior model P(·|o1:n) to find best estimates for the state
sequence x1:n. On the Bayesian approach, this is usually done by solving a decision-making, or
optimisation problem: we associate a gain function I{x1:n} with every candidate state sequence x1:n,
and select as best estimates those state sequences x̂1:n that maximise the posterior expected gain,
resulting in state sequences with maximal posterior probability.

Here we generalise this decision-making approach towards working with imprecise probability
models. The criterion we use to decide which estimates are optimal for the given gain functions is
that of (Walley–Sen) maximality (Troffaes, 2007; Walley, 1991). Maximality has a number of very
desirable properties that make sure it works well in optimisation contexts (De Cooman & Troffaes,
2005; Huntley & Troffaes, 2010), and it is well-justified from a behavioural point of view, as well
as in a robustness approach, as we shall see presently.

We can express a strict preference � between two state sequence estimates x̂1:n and x1:n as
follows:

x̂1:n � x1:n⇔ P(I{x̂1:n}− I{x1:n}|o1:n)> 0.

On a behavioural interpretation, this expresses that a subject with lower prevision P(·|o1:n) is dis-
posed to pay some strictly positive amount of utility to replace the gain associated with the estimate
x1:n with the gain associated with the estimate x̂1:n; Walley (1991, Section 3.9) provides additional
information. Alternatively, from a robustness point of view, this expresses that for each conditional
mass function p(·|o1:n) in the credal set associated with the updated lower prevision P(·|o1:n), the
state sequence x̂1:n has a posterior probability p(x̂1:n|o1:n) that is strictly higher than the posterior
probability p(x1:n|o1:n) of the state sequence x1:n.

The binary relation � thus defined is a strict partial order—an irreflexive and transitive binary
relation—on the set of state sequences X1:n, and we consider an estimate x̂1:n to be optimal when it
is undominated, or maximal, in this strict partial order:

x̂1:n ∈ opt(X1:n|o1:n)⇔ (∀x1:n ∈X1:n)x1:n 6� x̂1:n

⇔ (∀x1:n ∈X1:n)P(I{x1:n}− I{x̂1:n}|o1:n)≤ 0

⇔ (∀x1:n ∈X1:n)P(I{o1:n}[I{x1:n}− I{x̂1:n}])≤ 0, (13)

where the very useful last equivalence follows from Theorem 2. In summary then, the aim of this
paper is to develop an efficient algorithm for finding the set of maximal estimates opt(X1:n|o1:n).

Our statement in Section 4.1, that any coherent updating method would yield the same results
as regular extension, can now be justified. Since coherent updating is unique if P({o1:n})> 0, and
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since the case P({o1:n}) = 0 is excluded by Proposition 1 and our positivity assumption (10), we
only need to motivate our statement in the special case that P({o1:n}) = 0 and P({o1:n})> 0.

If we use regular extension to update our model, then the optimal estimates are given by Equa-
tion (13). For the special case P({o1:n}) = 0, we find for all x1:n ∈X1:n and x̂1:n ∈X1:n that

P(I{o1:n}[I{x1:n}− I{x̂1:n}])≤ P(I{o1:n}) = P({o1:n}) = 0,

where the first inequality follows from the monotonicity of coherent lower previsions (as a conse-
quence of C1 and C2). Therefore, we find that if P({o1:n}) = 0, then all sequences are optimal,
resulting in opt(X1:n|o1:n) = X1:n.

If we use natural extension to update our joint model, then the optimal state sequences are
still given by Equation (13), but the final equivalence no longer holds because it uses Theorem 2,
which assumes the use of regular extension to perform updating of the joint model. However, for
the special case of P({o1:n}) = 0, natural extension by definition leads to the updated model being
equal to the vacuous one. Therefore, we find for all x1:n ∈X1:n and x̂1:n ∈X1:n that

P(I{x1:n}− I{x̂1:n}|o1:n) = min(I{x1:n}− I{x̂1:n})≤ 0.

This implies that for the special case where P({o1:n}) = 0 and P({o1:n})> 0—identical to what we
found for regular extension—natural extension also results in all sequences being optimal, meaning
that opt(X1:n|o1:n) = X1:n.

We have thus shown that, even in the special case that P({o1:n}) = 0 and P({o1:n}) > 0, the
set of optimal sequences is the same, regardless of whether we use natural or regular extension
to update our joint model. Since in that special case, every other coherent updating method lies
in between these two methods, all of them are bound to yield the same opt(X1:n|o1:n). We can
therefore conclude that the results in this paper do not depend on the particular updating method
that is chosen, as long as it is coherent.

4.3 Other Decision Criteria

Instead of looking for maximal state sequences, one could use other decision criteria as well (Trof-
faes, 2007), two of which we discuss in the present section.

A first approach that we will not consider further on, consists in trying to find the so-called
Γ-maximin state sequences x1:n, which maximise the posterior lower probability:

x1:n ∈ argmax
x1:n∈X1:n

P({x1:n}|o1:n).

This approach basically optimises the worst-case scenario—the lower probability—and can there-
fore be regarded as a risk averse choice. From a computational point of view, finding these Γ-
maximin sequences is a rather complicated affair. Not only do we need to optimise over an expo-
nential number of sequences, but on top of that, every single lower probability P({x1:n}|o1:n) in this
optimisation problem is hard to compute. On the positive side, we have recently discovered that—in
the case of epistemic irrelevance—it is possible to calculate these lower probabilities efficiently in
a recursive manner. However, these results are not published yet and fall beyond the scope of the
current paper. We know of no other algorithm that can calculate these lower probabilities efficiently.
In any case, the issue still remains that we need to optimise over the exponentially large set X1:n.
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A second approach that will not be considered further on consists in working with the so-called
E-admissible sequences, which are those sequences that maximise the expected gain for at least one
conditional mass function p(·|o1:n) in the credal set associated with the updated lower prevision
P(·|o1:n). If one interprets an imprecise model as a collection—a credal set—of precise models,
one of which is the unknown “true” model, then one of these E-admissible solutions is the unknown
“true” solution. E-admissible state sequences are very difficult to compute. The intuitive reason
is that we need to solve the “precise problem” for every p(·|o1:n) in the credal set associated with
P(·|o1:n), of which there are infinitely many. State of the art algorithms (Kikuti, Cozman, & de Cam-
pos, 2005; Utkin & Augustin, 2005) avoid this issue, but are still quadratic in the search space. This
makes them intractable for the present problem because our search space X1:n is exponential in the
length of the iHMM.

Besides the computational difficulties with the other approaches, there are a number of addi-
tional reasons why, in this paper, we focus on maximal state sequences rather than Γ-maximin or
E-admissible ones. The first and most important reason is that we were able to develop an algorithm
that can determine them efficiently; see Sections 6 and 7. Secondly, and this is a common advantage
of maximality and E-admissibility: the higher the imprecision of the model, the more solutions are
returned. In contrast, even for high imprecision, in most cases, there will be only one Γ-maximin
sequence (except if two or more sequences have the same highest conditional lower probability).
Our application in Section 9 clearly illustrates that emitting more than a single solution can indeed
be useful. Thirdly, in those cases where other decision criteria are preferred, maximal state se-
quences can still be of use because every Γ-maximin and E-admissible state sequence is guaranteed
to be maximal as well (Troffaes, 2007). If our algorithm yields only a single maximal solution,
this is also the unique Γ-maximin and E-admissible solution. If more than one maximal sequence
is returned, this can be regarded as preprocessing step. For example, once we know all maximal
solutions, finding the Γ-maximin solutions amounts to comparing the posterior lower probabilities
of these maximal sequences only, instead of all sequences in X1:n.

4.4 Maximal Subsequences

We shall see below that in order to find the set of maximal estimates, it is useful to consider more
general sets of so-called maximal subsequences: for any k ∈ {1, . . . ,n} and xk−1 ∈Xk−1, we define
opt(Xk:n|xk−1,ok:n):

x̂k:n ∈ opt(Xk:n|xk−1,ok:n)⇔ (∀xk:n ∈Xk:n) Pk(I{ok:n}[I{xk:n}− I{x̂k:n}]|xk−1)≤ 0. (14)

The interpretation of these sets is immediate if we consider the part of the original iHMM that is
depicted in Figure 4, where we take Qk(·|xk−1) as the marginal model for the first state Xk. Then,
as explained in Section 3.3, the corresponding joint lower prevision on G (Xk:n×Ok:n) is precisely
Pk(·|xk−1), and if we have a sequence of outputs ok:n, then opt(Xk:n|xk−1,ok:n) is the set of state
sequence estimates that are undominated by any other estimate in Xk:n. It should be clear that the
set opt(X1:n|o1:n) we are eventually looking for, can also be written as opt(X1:n|x0,o1:n).

4.5 Useful Recursion Equations

Fix any k in {1, . . . ,n}. If we look at Equation (14), we see that it will be useful to derive a manage-
able expression for the lower prevision Pk(I{ok:n}[I{xk:n}−I{x̂k:n}]|xk−1). This can be easily done—see
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Xk Xr Xn

Ok Or On

Qk(·|xk−1) Qr(·|Xr−1) Qn(·|Xn−1)

Sk(·|Xk) Sr(·|Xr) Sn(·|Xn)

State subsequence:

Output subsequence:

Figure 4: Tree representation of a part of the original iHMM

Appendix A—by using Equations (3)–(7) and a few algebraic manipulations. We consider three dif-
ferent cases. If x̂k = xk and k ∈ {1, . . . ,n−1} then, using the notation introduced in Section 3.3:

Pk(I{ok:n}[I{xk:n}− I{x̂k:n}]|xk−1)

= Qk({x̂k}|xk−1)Sk({ok}|x̂k)�Pk+1(I{ok+1:n}[I{xk+1:n}− I{x̂k+1:n}]|x̂k). (15)

If x̂n = xn then

Pn(I{on}[I{xn}− I{x̂n}]|xn−1) = 0. (16)

If x̂k 6= xk and k ∈ {1, . . . ,n} then

Pk(I{ok:n}[I{xk:n}− I{x̂k:n}]|xk−1) = Qk(I{xk}β (xk:n)− I{x̂k}α(x̂k:n)|xk−1), (17)

where we define, for any xk:n ∈Xk:n:

β (xk:n) := Ek(I{ok:n}I{xk+1:n}|xk) = Sk({ok}|xk)
n

∏
i=k+1

Si({oi}|xi)Qi({xi}|xi−1) (18)

α(xk:n) := Ek(I{ok:n}I{xk+1:n}|xk) = Sk({ok}|xk)
n

∏
i=k+1

Si({oi}|xi)Qi({xi}|xi−1). (19)

It is useful to realise that β (xk:n) and α(xk:n) are just shorthand notations for the lower and upper
probabilities in Equations (8) and (9), for a fixed sequence of observations. For any given sequence
of states xk:n ∈Xk:n, the α(xk:n) and β (xk:n) can be found by simple backward recursion:

α(xk:n) := α(xk+1:n)Sk({ok}|xk)Qk+1({xk+1}|xk) (20)

β (xk:n) := β (xk+1:n)Sk({ok}|xk)Qk+1({xk+1}|xk), (21)

for k ∈ {1, . . . ,n−1}, and starting from:

α(xn:n) = α(xn) := Sn({on}|xn) and β (xn:n) = β (xn) := Sn({on}|xn). (22)
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5. The Principle of Optimality

Determining the state sequences in opt(X1:n|o1:n) directly using Equation (13) clearly has a com-
plexity that is exponential in the length of the chain. We are now going to take a dynamic program-
ming approach (Bellman, 1957) to reducing this complexity by deriving a recursion equation for the
sets of optimal (sub)sequences opt(Xk:n|xk−1,ok:n).

Theorem 3 (Principle of Optimality). For k ∈ {1, . . . ,n−1}, all xk−1 ∈Xk−1 and all x̂k:n ∈Xk:n:
if Qk({x̂k}|xk−1)> 0 and Sk({ok}|x̂k)> 0, then

x̂k:n ∈ opt(Xk:n|xk−1,ok:n)⇒ x̂k+1:n ∈ opt(Xk+1:n|x̂k,ok+1:n) .

As an immediate consequence, we find that

opt(Xk:n|xk−1,ok:n)⊆ cand(Xk:n|xk−1,ok:n) , (23)

where the set cand(Xk:n|xk−1,ok:n) consists of all the sequences in Xk:n that can still be an element
of opt(Xk:n|xk−1,ok:n) according to Theorem 3:

cand(Xk:n|xk−1,ok:n)

:=
( ⋃

xk∈Posk(xk−1)

xk⊕opt(Xk+1:n|xk,ok+1:n)

)
∪
( ⋃

xk /∈Posk(xk−1)

xk⊕Xk+1:n

)
. (24)

Here⊕ denotes concatenation of state sequences and the set of states Posk(xk−1)⊆Xk is defined as

xk ∈ Posk(xk−1)⇔ Qk({xk}|xk−1)> 0 and Sk({ok}|xk)> 0. (25)

Equation (24) simplifies to

cand(Xk:n|xk−1,ok:n) =
⋃

xk∈Xk

xk⊕opt(Xk+1:n|xk,ok+1:n) (26)

if all local lower probabilities are positive, but this is not generally true in the more general case we
are considering here, where only the upper probabilities are required to be positive.

6. An Algorithm for Finding all Maximal State Sequences

We now use Equation (23) to devise an algorithm for constructing the set opt(X1:n|o1:n) of maximal
state sequences in a recursive manner.

6.1 Initial Set-up Using Backward Recursion

We begin by defining a few auxiliary notions. First of all, we consider the following thresholds:

θk(x̂k,xk|xk−1) := min
{

a≥ 0: Qk(I{xk}−aI{x̂k}|xk−1)≤ 0
}

(27)

for all k ∈ {1, . . . ,n}, xk−1 ∈Xk−1 and x1, x̂1 ∈X1 such that x1 6= x̂1.

204



ESTIMATING STATE SEQUENCES IN IMPRECISE HIDDEN MARKOV MODELS

Next, we define

α
max
k (xk) := max

zk:n∈Xk:n
zk=xk

α(zk:n) and β
max
k (xk) := max

zk:n∈Xk:n
zk=xk

β (zk:n) (28)

for all k ∈ {1, . . . ,n} and xk ∈Xk. Using Equations (20)–(21), these can be calculated efficiently
using the following backward recursive (dynamic programming) procedure:

α
max
k (xk) = max

xk+1∈Xk+1
α

max
k+1 (xk+1)Sk({ok}|xk)Qk+1({xk+1}|xk)

= Sk({ok}|xk) max
xk+1∈Xk+1

α
max
k+1 (xk+1)Qk+1({xk+1}|xk), (29)

and

β
max
k (xk) = max

xk+1∈Xk+1
β

max
k+1 (xk+1)Sk({ok}|xk)Qk+1({xk+1}|xk)

= Sk({ok}|xk) max
xk+1∈Xk+1

β
max
k+1 (xk+1)Qk+1({xk+1}|xk), (30)

for k ∈ {1, . . . ,n−1}, starting from

α
max
n (xn) = α(xn) = Sn({on}|xn) and β

max
n (xn) = β (xn) = Sn({on}|xn). (31)

Finally, we let

α
opt
k (x̂k|xk−1) := max

xk∈Xk
xk 6=x̂k

β
max
k (xk)θk(x̂k,xk|xk−1), (32)

for all k ∈ {1, . . . ,n}, xk−1 ∈Xk−1 and x̂k ∈Xk.

6.2 A Recursive Solution Method

It turns out that the α
opt
k (x̂k|xk−1), calculated by Equation (32), are extremely useful. As proved in

Appendix A, they allow us to significantly simplify Equation (14) as follows:

opt(Xk:n|xk−1,ok:n) =
{

x̂k:n ∈ cand(Xk:n|xk−1,ok:n) : α(x̂k:n)≥ α
opt
k (x̂k|xk−1)

}
, (33)

which, for k = n, reduces to

opt(Xn|xn−1,on) =
{

x̂n ∈Xn : α(x̂n)≥ α
opt
n (x̂n|xn−1)

}
. (34)

Since opt(X1:n|x0,o1:n) = opt(X1:n|o1:n), this suggest the following algorithm for constructing the
set of all maximal state sequences.
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Algorithm 1: ConstructMaximals

Data: the local lower and upper probabilities and the parameters αmax
k and α

opt
k

(calculated as in Section 6.1)
Result: the set of all maximal state sequences: opt(X1:n|o1:n)

1 for xn−1 ∈Xn−1 do
2 opt(Xn|xn−1,on)← /0
3 for x̂n ∈Xn do
4 if α(x̂n)≥ α

opt
n (x̂n|xn−1) then add x̂n to opt(Xn|xn−1,on)

5 for k← n−1 to 1 do
6 for xk−1 ∈Xk−1 do
7 opt(Xk:n|xk−1,ok:n)← /0
8 for x̂k:n ∈ cand(Xk:n|xk−1,ok:n) do
9 if α(x̂k:n)≥ α

opt
k (x̂k|xk−1) then add x̂k:n to opt(Xk:n|xk−1,ok:n)

10 return opt(X1:n|x0,o1:n)

While Algorithm 1 is already much more efficient than a straightforward implementation of
Equation (13), there is still room for improvement. If Posk(xk−1) 6= Xk, then by Equation (24), we
know that cand(Xk:n|xk−1,ok:n) has a number of elements that is exponential in the length of the
considered sequences, making it very inefficient to execute the steps in Lines 8 and 9 of Algorithm 1.
In order to circumvent this problem, we propose a method that does not require an explicit check of
the inequality in Criterion (33) for all elements of cand(Xk:n|xk−1,ok:n). The approach is identical
to that of Algorithm 1, except for Lines 8 and 9, which are replaced by Lines 8’ and 9’, as given in
Algorithm 2.

Algorithm 2: An efficient alternative to Lines 8 and 9 of Algorithm 1

. . .
. . .

. . .
8’ for x̂k ∈Xk do
9’ if αmax

k (x̂k)≥ α
opt
k (x̂k|xk−1) then Recur(x̂k,k)

. . .

In order to be able to define the recursive procedure Recur that is used in Line 9’ of Algorithm 2,
we need some additional notation. First of all, for all k ∈ {1, . . . ,n}, s ∈ {k, . . . ,n}, xk−1 ∈Xk−1,
xk:s ∈Xk:s and ok:n ∈ Ok:n, we define

candx̂k:s (Xk:n|xk−1,ok:n) := {xk:n ∈ cand(Xk:n|xk−1,ok:n) : xk:s = x̂k:s} . (35)

Secondly, for all k∈{1, . . . ,n}, s∈{k, . . . ,n}, xk−1 ∈Xk−1 and x̂k:s ∈Xk:s, we define α
opt
k (x̂k:s|xk−1)

as follows. For s = k, we let α
opt
k (x̂k:k|xk−1) := α

opt
k (x̂k|xk−1), as given by Equation (32). For
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s ∈ {k+1, . . . ,n}, α
opt
k (x̂k:s|xk−1) is then recursively defined by

α
opt
k (x̂k:s|xk−1) =

α
opt
k (x̂k:s−1|xk−1)

Ss−1({os−1}|x̂s−1)Qs({x̂s}|x̂s−1)
. (36)

Procedure Recur(x̂k:s,s)

1 if s = n then
2 add x̂k:n to opt(Xk:n|xk−1,ok:n)
3 else
4 for x̂s+1 ∈Xs+1 do
5 if candx̂k:s⊕x̂s+1 (Xk:n|xk−1,ok:n) 6= /0 then
6 if αmax

s+1 (x̂s+1)≥ α
opt
k (x̂k:s⊕ x̂s+1|xk−1) then Recur(x̂k:s⊕ x̂s+1,s+1)

The following result establishes that Lines 8’ and 9’ of Algorithm 2 are indeed a valid alternative
for Lines 8 and 9 of Algorithm 1.

Theorem 4. The set opt(Xk:n|xk−1,ok:n) that is obtained by executing Algorithm 2 is correct, in the
sense that it satisfies Equation (33).

As we will show in Section 7, Algorithm 2 is surprisingly efficient. One of the reasons for this
efficiency is that checking the if-conditions in Lines 5 and 6 of the Procedure Recur is really easy,
perhaps in contrast to what one might think at first sight. For the condition in Line 6, this is because
one can use Equation (36) to derive α

opt
k (x̂k:s⊕ x̂s+1|xk−1) from α

opt
k (x̂k:s|xk−1), the latter of which

is either available from the previous call to the Procedure Recur or, if s = k, equal to α
opt
k (x̂k|xk−1),

which has already been calculated during the initial set-up phase (see Section 6.1). Before we can
explain why checking the condition in Line 5 is easy as well, we first need to introduce the data
structure that we use to store the sets opt(Xk:n|xk−1,ok:n) of optimal sequences.

For k = n, opt(Xn|xn−1,on) is simply a list of states x̂n ∈Xn. For k < n, we could also just store
the optimal sequences x̂k:n in opt(Xk:n|xk−1,ok:n) as a simple list, but this would imply storing the
same information multiple times, since the initial part of some of those sequences will be identical.
Furthermore, it would make checking the condition in Line 5 of the Procedure Recur very elaborate.
We therefore choose to represent the set opt(Xk:n|xk−1,ok:n) as a collection of trees. Each x̂k ∈Xk
that satisfies the inequality in Line 9’ corresponds to a root of a tree. The paths of these trees
correspond to elements of opt(Xk:n|xk−1,ok:n).

Example 2. We consider a simple binary HMM with, for all i ∈ {1, . . . ,n}, Xi = {0,1}. Then for
k = n−7, we could for example find that

opt(Xk:n| 0,ok:n) = {00001000,00001010,00001110,00011110,10001010,10001110}.

That same set of optimal sequences can also be represented as a collection of trees, which is depicted
in Figure 5. �

Representing opt(Xk:n|xk−1,ok:n) as a collection of trees has two important advantages. The
first advantage is that such a collection of trees can be constructed step by step while running Al-
gorithm 2. In Line 9’ of that algorithm, with every call to the Procedure Recur, we add the current
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0 0 0 1 1 1 1 0

0 1 1 1 0

0 1 0

0 0

1 0 0 0 1 0 1 0

1 1 0

Figure 5: Tree representation of opt(Xk:n| 0,ok:n), for k = n−7

state x̂k as a root node of a new tree. With every subsequent recursive call to the Procedure Recur
(in Line 6 of that same procedure), we add a new child x̂s+1 to an already existing node x̂s, where x̂s

is the last state of the presently considered sequence x̂k:s.
In order for such a step by step construction to lead to a representation for opt(Xk:n|xk−1,ok:n),

each path of the resulting set of trees must have length n− k+ 1. In other words, it is necessary
that every node in this representation has at least one child, except for nodes that form the end of
a path that has length n− k+1. Equivalently, and more technically, it is necessary that with every
execution of Line 4 of the Procedure Recur, at least one x̂s+1 ∈Xs+1 satisfies both of the subsequent
if-conditions (in Lines 5 and 6). The following result establishes that this condition is always met.

Theorem 5. Fix k ∈ {1, ...,n− 1} and s ∈ {k, ...,n− 1} and consider any execution of the Pro-
cedure Recur(x̂k:s,s) while running Algorithm 2. Then there will be at least one xs+1 ∈ Xs+1
for which we obtain that both candx̂k:s⊕xs+1 (Xk:n|xk−1,ok:n) 6= /0 [the if-condition in Line 5] and
αmax

s+1 (xs+1)≥ α
opt
k (x̂k:s⊕ xs+1|xk−1) [the if-condition in Line 6].

All that is now left to explain is how the if-condition in Line 5 of the Procedure Recur can
be checked efficiently. We consider two distinct cases: x̂k ∈ Posk(xk−1) and x̂k /∈ Posk(xk−1). If
x̂k /∈ Posk(xk−1), then by Equations (24) and (35), we find that

candx̂k:s⊕x̂s+1 (Xk:n|xk−1,ok:n) = x̂k:s⊕ x̂s+1⊕Xs+2:n 6= /0,

which makes the if-condition in Line 5 trivially true. If x̂k ∈ Posk(xk−1), then again by Equa-
tions (24) and (35), candx̂k:s⊕x̂s+1 (Xk:n|xk−1,ok:n) 6= /0 if and only if opt(Xk+1:n|x̂k,ok+1:n) contains
a sequence that starts with x̂k+1:s⊕ x̂s+1. If we represent opt(Xk+1:n|x̂k,ok+1:n) as a collection of
trees, this is equivalent to checking whether x̂s+1 is a child of the node that corresponds to the last
state in the sequence x̂k:s.

This brings us to the second advantage of representing sets of optimal sequences as a collec-
tion of trees: it makes checking the if-condition in Line 5 of the Procedure Recur both elegant
and efficient. If in Line 8’ of Algorithm 2, x̂k /∈ Posk(xk−1), then in all of the subsequent calls
to the Procedure Recur, Line 5 can simply be ignored. If x̂k ∈ Posk(xk−1), then in all the sub-
sequent calls to the Procedure Recur, Lines 5 and 6 can be condensed into a single for-loop that
runs over the children of the node that corresponds to x̂s. Hence, for x̂k ∈ Posk(xk−1), executing
Line 8’ of Algorithm 2—including all the subsequent recursive calls to the Procedure Recur—can
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be done efficiently by traversing depth-first through the trees that make up the representation of
opt(Xk+1:n|x̂k,ok+1:n), copying them as we go, except for those nodes for which the condition in
Line 6 of the Procedure Recur is not satisfied.

Example 3. We continue with Example 2. This time, we let k = n−8, which implies that Figure 5
is now a representation for opt(Xk+1:n| 0,ok+1:n). For the sake of this example, let us assume that
0 ∈ Posk(0) and 1 /∈ Posk(0). Then we know from Equations (23) and (24) that every sequence
x̂k:n in opt(Xk:n| 0,ok:n) is an element of either 0⊕ opt(Xk+1:n| 0,ok+1:n) or 1⊕Xk+1:n. Hence,
opt(Xk:n| 0,ok:n) might for example have a representation that looks like the one depicted in Fig-
ure 6.

0 0 0 0 0 1 1 1 0

0 1 0

1 1 0 0 1 1 1 1 0

1 1 1 1 1 0

1

Figure 6: Tree representation of opt(Xk:n|0,ok:n), for k = n−8

Figure 7 should clarify how Algorithm 2 constructs this representation. The two sequences in
opt(Xk:n| 0,ok:n) that start with 0 correspond to the green—grey in monochrome versions of this
paper—branches in the topmost part of Figure 7. The first node of these two sequences was added
in Line 9’ of Algorithm 2 (in this case, the if-condition in that line turned out to be true). The
other green nodes in the topmost part of Figure 7 were added during the subsequent calls to the
Procedure Recur. Checking the if-condition in Line 5 of those procedures was done by traversing
depth-first through the nodes of the representation of opt(Xk+1:n| 0,ok+1:n). The red—grey with
a thicker outline in monochrome versions of this paper—nodes correspond to states for which the
if-condition in Line 6 was not satisfied. The (white) descendants of these red nodes were never
visited by the algorithm; we depict them only to allow for an easy comparison with Figure 5. The
tree representation for the three sequences in opt(Xk:n| 0,ok:n) that start with 1 were constructed
in a similar manner, which is illustrated in the bottommost part of Figure 7. The main difference
is that for those sequences, since 1 /∈ Posk(0), the if-condition in Line 5 of the Procedure Recur
is trivially true, implying that the algorithm does not need to traverse through a tree representation
of opt(Xk+1:n| 1,ok+1:n), but rather trough the complete set Xk+1:n. Again, we stop whenever the
if-condition on Line 6 is not satisfied, as symbolised by the red nodes. �

6.3 Additional Comment

It might happen that the available information consists of assessments for the lower and upper
transition and emission probabilities only:

Qk({xk}|xk−1), Qk({xk}|xk−1), Sk({ok}|xk) and Sk({ok}|xk)
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0
0 0 0 1 1 1 1 0

0 1 1 1 0

0 1 0

0 0

1 0 0 0 1 0 1 0

1 1 0

1
0

1 0 0

1

1 1 1 1 0

0 0 0 0

11

1 1 1 1 0

0 0 0 0

1

opt(Xk+1:n| 0,ok+1:n)

Figure 7: Clarification of the construction of opt(Xk:n|0,ok:n), for k = n−8

for all k ∈ {1, . . . ,n}, xk−1 ∈Xk−1, xk ∈Xk and ok ∈ Ok. In that case, one can use the follow-
ing method to construct, for all k ∈ {1, . . . ,n}, xk−1 ∈Xk−1 and xk, x̂k ∈Xk such that xk 6= x̂k, a
conservative value for the threshold θk(x̂k,xk|xk−1).

The most conservative coherent models Qk(·|Xk−1) that correspond to assessments of lower and
upper probabilities of singletons are 2-monotone (de Campos, Huete, & Moral, 1994). Due to their
comonotone additivity (De Cooman, Troffaes, & Miranda, 2008), this implies that:

Qk(I{xk}−aI{x̂k}|xk−1) = Qk({xk}|xk−1)−aQk({x̂k}|xk−1)

for all a≥ 0, and therefore Equation (27) leads to

θk(x̂k,xk|xk−1) =
Qk({xk}|xk−1)

Qk({x̂k}|xk−1)
.

The right-hand side is the smallest possible value of the threshold θk(x̂k,xk|xk−1) corresponding to
the assessments Qk({xk}|xk−1) and Qk({x̂k}|xk−1), leading to the most conservative inferences and
therefore the largest possible sets of maximal sequences that correspond to these assessments.
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7. Discussion of the Algorithm’s Complexity

This section discusses the computational compexity of the different steps of the EstiHMM algo-
rithm, as developed in the previous section. In the end, we find that the total complexity of the
EstiHMM algorithm is polynomial in the size of the input—quadratic in the length of the iHMM
and cubic in the number of states—, as well as linear in the size of the output—the number of maxi-
mal sequences in opt(X1:n|o1:n). The linearity in the size of the output is especially interesting; we
discuss this in Section 7.4.

7.1 Preparatory Calculations

We begin with the preparatory calculations of the quantities in Equations (27)–(32). For the thresh-
olds θk(x̂k,xk|zk−1) in Equation (27), the computational complexity is clearly cubic in the number
of states, and—except for stationary iHMMs—linear in the length of the iHMM. Calculating the
αmax

k (xk) and β max
k (xk) in Equations (29) and (30) is linear in the length of the iHMM—even for sta-

tionary iHMMs—and quadratic in the number of states. The complexity of finding the α
opt
k (x̂k|xk−1)

in Equation (32) is therefore—in the worst, non-stationary case—linear in the lenght of the iHMM
and cubic in the number of states.

7.2 Algorithm 2

The computational complexity of Algorithm 2 is less trivial. Let us start by noting that this con-
struction essentially consists in repeating the same small step over and over again, namely executing
the Procedure Recur. As we explained in the previous section, our data structure—a collection of
trees—enables us to do this very efficiently. Each of the three if-conditions in the Procedure Recur
can be checked in constant time. Therefore, taking into account the for-loop in Line 4, we find that
the computational complexity of a single execution of the Procedure Recur is linear in the number
of states.

Next, notice that every optimal sequence x̂k:n that is obtained by running Algorithm 2 is con-
structed by adding extra states x̂s+1 to an already constructed sequence x̂k:s, repeating this for s going
from k to n− 1. Adding such a state means executing the Procedure Recur once, and is therefore
linear in the number of states. Similarly, creating the first state x̂k is at most linear in the number of
states as well—due to the for-loop in Line 8’ of Algorithm 2. Hence, constructing a single optimal
sequence x̂k:n is linear in the length of this sequence, as well as linear in the number of states. By
Theorem 5, we also know that every execution of the Procedure Recur is guaranteed to be part
of the construction of at least one optimal sequence. Therefore, we find that constructing a single
set opt(Xk:n|xk−1,ok:n)—executing Algorithm 2—is linear in the number of optimal sequences it
consists of, linear in the length of those sequences and linear in the number of states.

7.3 Algorithm 1

What Algorithm 1 basically does to obtain the set opt(X1:n|o1:n) is to construct all of the the sets
opt(Xk:n|xk−1,ok:n), for every xk−1 ∈ Xk−1, letting k run from n to 1. For k = n and a fixed
xn−1 ∈Xn−1, this is linear in the number of states—see Lines 3 and 4 of Algorithm 1. For k < n
and a fixed xk−1 ∈Xk−1, this comes down to executing Algorithm 2. As shown in the previous
section, Algorithm 2 is linear in the number of optimal sequences in opt(Xk:n|xk−1,ok:n), linear in
the length of those sequences (n− k+ 1) and linear in the number of states. Hence, we conclude
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that complexity of Algorithm 1 is quadratic in the length of the iHMM, quadratic in the number of
states and roughly speaking6 linear in the number of maximal sequences.

7.4 The Total Complexity

The complete EstiHMM algorithm consists of the preparatory calculations in Section 6.1 and a sin-
gle execution of Algorithm 1, where, in the latter, Lines 8 and 9 are replaced by their more efficient
versions in Algorithm 2. We conclude from the previous sections that the total computational com-
plexity of all of this is—at worst—quadratic in the length of the iHMM, cubic in the number of
states, and roughly speaking linear in the number of maximal sequences.

This linearity in the number of maximal sequences is clearly the remaining bottleneck of the
algorithm, since there may be exponentially many such sequences. However, this should not lead
the reader to conclude that the EstiHMM algorithm has exponential complexity, meaning that it is
exponential in the size of the input—the length of the iHMM and the number of states. It is crucial to
realise that the complexity is linear in the size of the output—the number of maximal sequences—,
which in turn may be exponential in the input. However, as long as the size of the output is bounded,
the algorithm is guaranteed to have a computational complexity that is polynomial in the size of the
input. No such guarantee can be given for algorithms whose complexity is linear in the size of the
input—for example a naive implementation of Algorithm 1 that does not replace Lines 8 and 9 by
their more efficient counterparts in Algorithm 2.

Although linearity in the size of the output might seem rather bad, it is in fact all we can hope for.
Even simply printing the output—all maximal sequences—already has a computational complexity
that is linear in its size as well as linear in the length of the iHMM. Linearity in the size of the output
is inherent to all problems that do not necessarily lead to a single solution, but allow for set-valued
solutions as well. If the size of the output is too large, then no algorithm, however cleverly designed,
can overcome this hurdle.

In order for the EstiHMM algorithm not to choke when the number of maximal sequences is
very large, one can keep track—for every set opt(Xk:n|xk−1,ok:n)—of how many times Line 2 of the
Procedure Recur has been executed so far, aborting the algorithm whenever some preset treshold
has been exceeded. It is however not possible to return only the k best solutions, simply because
there is no such thing as a better or worse maximal sequence; they are all incomparable. The only
way in which the number of maximal sequences can be reduced is by decreasing the imprecision of
the model: to gather extra data or expert knowledge, leading to smaller local credal sets, pointwise
larger local lower previsions and therefore fewer maximal sequences. Alternatively, one could also
consider using E-admissable sequences—of which there may be multiple as well, but not as many as
maximal ones—or Γ-maximin sequences—of which, in most instances, there is only one. However,
we know of no algorithm that can calculate the E-admissable or Γ-maximin sequences in an efficient
manner, let alone one that is linear in the output; see Section 4.3.

7.5 Comparison with Viterbi’s Algorithm

For precise HMMs, the state sequence estimation problem can be solved very efficiently by the
Viterbi algorithm (Rabiner, 1989; Viterbi, 1967), whose complexity is linear in the length of the
HMM, and quadratic in the number of states. However, this algorithm only emits a single optimal—

6. For every k and xk−1 ∈Xk−1, constructing the set opt(Xk:n|xk−1,ok:n) has linear complexity in the number of optimal
sequences at that stage.
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most probable—state sequence, even in cases where there are multiple—equally probable—optimal
solutions: this of course simplifies the problem. If we would content ourselves with giving only a
single maximal solution, the ensuing version of our algorithm would have a complexity that is
similar to Viterbi’s.

So, to allow for a fair comparison between Viterbi’s algorithm and ours, we would need to alter
Viterbi’s algorithm in such a way that it no longer resolves ties arbitrarily, and emits all—equally
probable—optimal state sequences. This new version will remain linear in the length of the HMM,
and quadratic in the number of states, but will also have added complexity. As discussed in the
previous section, even printing all optimal sequences is linear in the number of them and therefore
possibly exponential, for example if all possible solutions are equally probable—imagine a precise
HMM of which all local probability mass functions are uniform.

For the complexity of the most time-consuming part of our algorithm—Algorithm 1—, the only
difference is this: Viterbi’s approach is linear and ours is quadratic in the length of the HMM. Where
does this difference come from? In imprecise HMMs we have mutually incomparable solutions,
whereas in precise HMMs the optimal solutions are indifferent, or equally probable. This makes
sure that the algorithm for precise HMMs requires no forward loops, as is the case in the EstiHMM
algorithm, every time we run Algorithm 2. We believe that this added complexity is a reasonable
price to pay for the robustness that working with imprecise-probabilistic models offers.

8. Some Experiments

Since the complexity of the EstiHMM algorithm depends so crucially on the number of maximal
sequences it emits, the present section will study this number in more detail. We do so by taking
a closer look at how it depends on the transition probabilities of the model, and how it evolves
when we let the imprecision of the local models grow. We shall see that the number of maximal
sequences displays very interesting behaviour that can be explained, and even predicted to some
extent. To allow for easy visualisation, we limit this discussion to stationary binary iHMMs, where
both the state and output variables can assume only two possible values, say 0 and 1.

8.1 Describing a Stationary Binary iHMM

The precise transition probabilities for going from one state to the next are completely determined
by numbers in the unit interval: the probability p to go from state 0 to state 0, and the probability
q to go from state 1 to state 0. To further pin down the HMM we also need to specify the marginal
probability m for the first state to be 0, and the two emission probabilities: the probability r of
emitting output 0 from state 0 and the probability s of emitting output 0 from state 1.

In this binary case, all coherent imprecise-probabilistic models can be found by contamination:
taking convex mixtures of precise models, with mixture coefficient 1− ε , and the vacuous model,
with mixture coefficient ε , leading to a so-called linear-vacuous model (Walley, 1991), often referred
to as an ε-contaminated model as well. To simplify the analysis, we let the emission model remain
precise, and use the same mixture coefficient ε for the marginal and the transition models. As ε

ranges from zero to one, we then evolve from a precise HMM towards an iHMM with vacuous
marginal and transition models (and precise emission models).
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8.2 An iHMM of Length Two

We now examine the behaviour of an iHMM of length two, with the following precise probabilities
fixed:

m = 0.1, r = 0.8 and s = 0.3.

Fixing an output sequence and a value for ε , we can use our algorithm to calculate the corresponding
numbers of maximal state sequences as p and q range over the unit interval. The results can be
represented conveniently in the form of a heat plot. The plots in Figure 8 correspond to the output
sequence o1:2 = 01.

0 1p
0

1

q

ε = 2%

0 1p
0

1

q

ε = 5%

0 1p
0

1

q

ε = 10%

0 1p
0

1

q

ε = 15%

Figure 8: Heat plots for o1:2 = 01

The number of maximal state sequences clearly depends on the transition probabilities p and
q. In the rather large parts of ‘probability space’ that are coloured white, we get a single maximal
sequence—as we would for HMMs—, but there are continuous regions where we see a higher num-
ber appear. In the present example—a binary chain of length two—, the highest possible number
of maximal sequences is of course four. In the dark grey area, there are three maximal sequences,
and two in the light grey regions. The plots show what happens when we let ε increase: the grey
areas expand and the number of maximal sequences increases. For ε = 15%, we even find a small
area—coloured black—where all four possible state sequences are maximal: locally, due to the rel-
atively high imprecision of our local models, we cannot provide any useful robust estimate for the
state sequence producing the output sequence o1:2 = 01.
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For small ε , the areas with more than one maximal state sequence are quite small and seem to
resemble strips that narrow down to lines as ε tends to zero. This suggests that we should be able to
explain at least qualitatively where these areas come from by looking at compatible precise models:
the regions where an iHMM produces different maximal (mutually incomparable) sequences, are
widened versions of loci of indifference for precise HMMs.

By a locus of indifference, we mean the set of (p,q) that correspond to two given state sequences
x1:2 and x̂1:2 having equal posterior probability:

p(x1:2|o1:2) = p(x̂1:2|o1:2),

or, provided that p(o1:2)> 0,
p(x1:2,o1:2) = p(x̂1:2,o1:2).

In our example, where o1:2 = 01, we find the following expressions for each of the four possible
state sequences:

p(00,01) = mr(1− r)p;

p(01,01) = mr(1− s)(1− p);

p(10,01) = (1−m)s(1− r)q;

p(11,01) = (1−m)s(1− s)(1−q).

0 1p
0

1

q

00−
01

00−10

00−11

01−
10

01−11

10−11

11

1001

Figure 9: Loci of indifference for o1:2 = 01

By equating any two of these expressions, we express that the corresponding two state sequences
have an equal posterior probability. Since the resulting equations are a function of p and q only, each
of these six possible combinations defines a locus of indifference. All of them are depicted as lines
in Figure 9.
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111000001101000010001000011111111110111101000010110110110000 . . .

111000001101000010001000011111111110111101000010110110110000 . . .
110000001101000010001000011111111110111101000010110110110000 . . .
111000000101000010001000011111111110111101000010110110110000 . . .
111000001100000010001000011111111110111101000010110110110000 . . .
111000001101000000001000011111111110111101000010110110110000 . . .

Figure 10: Maximal sequences for an iHMM of length 100

Parts of these loci, depicted in blue—darker and bolder in monochrome versions of this paper—,
demarcate the three regions where the state sequences 01, 10 and 11 are optimal—have the highest
posterior probability.

What happens when the transition models become imprecise? Roughly speaking, nearby values
of the original p and q enter the picture, effectively turning the loci—lines—of indifference into
bands of incomparability: the emergence of regions with two and more maximal sequences can be
seen to originate from the loci of indifference; compare Figure 9 with Figure 8.

8.3 An iHMM of Length 100

In order to demonstrate that our algorithm is indeed efficient, we let it determine the maximal
sequences for a random output sequence of length 100.

We consider the same stationary binary HMM as before, but with the following precise marginal
and emission probabilities:

m = 0.1, r = 0.98, and s = 0.01.

In practical applications, the probability for an output variable to have the same value as the cor-
responding hidden state variable is usually quite high, which explains why we have chosen r and s
to be close to 1 and to 0, respectively. In contrast with the previous experiments, we do not let the
transition probabilities vary, but fix them to the following values:

p = 0.6 and q = 0.5.

The local models of the iHMM that we use to determine the maximal sequences are now gen-
erated by ε-contaminating these precise local models. We use the same mixture coefficient ε for
the marginal, transition and emission models. In Figure 10, we show the five maximal sequences
that correspond to the highlighted output sequence, with ε = 2%. Due to space constraints, we
display only the first 60 digits of these sequences. Since the emission probabilities were chosen to
be quite accurate, it is no surprise that the output sequence itself is one of the maximal sequences.
In addition, we have indicated in bold face the state values that differ from the outputs in the output
sequence; in the 40 digits that are not displayed, no such differences occured. We see that the model
represents more indecision about the values of the state variables as we move further away from the
end of the sequence. This is a result of a phenomenon called dilation, which—as has been noted in
another paper (De Cooman et al., 2010)—tends to occur when inferences in a credal tree proceed
from the leaves towards the root.

As for the efficiency of our algorithm: it took about 0.2 seconds to calculate these 5 maximal
sequences.7 The reason why this could be done so fast is that the algorithm is more or less linear

7. Running a Python program on a 2012 MacBook Pro.
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in the number of solutions (see Section 7), which in this case is only 5. If we let ε grow to for
example 5%, the number of maximal sequences for the same output sequence is 764 and these
can be determined in about 32 seconds. This demonstrates that the complexity is indeed more or
less proportional to—and therefore linear in—the number of solutions and that the algorithm can
efficiently calculate the set of maximal sequences, even for long output sequences. For larger values
of ε , say 10%, it took more than 30 minutes to determine all maximal sequences, leading us to abort
the algorithm. This should not lead the reader to conclude that for large ε , the EstiHMM algorithm
is no longer linear in the number of maximal sequences. No, it simply means that—at least for long
iHMMs—this number of maximal sequences can increase quickly as soon as ε passes some critical
boundary.

9. An Application in Optical Character Recognition

As a first application, we use the EstiHMM algorithm to detect and correct mistakes in words. The
hidden sequence x1:n corresponds to the original, correct version of a word, of which the output
sequence o1:n is an artificially corrupted version. In this way, we simulate observational processes
that are not perfectly reliable, such as the output of an Optical Character Recognition (OCR) device.
This leads to observed output sequences that may contain errors, which we will try to detect and
correct. The original words were taken from Dante’s Divina Commedia, of which the 1018 words
of the second canto were used as a training set and the initial 200 words of the first canto as a test
set. By comparing the results of the EstiHMM algorithm with those of the Viterbi algorithm, we are
able to illustrate some of the advantages of the former.

9.1 Learning the Local Models

In order to apply our algorithm, we must identify a local uncertainty model for each original and
observed letter: a marginal model Q1 for the first letter X1 of the original word, a transition model
Qk(·|Xk−1) for the subsequent letters Xk, with k ∈ {2, . . . ,n}, and an emission model Sk(·|Xk) for the
observed letters Ok, with k ∈ {1, . . . ,n}. We use the same state space X = O for all these variables,
consisting of the 21 letters of the Italian alphabet. For the sake of simplicity, we assume stationarity,
making the transition and emission models independent of k.

For the identification of the local models of the iHMM, we use the imprecise Dirichlet model
(IDM) (Walley, 1996). This corresponds to considering the set of all Dirichlet priors with some fixed
strength s > 0, using the lower and upper bounds of the inferences obtained by each of these priors
as our model. For example, for the marginal model Q1, applying the IDM leads to the following
lower and upper probabilities:

Q1 ({x}) =
nx

s+∑z∈X nz
and Q1 ({x}) =

s+nx

s+∑z∈X nz
for all x ∈X,

where, for all z ∈X, nz is the number of words in the training text for which the first letter X1 is
equal to z. The hyperparameter s can be regarded as a degree of caution that is taken into account
in the inferences. We use s = 2; Walley (1996, Section 2.5) provides a number of arguments in
favour of this choice. For the transition and emission models, we can proceed similarly, by counting
the transitions of one letter to another, respectively in the original word or during the observation
process. In this way, we obtain lower and upper transition and emission probabilities for singletons,
which, as pointed out in Section 6.3, suffice to run the algorithm. In fact, since the IDM leads
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to local models that are linear-vacuous and hence completely and therefore also 2-monotone, the
approach described in Section 6.3 actually leads to exact values for the parameters θk(x̂k,xk|xk−1)
instead of a conservative approximation.

For the identification of the local models of the precise HMM, we use a similar but now precise
Dirichlet model approach, with a Perks’s prior that has the same prior strength s= 2. As an example,
for the precise marginal model Q1, this leads to the following simple identification:

Q1 ({x}) =
s/|X |+nx

s+∑z∈X nz
,

where |X | is the number of states.
The difference between the precise and imprecise models that are constructed in the way de-

scribed above is relatively small. For example, using our training set of 1018 words, 67 of which
start with the letter A, we obtained the following (lower, upper and precise) probability that the first
letter of a word is A:

Q1 ({A}) = 0.06569, Q1 ({A}) = 0.06578 and Q1 ({A}) = 0.06765.

Nevertheless, as illustrated in the next section, the imprecise model can lead to results that are rather
diferent from those obtained by the precise model.

9.2 Results

Let us first discuss an example of the difference between the results obtained by the Viterbi and the
EstiHMM algorithm, in order to illustrate an important advantage of the latter. OCR software has
mistakenly read the Italian word QUANTO as OUANTO. Using a precise model, the Viterbi algo-
rithm does not correct this mistake, as it suggests that the original correct word is DUANTO. The
EstiHMM algorithm on the other hand, using an imprecise model, returns CUANTO, DUANTO,
FUANTO and QUANTO as maximal, undominated solutions, including the correct one. Of course
we would still have to pick the correct solution out of this set of suggestions—for example by us-
ing a dictionary or a human opinion—, but by using the EstiHMM algorithm, we have managed to
reduce the search space from all possible five letter words to the much smaller set of four words
given above. Notice that the solution of the Viterbi algorithm is included in the maximal solutions
EstiHMM returns. One can easily prove that this will always be the case.

We applied our method to the first 200 words of the first canto of Dante’s Divina Commedia,
137 of which where correctly read by our artifical OCR device and 63 of which contained errors.
We tried to correct these errors using both the EstiHMM and the Viterbi algorithm, and compare
both approaches. The results are summarised in Table 1.

For the Viterbi algorithm, the main conclusion is that applying it to the output of the OCR device
results in a decreased number of incorrect words. The number of correct words rises from 68.5% to
78.5%. However, the Viterbi algorithm also introduces new errors for 5 correctly read words.

The EstiHMM algorithm manages to suggest the original correct word as one of her solutions
in 86% of the cases. Assuming we are able to detect this correct word, the percentage of correct
words rises from 68.5% to 86% by applying the EstiHMM algorithm, thereby outperforming the
Viterbi algorithm by almost 10%. Secondly, we also notice that the EstiHMM algorithm has never
introduced new errors in words that were already correct.
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total number correct after OCR wrong after OCR
total number 200 (100%) 137 (68.5%) 63 (31.5%)
Viterbi
correct solution 157 (78.5%) 132 25
wrong solution 43 (21.5%) 5 38
EstiHMM
correct solution included 172 (86%) 137 35
correct solution not included 28 (14%) 0 28

Table 1: Summary of the results of the EstiHMM and Viterbi algorithm

Of course, since the EstiHMM algorithm allows for multiple solutions, instead of a single one,
it is no surprise that we manage to increase the amount of times we suggest the correct solution.
This would happen even if we added random extra solutions to the solution of the Viterbi algorithm.
Giving extra solutions can only be seen as an improvement if this is done smartly. To investigate
this, we distinguish between the cases where the EstiHMM algorithm returns a single solution, and
those where it returns multiple solutions; and look at how the Viterbi and EstiHMM algorithms
compare in those two cases.

The EstiHMM algorithm returned a single solution for 155 of the 200 words. As we have
already mentioned above, this single solution will always coincide with the one given by the Viterbi
algorithm. The results for the EstiHMM and Viterbi algorithms are summarised in Table 2.

EstiHMM (single solutions) total number correct after OCR wrong after OCR
total number 155 (100%) 129 (83.2%) 26 (16.8%)
single correct solution 134 (86.5%) 129 5
single wrong solution 21 (13.5%) 0 21

Table 2: The instances where EstiHMM produces a single estimate

The percentage of words correctly read by the OCR software is now 83.2% instead of the global
68.5%. When the result of the EstiHMM algorithm is a single solution, this serves as an indication
that the word we are trying to correct has a fairly high probability of already being correct. We also
see that the eventual percentage of correct words is 86.5%, which is only a slight improvement over
the 83.2% that were already correct before applying the algorithms.

Next, we look at the remaining 45 words, for which the EstiHMM algorithm returns more than
one maximal element. In this case, we do see a significant difference between the results of the
Viterbi and the EstiHMM algorithm because the Viterbi algorithm always returns only a single
solution. The results for both algorithms are listed in Table 3.

A first and very important conclusion to be drawn from this table is that if the EstiHMM al-
gorithm is indecisive, this serves as a rather strong indication that the word we are applying the
algorithm to does indeed contain errors: when the EstiHMM algorithm returns multiple solutions,
the original word has been incorrectly read by the OCR software in 82.2% of cases.
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total number correct after OCR wrong after OCR
total number 45 (100%) 8 (17.8%) 37 (82.2%)
EstiHMM (multiple solutions)
correct solution included 38 (84.4%) 8 30
correct solution not included 7 (15.6%) 0 7
Viterbi
correct solution 23 (51.1%) 3 20
wrong solution 22 (48.9%) 5 17

Table 3: The instances where EstiHMM produces a set-valued estimate

A second conclusion, related to the first, is that if the EstiHMM algorithm is indecisive, this
also serves as an indication that the result returned by the Viterbi algorithm is less reliable: the
percentage of correct words after applying the Viterbi algorithm has dropped to 51.1%, in contrast
with the global percentage of 78.5%. The EstiHMM algorithm, however, still gives the correct
word as one of its solutions in 84.4% of cases, which is almost as high as its global percentage of
86%. If the set given by the EstiHMM algorithm contains the correct solution, the Viterbi algorithm
manages to pick this correct solution out of the set in 60.5% of cases. We see that the EstiHMM
algorithm seems to notice that we are dealing with more difficult words and therefore gives us
multiple solutions, between which it cannot decide.

9.3 Advantages of the Imprecise Approach

We learn from our experiments that the EstiHMM algorithm can be usefully applied to make the
results of the Viterbi algorithm more robust, and to gain an appreciation of where it is likely to go
wrong. If the EstiHMM algorithm is indeterminate, this serves as an indication of robustness issues
that would occur if we solved the same problem with the Viterbi algorithm. In those instances,
the EstiHMM algorithm returns multiple solutions, between which it cannot decide, whereas the
Viterbi algorithm will pick one out of this set in a fairly arbitrary way—depending on the choice of
the prior—, thereby increasing the amount of errors made.

This leads us to conclude that the imprecise approach of the EstiHMM algorithm has two main
advantages. The first advantage is that it can easily detect when the precise approach becomes
sensitive to the adopted prior: this kind of sensitivity occurs exactly in those instances where the
EstiHMM algorithm returns an indeterminate result. The second advantage is that, instead of simply
detecting this sensitivity to the choice of prior, the EstiHMM algorithm also offers an alternative
solution that does not suffer from such issues, in the form of a set of maximal sequences—a set
of suggestions for the correct hidden word. As illustrated by our experiments, this set will often
contain the actual correct word.

Future work could try to exploit these set-valued solutions by trying to pick the correct word
out of the given set of options in some non-arbitrary way. This could for example be done by
comparing the options with the entries of a dictionary. Alternatively, one could consider asking the
user for feedback, asking him to choose among the options. In this way, additional data is gathered
that can be used to build a better model that is less sensitive to the choice of the prior.
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10. Conclusions

Interpreting the graphical structure of an imprecise hidden Markov model as a credal network under
epistemic irrelevance leads to an efficient algorithm for finding the maximal, undominated hidden
state sequences for a given observed sequence. An interesting feature of this algorithm is that it has
a computational complexity that is linear in the size of the output—the number of maximal state
sequences. Preliminary simulations show that, even for long iHMMs of which the transition models
have non-negligible imprecision, this number of maximal state sequences is often reasonably low.
It remains to be seen whether this observation can be corroborated by a deeper theoretical analysis.

Our application in OCR clearly shows that the EstiHMM algorithm is able to robustify the
results of the Viterbi algorithm. Not only does it reduce the amount of wrong conclusions by
providing extra possible solutions, it does so in an intelligent manner. It adds extra solutions in the
specific cases where the Viterbi algorithm is likely to be wrong, thereby also serving as an indicator
of the reliability of the result given by the Viterbi algorithm. Since these set-valued solutions often
contain the correct hidden state sequence, they can be usefully applied in a postprocessing phase,
for example by offering the set to the user, asking him for feedback.

A first important avenue of future research would be to compare the EstiHMM algorithm with
other methods that also try to robustify the Viterbi algorithm by producing set-valued solutions. We
distinguish between two different approaches.

On the one hand, we have imprecise methods such as the one adopted by us. They combine an
imprecise model with an imprecise-probabilistic decision criterion. In this paper, we have chosen to
use maximality as a decision criterion. However, other decision criteria can be adopted as well; see
Section 4.3. Some of these other criteria, such as E-admissibility, also lead to set-valued estimates.
A common feature of all of these methods is that they take into account model uncertainty: what
happens with inferences when the model is imperfect? What happens if instead of a single probabil-
ity mass function, there are a set of possible candidates? In many instances, the resulting inferences
will still be determinate. Set-valued solutions are typically obtained only for those instances where
the precise-probabilistic approach is more likely to be wrong.

On the other hand, precise models may lead to set-valued solutions as well. In the context of
HMMs, the most important example seems to be the k-best Viterbi algorithm (Brown & Golod,
2010). Instead of returning only the a posteriori most probable hidden state sequence, the k-best
Viterbi algorithm returns the k most probable hidden state sequences. There are two important
differences with the imprecise approaches described above. First of all, the k-best approach has
nothing to do with model uncertainty. Instead, it deals with the probabilistic uncertainty that is
inherent to the model itself, while assuming that this model is perfectly known. If the model is
indeed correct, then by returning the k most probable sequences, the probability of the correct
estimate to be included in this set-valued solution increases, at the expense of losing determinacy.
Secondly, and related to the previous difference, the k-best method will always return k sequences,
regardless of the accuracy of the 1-best approach. In contrast, imprecise approaches are typically
able to distinguish between easy and hard cases, producing determinate answers for the former and
set-valued answers for the latter. Nevertheless, despite these differences, one gets the impression
that the k-best method can be used to tackle similar applications as the EstiHMM algorithm. It would
be interesting to check whether this is indeed the case, and to compare their respective results. We
leave this as a topic for future research.
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Another, more theoretical avenue of future research is to investigate the extent to which the
ideas presented in this paper can be applied to credal networks other than iHMMs under epistemic
irrelevance. There are two specific instances where we have concrete ideas on how to proceed. First
of all, we have strong reasons to believe that it is possible to derive a similarly efficient algorithm
for iHMMs whose graphical structure is interpreted as a credal network under strong independence
rather then epistemic irrelevance. This could be interesting and relevant, as this more stringent
independence condition leads to joint models that are less imprecise, and therefore produce fewer
maximal state sequences—although they will be included in our solutions. Secondly, the EstiHMM
algorithm demonstrates that efficient inference in credal trees under epistemic irrelevance is not
necessarily limited to queries with a single target node only. In fact, we believe that it is possible
to develop polyonomial time algorithms, capable of solving wide classes of inference problems in
credal trees under epistemic irrelevance, thereby extending the results of De Cooman et al. (2010).
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Appendix A. Proofs of Main Results

In this appendix, we justify the formulas (6), (7), (15), (16), (17), (33) and (34) and we give proofs
for Proposition 1 and Theorems 2–5. We will frequently use terms such as positive, negative,
decreasing and increasing. We therefore start by clarifying what we mean by them. For x ∈ R, we
say that x is positive if x > 0, negative if x < 0, non-negative if x≥ 0 and non-positive if x≤ 0. We
call a real-valued function f defined on R:

(i) increasing if (∀x,y ∈ R)(x > y⇒ f (x)> f (y));

(ii) decreasing if (∀x,y ∈ R)(x > y⇒ f (x)< f (y));

(iii) non-decreasing if (∀x,y ∈ R)(x > y⇒ f (x)≥ f (y));

(iv) non-increasing if (∀x,y ∈ R)(x > y⇒ f (x)≤ f (y)).

222



ESTIMATING STATE SEQUENCES IN IMPRECISE HIDDEN MARKOV MODELS

Proof of Equation (6). For all k ∈ {1, . . . ,n}, xk−1 ∈Xk−1, xk:n ∈Xk:n and ok:n ∈Ok:n we infer from
Equation (5) that

Pk(I{xk:n}I{ok:n}|xk−1) = Qk(Ek(I{xk:n}I{ok:n}|Xk)|xk−1)

= Qk

(
∑

zk∈Xk

I{zk}Ek(I{xk}(zk)I{xk+1:n}I{ok:n}|zk)
∣∣∣xk−1

)
= Qk(I{xk}Ek(I{xk+1:n}I{ok:n}|xk)|xk−1).

Since Ek(I{xk+1:n}I{ok:n}|xk)≥ 0 by C1, we see that C2 transforms the above into

= Qk(I{xk}|xk−1)Ek(I{xk+1:n}I{ok:n}|xk),

which can be reformulated as

= Qk(I{xk}|xk−1)Sk(I{ok}|xk)Pk+1(I{xk+1:n}I{ok+1:n}|xk)

= Qk({xk}|xk−1)Sk({ok}|xk)Pk+1(I{xk+1:n}I{ok+1:n}|xk),

if we take into account Equation (4), since Pk+1(I{xk+1:n}I{ok+1:n}|xk)≥ 0 by C1.
Repeating these steps again and again eventually yields Equation (6):

Pk(I{xk:n}I{ok:n}|xk−1) =
n

∏
i=k

Qi({xi}|xi−1)Si({oi}|xi).

In the last step, for k = n, we have used the equality En({on}|xn) = Sn({on}|xn), which follows from
Equation (3).

Proof of Equation (7). For all k ∈ {1, . . . ,n}, xk−1 ∈Xk−1, xk:n ∈Xk:n and ok:n ∈Ok:n we infer from
conjugacy and Equation (5) that

Pk(I{xk:n}I{ok:n}|xk−1) =−Pk(−I{xk:n}I{ok:n}|xk−1)

=−Qk(Ek(−I{xk:n}I{ok:n}|Xk)|xk−1)

=−Qk

(
∑

zk∈Xk

I{zk}Ek(−I{xk}(zk)I{xk+1:n}I{ok:n}|zk)
∣∣∣xk−1

)
=−Qk(I{xk}Ek(−I{xk+1:n}I{ok:n}|xk)|xk−1)

=−Qk(−I{xk}(−Ek(−I{xk+1:n}I{ok:n}|xk)))|xk−1).

Since −Ek(−I{xk+1:n}I{ok:n}|xk) = Ek(I{xk+1:n}I{ok:n}|xk)≥ 0 by conjugacy and Lemma 6, we see that
C2 and Equation (2) transform the above into

=−
(
−Ek(−I{xk+1:n}I{ok:n}|xk)

)
Qk(−I{xk}|xk−1)

=−Qk(I{xk}|xk−1)Ek(−I{xk+1:n}I{ok:n}|xk),

which can be reformulated as

=−Qk(I{xk}|xk−1)Sk(I{ok}|xk)Pk+1(−I{xk+1:n}I{ok+1:n}|xk)

= Qk(I{xk}|xk−1)Sk(I{ok}|xk)Pk+1(I{xk+1:n}I{ok+1:n}|xk)

= Qk({xk}|xk−1)Sk({ok}|xk)Pk+1(I{xk+1:n}I{ok+1:n}|xk),
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using conjugacy and Equation (4), since Pk+1(−I{xk+1:n}I{ok+1:n}|xk)≤ 0. This last inequality is true
because we know that Pk+1(−I{xk+1:n}I{ok+1:n}|xk) = −Pk+1(I{xk+1:n}I{ok+1:n}|xk) by conjugacy and
that Pk+1(I{xk+1:n}I{ok+1:n}|xk)≥ 0 by Lemma 6.

Repeating the steps above again and again, eventually yields Equation (7):

Pk(I{xk:n}I{ok:n}|xk−1) =
n

∏
i=k

Qi({xi}|xi−1)Si({oi}|xi).

In the last step, for k = n, we have used the equality En({on}|xn) = Sn({on}|xn), which follows from
Equation (3) and conjugacy.

Lemma 6. Consider a coherent lower prevision P on G (X). Then, for all f ∈ G (X), we have that
min f ≤ P( f )≤ P( f )≤max f and, for all µ ∈ R, that P( f ) = P(µ) = µ .

Proof. We prove the inequalities in min f ≤ P( f ) ≤ P( f ) ≤ max f one by one. The first one is
the same as C1. It follows by C3 that P( f − f ) ≥ P( f )+P(− f ) and therefore, since we know by
C2 that P(0) = 0P(0) = 0, this implies that P( f ) ≤ −P(− f ) = P( f ), using conjugacy for the last
equality. For the gamble − f , C1 yields that min− f ≤ P(− f ) which in turn implies that max f =
−min− f ≥−P(− f ) = P( f ).

To conclude, P( f ) = P(µ) = µ follows by applying these inequalities for f = µ .

Proof of Proposition 1. Observe that

Pk(I{ok:n}|xk−1) = Pk

(
I{ok:n} ∑

zk:n∈Xk:n

I{zk:n}

∣∣∣xk−1

)
≥ Pk

(
I{ok:n}I{z∗k:n}

∣∣∣xk−1

)
> 0,

where z∗k:n is any element of Xk:n. The equality follows from ∑zk:n∈Xk:n
I{zk:n} = 1, the first inequality

from Lemma 8(ii), and the second one from the positivity assumption (10) and Equation (7).
In the same way, we can easily prove that

Ek({ok:n}|xk) = Ek

(
I{ok:n} ∑

zk+1:n∈Xk+1:n

I{zk+1:n}

∣∣∣xk

)
≥ Ek

(
I{ok:n}I{z∗k+1:n}

∣∣∣xk

)
> 0.

This time, we have used the positivity assumption (10) and Equation (9) for the last inequality.

Proof of Theorem 2. Consider the real-valued function ρ , defined by

ρ(µ) := P(I{o1:n}[I{x1:n}− I{x̂1:n}−µ]) for all µ ∈ R.

It follows from Equation (11) that P(I{x1:n}− I{x̂1:n}|o1:n) is ρ’s rightmost zero, and we also know
that ρ(0) = P(I{o1:n}[I{x1:n}− I{x̂1:n}]). Furthermore, ρ is non-increasing and continuous by Lemma
7(i), and has at least one zero by Lemma 7(ii). Hence, if ρ(0)> 0, then ρ has at least one positive
zero and P(I{x1:n}− I{x̂1:n}|o1:n)> 0. If ρ(0)< 0, then ρ has only negative zeroes and we then find
that P(I{x1:n}− I{x̂1:n}|o1:n) < 0. Hence, proving the theorem comes down to proving that ρ(0) = 0
implies that ρ(ε) < 0 for all ε > 0, since this in turn implies that P(I{x1:n}− I{x̂1:n}|o1:n) = 0. We
now prove this implication. We consider two different cases.
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The case x1 = x̂1. For any real ε > 0:

ρ(ε) = P(I{o1:n}[I{x1:n}− I{x̂1:n}− ε])

= Q1(E1(I{o1:n}[I{x1:n}− I{x̂1:n}− ε]|X1))

= Q1

(
I{x1}E1(I{o1:n}[I{x2:n}− I{x̂2:n}− ε]|x1)+ ∑

z1 6=x1

I{z1}E1(−εI{o1:n}|z1)

)
. (37)

The coefficients E1(−εI{o1:n}|z1) can be written as −εE1({o1:n}|z1) by conjugacy and C2, which
makes them negative, decreasing functions of ε , since E1({o1:n}|z1) > 0 by the positivity assump-
tion (10) and Proposition 1.

For the coefficient E1(I{o1:n}[I{x2:n}− I{x̂2:n}− ε]|x1), we consider two possible cases.
If E1(I{o1:n}[I{x2:n}− I{x̂2:n}]|x1)> 0, we know that E1(I{o1:n}[I{x2:n}− I{x̂2:n}−ε]|x1) is a decreas-

ing function of ε by Lemma 7(vi). Therefore, the argument of Q1 in Equation (37) decreases
pointwise in ε , which by Lemma 8(i) implies that ρ(ε) is a decreasing function of ε and therefore
ρ(ε)< ρ(0) = 0.

If, on the other hand, E1(I{o1:n}[I{x2:n} − I{x̂2:n}]|x1) ≤ 0, then we know by Lemma 8(ii) that
E1(I{o1:n}[I{x2:n}− I{x̂2:n}− ε]|x1)≤ 0, implying that

ρ(ε)≤ Q1

(
∑

z1 6=x1

I{z1}E1(−εI{o1:n}|z1)

)
≤ Q1

(
I{z1∗}E1(−εI{o1:n}|z1∗)

)
=−εE1({o1:n}|z1∗)Q1{z1∗}< 0.

In this expression, z1∗ is an arbitrary z1 6= x1. The first two inequalities are due to Lemma 8(ii).
Conjugacy and C2 yield the equality and the last inequality is a consequence of the positivity as-
sumption (10) and Proposition 1. Also in this case, therefore, we find that ρ(ε)< 0.

The case x1 6= x̂1. For any real ε > 0:

ρ(ε) = P(I{o1:n}[I{x1:n}− I{x̂1:n}− ε])

= Q1(E1(I{o1:n}[I{x1:n}− I{x̂1:n}− ε]|X1))

= Q1

(
I{x1}E1(I{o1:n}[I{x2:n}− ε]|x1)+ I{x̂1}E1(I{o1:n}[−I{x̂2:n}− ε]|x̂1)

+ ∑
z1 6=x1,x̂1

I{z1}E1(−εI{o1:n}|z1)

)
(38)

In the proof for the case x1 = x̂1, we have already shown that the coefficients E1(−εI{o1:n}|z1)
are negative, decreasing functions of ε . Together with Lemma 8(ii), this allows us to infer that
E1(I{o1:n}[−I{x̂2:n} − ε]|x̂1) ≤ E1(−εI{o1:n}|x̂1) < 0, which in turn by Lemma 7(vii) implies that
E1(I{o1:n}[−I{x̂2:n}− ε]|x̂1) is a decreasing function of ε . All that is left to consider is the coeffi-
cient E1(I{o1:n}[I{x2:n}− ε]|x1). There are two possibilities.

If E1(I{o1:n}I{x2:n}|x1)> 0, then Lemma 7(vi) implies that E1(I{o1:n}[I{x2:n}−ε]|x1) is a decreasing
function of ε . Therefore, the argument of Q1 in Equation (38) decreases pointwise in ε , which by
Lemma 8(i) implies that ρ(ε) is a decreasing function of ε and therefore ρ(ε)< ρ(0) = 0.

225



DE BOCK & DE COOMAN

If, on the other hand, E1(I{o1:n}I{x2:n}|x1) = 0, then by Lemma 8(ii), E1(I{o1:n}[I{x2:n}−ε]|x1)≤ 0,
implying that

ρ(ε)≤ Q1(I{x̂1}E1(I{o1:n}[−I{x̂2:n}− ε]|x̂1))

≤ Q1(I{x̂1}E1(−εI{o1:n}|x̂1)) =−εE1({o1:n}|x̂1)Q1({x̂1})< 0.

The first two inequalities follow from Lemma 8(ii). Conjugacy and C2 yield the equality, and the
last inequality is a consequence of the positivity assumption (10) and Proposition 1. Also in this
case, then, we find that ρ(ε)< 0.

Lemma 7. Let P be a coherent lower prevision on G (X). For any f ∈ G (X) and y ∈ Y , consider
the real-valued map ρ defined on R by ρ(µ) := P(I{y}[ f − µ]) for all real µ . Then the following
statements hold:

(i) ρ is non-increasing, concave and continuous.

(ii) ρ has at least one zero.

(iii) If P({y})> 0, then ρ is decreasing and has a unique zero.

(iv) If P({y}) = 0, then ρ is identically zero.

(v) If P({y}) = 0 and P({y}) > 0, then ρ is zero on (−∞,P( f |y)], and negative and decreasing
on (P( f |y),+∞).

(vi) If ρ(a)> 0 for some a, then ρ is decreasing and has a unique zero.

(vii) If ρ is negative on an interval (a,b), then it is also decreasing on (a,b).

Proof. We start by proving (i). It follows directly from Lemma 8(ii) that ρ is non-increasing in µ .
Now consider µ1 and µ2 in R and 0≤ λ ≤ 1. ρ is concave because

ρ(λ µ1 +(1−λ )µ2) = P(I{y}[ f − (λ µ1 +(1−λ )µ2)])

= P(λ I{y}[ f −µ1]+ (1−λ )I{y}[ f −µ2])

≥ P(λ I{y}[ f −µ1])+P((1−λ )I{y}[ f −µ2])

= λP(I{y}[ f −µ1])+(1−λ )P(I{y}[ f −µ2])

= λρ(µ1)+(1−λ )ρ(µ2),

where the inequality follows from C3 and the subsequent step is due to C2. To prove that ρ(µ) is
continuous, consider any µ1 and µ2 in R, then we see that

ρ(µ2) = P(I{y}[ f −µ2]) = P(I{y}[ f −µ1 +(µ1−µ2)])

= P(I{y}[ f −µ1]+ I{y}(µ1−µ2))≥ P(I{y}[ f −µ1])+P(I{y}(µ1−µ2))

= ρ(µ1)−P({y})� (µ2−µ1),

where the inequality follows from C3, and the last equality is due to conjugacy and C2. Hence
|ρ(µ1)−ρ(µ2)| ≤ |µ2−µ1|P({y}), which proves that ρ is Lipschitz continuous, and therefore also
continuous.
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To prove (ii), first notice that ρ(min f ) = P(I{y}[ f −min f ]) ≥ P(I{y}[min f −min f ]) = 0 and
ρ(max f ) = P(I{y}[ f −max f ])E ≤ P(I{y}[max f −max f ]) = 0. The inequalities are a consequence
of Lemma 8(ii), and the last equalities follow from Lemma 6. Since ρ(µ) is continuous, this implies
the existence of a zero between min f and max f .

Property (iii) can be proved by considering µ1 and µ2 in R with µ2 > µ1. If P({y})> 0, we see
that ρ is decreasing, since

ρ(µ1) = P(I{y}[ f −µ1]) = P(I{y}[ f −µ2 +(µ2−µ1)])

= P(I{y}[ f −µ2]+ I{y}(µ2−µ1))≥ P(I{y}[ f −µ2])+P(I{y}(µ2−µ1))

= ρ(µ2)+(µ2−µ1)P({y})> ρ(µ2),

where the first inequality follows from C3 and the last equality from C2. We know by (ii) that ρ has
at least one zero, which must be unique because ρ is decreasing.

To prove (iv), first note that P({y}) = 0 also implies P({y}) = 0, because of Lemma 6. Now fix
µ in R and choose a and b in R such that

a < min{0,min{ f −µ}} ≤max{0,max{ f −µ}}< b.

Then we find that ρ(µ) = P(I{y}[ f −µ])≥ P(I{y}a) = aP({y}) = 0 and ρ(µ) = P(I{y}[ f −µ])≤
P(I{y}b) = bP({y}) = 0, using Lemma 8(ii), C2 and conjugacy. We conclude that ρ(µ) = 0 for any
µ in R.

The proof of (v) starts by noticing that ρ(µ) ≥ 0 for µ ∈ (−∞,P( f |y)] and ρ(µ) < 0 for
µ ∈ (P( f |y),+∞), due to the definition of P( f |y) (see Equation (11)), and the fact that ρ is non-
increasing by (i). In the proof of (iv), we have already shown that ρ is non-positive if P({y}) = 0,
which allows us to conclude that ρ(µ) = 0 for µ ∈ (−∞,P( f |y)]. We are left to prove that ρ

is decreasing on the interval (P( f |y),+∞). We will do so by contradiction. Suppose that ρ is
not decreasing on that interval, then there are µ1 and µ2 in this interval, such that µ2 > µ1 and
0 > ρ(µ2) ≥ ρ(µ1). Since ρ is zero on (−∞,P( f |y)), we can also choose µ0 < µ1 such that
ρ(µ0) = 0. The existence of such µ0, µ1 and µ2 contradicts the concavity of ρ , established by (i).

To prove (vi), observe that P({y})≥ P({y})≥ 0 by Lemma 6. This implies that the three cases
considered in (iii), (iv) and (v) are exhaustive and mutually exclusive. If there is an a for which
ρ(a)> 0, we can only have the case considered in (iii), which implies that ρ is decreasing and has
a unique zero.

It now only remains to prove (vii). By repeating the argument in the proof of (vi), we see that ρ

is negative on an interval (a,b), only the cases considered in (iii) and (v) can obtain. For (iii), ρ is
decreasing on its entire domain. For (v), ρ is definitely decreasing on (a,b).

Lemma 8. Consider a coherent lower prevision P on G (X) and two gambles f ,g ∈ G (X).

(i) If f (x)> g(x) for all x ∈X, then P( f )> P(g).

(ii) If f (x)≥ g(x) for all x ∈X, then P( f )≥ P(g).

Proof. We start with (i). Since f −g is pointwise positive, we have that min( f −g)> 0 and therefore
that P( f − g) ≥ min( f −g) > 0, using C1 for the first inequality. It now follows from C3 that
P( f ) = P(( f −g)+g)≥ P( f −g)+P(g), and therefore that P( f )−P(g)≥ P( f −g)> 0, whence
indeed P( f ) > P(g). The proof for (ii) is analogous; this time, we have that min( f − g) ≥ 0 and
therefore that P( f )−P(g)≥ P( f −g)≥min( f −g)≥ 0.
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Proof of Equation (15). Let ∆[xk:n, x̂k:n] := I{ok:n}[I{xk:n}− I{x̂k:n}]. Since we are considering the case
k ∈ {1, . . . ,n−1} and x̂k = xk, we find that

∆[xk:n, x̂k:n] = I{ok:n}[I{xk:n}− I{x̂k:n}] = I{ok}I{xk}I{ok+1:n}[I{xk+1:n}− I{x̂k+1:n}]

= I{ok}I{xk}∆[xk+1:n, x̂k+1:n],

which in turn implies that

Pk(∆[xk:n, x̂k:n]|xk−1) = Qk(Ek(I{ok}I{xk}∆[xk+1:n, x̂k+1:n]|Xk)|xk−1)

= Qk(I{xk}Ek(I{ok}∆[xk+1:n, x̂k+1:n]|xk)|xk−1)

= Qk({xk}|xk−1)�Ek(I{ok}∆[xk+1:n, x̂k+1:n]|xk)

= Qk({xk}|xk−1)Sk({ok}|xk)�Pk+1(∆[xk+1:n, x̂k+1:n]|xk),

proving Equation (15). The first equality follows from Equation (5). The second equality holds
because I{xk}(zk) = 0 for all zk 6= xk, implying that

Ek(I{ok}I{xk}∆[xk+1:n, x̂k+1:n]|Xk) = I{xk}Ek(I{ok}∆[xk+1:n, x̂k+1:n]|xk).

The third equality is follows from conjugacy and C2, and the last one follows from Equation (4).

Proof of Equation (16). Since x̂n = xn, Lemma 6 yields:

Pn(I{on}[I{xn}− I{x̂n}|xn−1) = Pn(I{on}[I{xn}− I{xn}|xn−1) = Pn(0|xn−1) = 0.

Proof of Equation (17). If k ∈ {1, . . . ,n} and x̂k 6= xk, then

Pk(I{ok:n}[I{xk:n}− I{x̂k:n}|xk−1) = Qk(Ek(I{ok:n}[I{xk:n}− I{x̂k:n}]|Xk)|xk−1)

= Qk(I{xk}Ek(I{ok:n}I{xk+1:n}|xk)+ I{x̂k}Ek(−I{ok:n}I{x̂k+1:n}|x̂k)|xk−1)

= Qk(I{xk}Ek(I{ok:n}I{xk+1:n}|xk)− I{x̂k}Ek(I{ok:n}I{x̂k+1:n}|x̂k)|xk−1)

= Qk(I{xk}β (xk:n)− I{x̂k}α(x̂k:n)|xk−1),

proving Equation (17). The reasons why all these equalities hold, are analogous to the ones given
in the proof of Equation (15).

Proof of Theorem 3. Fix k ∈ {1, . . . ,n− 1}, xk−1 ∈ Xk−1 and x̂k:n ∈ Xk:n. We now assume that
x̂k+1:n /∈ opt(Xk+1:n|x̂k,ok+1:n) and show that x̂k:n /∈ opt(Xk:n|xk−1,ok:n). It follows from the as-
sumption that Pk+1(I{ok+1:n}[I{xk+1:n}−I{x̂k+1:n}|x̂k)> 0 for some xk+1:n ∈Xk+1. Now prefix this state
sequence xk+1:n with the state x̂k to form the state sequence xk:n, implying that xk = x̂k. We then
infer from Equation (15) that

Pk(I{ok:n}[I{xk:n}− I{x̂k:n}|xk−1) = Qk({x̂k}|xk−1)Sk({ok}|x̂k)Pk+1(I{ok+1:n}[I{xk+1:n}− I{x̂k+1:n}|x̂k)> 0,

which tells us that indeed x̂k:n /∈ opt(Xk:n|xk−1,ok:n).
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Proof of Equations (33) and (34). First, we consider k = n. For every xn−1 ∈Xn−1, we determine
opt(Xn|xn−1,on) as the set of those elements x̂n of Xn for which

(∀xn ∈Xn \{x̂n})Qn(I{xn}β
max
n (xn)− I{x̂n}α(x̂n)|xn−1)≤ 0,

as this condition is equivalent to the optimality condition (14) for k = n, taking into account Equa-
tions (16), (17) and (31). We now show that this condition is also equivalent to

(∀xn ∈Xn \{x̂n})α(x̂n)≥ β
max
n (xn)θn(x̂n,xn|xn−1), (39)

To see this, we consider two different cases. For those xn for which β max
n (xn) = 0, the inequali-

ties Qn(I{xn}β
max
n (xn)− I{x̂n}α(x̂n)|xn−1)≤ 0 and α(x̂n)≥ β max

n (xn)θn(x̂n,xn|xn−1) are both trivially
satisfied since α(x̂n) = Sn({on}|x̂n) > 0 by the positivity assumption (10). If β max

n (xn) > 0, both
inequalities are equivalent because of C2 and Equation (27):

Qn(I{xn}β
max
n (xn)− I{x̂n}α(x̂n)|xn−1)≤ 0⇔ Qn

(
I{xn}− I{x̂n}

α(x̂n)

β max
n (xn)

∣∣∣xn−1

)
≤ 0

⇔ α(x̂n)

β max
n (xn)

≥ θn(x̂n,xn|xn−1)

⇔ α(x̂n)≥ β
max
n (xn)θn(x̂n,xn|xn−1).

Using Equation (32), Equation (39) can now be reformulated as α(x̂n)≥ α
opt
n (x̂n|xn−1), which com-

pletes the proof of the equivalence.
Next, consider any k∈ {1, . . . ,n−1} and xk−1 ∈Xk−1. We must determine opt(Xk:n|xk−1,ok:n).

We know from the Principle of Optimality (23) that we can limit the candidate optimal sequences
x̂k:n to the set cand(Xk:n|xk−1,ok:n). Consider any such x̂k:n, then we must check for any xk:n ∈Xk:n
whether Pk(I{ok:n}[I{xk:n}− I{x̂k:n}]|xk−1)≤ 0; see Equation (14).

If xk:n is such that xk = x̂k, this inequality is always satisfied. Indeed, if x̂k /∈ Posk(xk−1), then we
infer from Equation (25) that Qk({x̂k}|xk−1) = 0 or Sk({ok}|x̂k) = 0, and then Equation (15) tells
us that Pk(I{ok:n}[I{xk:n}− I{x̂k:n}]|xk−1) = 0. If x̂k ∈ Posk(xk−1), we know from Equation (24) that
x̂k+1:n ∈ opt(Xk+1:n|x̂k,ok+1:n), which in turn implies that Pk+1(I{ok+1:n}[I{xk+1:n}− I{x̂k+1:n}]|x̂k)≤ 0.
Hence Pk(I{ok:n}[I{xk:n}− I{x̂k:n}]|xk−1)≤ 0, again by Equation (15).

This means we can limit ourselves to checking the inequality for those xk:n for which xk 6= x̂k.
So fix any xk 6= x̂k, then we must check whether

(∀xk+1:n ∈Xk+1:n)Qk(I{xk}β (xk:n)− I{x̂k}α(x̂k:n)|xk−1)≤ 0;

see Equation (17). By Equation (28) and Lemma 8, this is equivalent to

Qk(I{xk}β
max
k (xk)− I{x̂k}α(x̂k:n)|xk−1)≤ 0,

which can in turn be seen to be equivalent to α(x̂k:n) ≥ β max
k (xk)θk(x̂k,xk|xk−1), using a course of

reasoning completely analogous to the one used above for the case k = n. Since this inequality must
hold for every xk 6= x̂k, we infer from Equation (32) that we must have that α(x̂k:n)≥ α

opt
k (x̂k|xk−1).

So we must check this condition for all the candidate sequences x̂k:n in cand(Xk:n|xk−1,ok:n), which
proves Equation (33).
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Proof of Theorem 4. We start by proving that every sequence x̂k:n that is added in Line 2 of the
Procedure Recur(x̂k:n,n) is indeed an element of opt(Xk:n|xk−1,ok:n). If Line 2 of the Proce-
dure Recur(x̂k:n,n) is executed, this means that the Procedure Recur(x̂k:n−1,n− 1) was executed
in the previous step, and that at that point, the if-conditions in Lines 5 and 6 were satisfied. Due to
the first if-condition, we know that x̂k:n ∈ candx̂k:n (Xk:n|xk−1,ok:n) and therefore, by Equation (35),
also that x̂k:n ∈ cand(Xk:n|xk−1,ok:n). From the second if-condition, we infer that αmax

n (x̂n) ≥
α

opt
k (x̂k:n|xk−1), which can be seen to be equivalent with α(x̂k:n) ≥ α

opt
k (x̂k|xk−1), by Equation (31)

and the repeated use of Equations (36) and (20). It now follows from Equation (33) that x̂k:n is an
element of opt(Xk:n|xk−1,ok:n).

To conclude the proof, we show that a sequence x̂k:n that has not been added during the course
of the algorithm cannot be an element of opt(Xk:n|xk−1,ok:n). If a sequence x̂k:n has not been added,
this either implies that it is not an element of cand(Xk:n|xk−1,ok:n) [the if-condition on Line 5 of
the Procedure Recur was not satisfied], or that there is some i ∈ {k, . . . ,n} for which αmax

i (x̂i) <
α

opt
k (x̂k:i|xk−1) [the if-condition on Line 9’ of Algorithm 2 or Line 5 of the Procedure Recur was

not satisfied]. In the first case, it follows directly from Equation (33) that x̂k:n cannot be an element
of opt(Xk:n|xk−1,ok:n). In the second case, we find that αmax

i (x̂i) < α
opt
k (x̂k:i|xk−1) implies that

α(x̂k:n) < α
opt
k (x̂k|xk−1), which can be seen to be equivalent with α(x̂k:n) < α

opt
k (x̂k|xk−1) by the

repeated use of Equations (36) and (20). It then follows from Equation (33) that x̂k:n cannot be an
element of opt(Xk:n|xk−1,ok:n).

Proof of Theorem 5. Equation (28) implies that there is at least one sequence x∗s+1:n ∈Xs+1:n for
which α(x̂s⊕ x∗s+1:n) = αmax

s (x̂s). We prove that the first state x∗s+1 of this sequence meets both
criteria of the theorem.

We know that candx̂k:s (Xk:n|xk−1,ok:n) 6= /0 and αmax
s (x̂s) ≥ α

opt
k (x̂k:s|xk−1) because both con-

ditions are necessary in order for the Procedure Recur(x̂k:s,s) to be executed while running Al-
gorithm 2. For s = k, the condition candx̂k:s (Xk:n|xk−1,ok:n) 6= /0 is not explicitely checked by Al-
gorithm 2, but nevertheless also true because of Equations (24) and (35) and because we know
that opt(Xk+1:n|x̂k,ok+1:n) 6= /0 [because every finite partially ordered set has at least one maximal
element].

Since α(x̂s⊕ x∗s+1:n) = αmax
s (x̂s) ≥ α

opt
k (x̂k:s|xk−1), we know from Equations (20) and (36) that

α(x∗s+1:n)≥α
opt
k (x̂k:s⊕x∗s+1|xk−1). By combining this with Equation (28), we find that αmax

s+1 (x
∗
s+1)≥

α
opt
k (x̂k:s⊕ x∗s+1|xk−1), meaning that x∗s+1 satisfies the if-condition in Line 6.

Due to Lemma 9, we can infer from candx̂k:s (Xk:n|xk−1,ok:n) 6= /0 and α(x̂s⊕x∗s+1:n) = αmax
s (x̂s)

that candx̂k:s⊕x∗s+1
(Xk:n|xk−1,ok:n) 6= /0, meaning that x∗s+1 satisfies the if-condition in Line 5 as well.

Lemma 9. Consider any k ∈ {1, . . . ,n−1}, s∈ {k, . . . ,n−1}, xk−1 ∈Xk−1, xk:s ∈Xk:s and x∗s+1:n ∈
Xs+1:n. Then if candxk:s (Xk:n|xk−1,ok:n) 6= /0 and α(xs ⊕ x∗s+1:n) = αmax

s (xs), we also have that
candxk:s⊕x∗s+1

(Xk:n|xk−1,ok:n) 6= /0.

Proof. Let zs+1:n be any sequence in Xs+1:n for which xk:s⊕ zs+1:n ∈ cand(Xk:n|xk−1,ok:n); this is
possible because, by assumption, candxk:s (Xk:n|xk−1,ok:n) 6= /0.

If there is some q∈ {k, . . . ,s−1} for which xq /∈ Posq(xq−1), then we denote the smallest such q
as q∗. In that case, by Equation (24), we find that xq∗:s⊕x∗s+1:n and xq∗:s⊕zs+1:n are both elements of
cand(Xq∗:n|xq∗−1,oq∗:n). If no such q exists, we let q∗ := s. In that case, since xq ∈ Posq(xq−1) for all
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q∈ {k, . . . ,s−1}, it follows from xk:s⊕zs+1:n ∈ cand(Xk:n|xk−1,ok:n) and the repeated use of Equa-
tions (24) and (23) that xs⊕zs+1:n belongs to cand(Xs:n|xs−1,os:n). Since α(xs⊕x∗s+1:n) =αmax

s (xs),
we can infer from Lemma 10 that x∗s+1:n ∈ opt(Xs+1:n|xs,os+1:n) and therefore, by Equation (24),
that xs⊕ x∗s+1:n ∈ cand(Xs:n|xs−1,os:n).

In any case, we now have a q∗ ∈ {k, . . . ,s} for which xq∗:s⊕ x∗s+1:n and xq∗:s⊕ zs+1:n belong to
cand(Xq∗:n|xq∗−1,oq∗:n) and for which, for all q ∈ {k, . . . ,q∗− 1}, xq ∈ Posq(xq−1). If q∗ = k, this
concludes the proof. Therefore, we will from now on consider the case q∗ ∈ {k+1, . . . ,s}.

We first recall that cand(Xk:n|xk−1,ok:n) can be constructed by applying Equations (33) and (24)
repeatedly. Therefore, since we know that xq∗:s⊕zs+1:n ∈ cand(Xq∗:n|xq∗−1,oq∗:n) and xk:s⊕zs+1:n ∈
cand(Xk:n|xk−1,ok:n), it must be that

α(xq:s⊕ zs+1:n)≥ α
opt
q (xq|xq−1) for all q ∈ {k+1, . . . ,q∗}. (40)

Furthermore, since α(xs⊕ x∗s+1:n) = αmax
s (xs), we infer from Equation (28) that α(xs⊕ x∗s+1:n) ≥

α(xs⊕ zs+1:n) and therefore, by Equation (20), we find hat

α(xq:s⊕ x∗s+1:n)≥ α(xq:s⊕ zs+1:n) for all q ∈ {k+1, . . . ,s}.

Hence, by Equation (40):

α(xq:s⊕ x∗s+1:n)≥ α
opt
q (xq|xq−1) for all q ∈ {k+1, . . . ,q∗}. (41)

Since cand(Xk:n|xk−1,ok:n) can be constructed by repeatedly applying Equations (33) and (24) and
because xq∗:s⊕x∗s+1:n ∈ cand(Xq∗:n|xq∗−1,oq∗:n), we now infer from Equation (41) that xk:s⊕x∗s+1:n ∈
cand(Xk:n|xk−1,ok:n).

Lemma 10. Consider any s ∈ {1, . . . ,n−1}, xs ∈Xs and x∗s+1:n ∈Xs+1:n. Then

α(xs⊕ x∗s+1:n) = α
max
s (xs) =⇒ x∗s+1:n ∈ opt(Xs+1:n|xs,os+1:n) .

Proof. Assume that α(xs⊕ x∗s+1:n) = αmax
s (xs) and consider any zs+1:n ∈Xs+1:n. Then we know by

Equation (28) that α(xs⊕ x∗s+1:n)≥ α(xs⊕ zs+1:n) and therefore, by Equation (19) and (7), that

Ss({os}|xs)Ps+1(I{x∗s+1:n}I{os+1:n}|xs)≥ Ss({os}|xs)Ps+1(I{zs+1:n}I{os+1:n}|xs).

Together with the positivity assumption (10), this implies that

Ps+1(I{x∗s+1:n}I{os+1:n}|xs)≥ Ps+1(I{zs+1:n}I{os+1:n}|xs). (42)

By C3, we also know that

Ps+1(−I{x∗s+1:n}I{os+1:n}|xs)≥ Ps+1(I{os+1:n}(I{zs+1:n}− I{x∗s+1:n})|xs)+Ps+1(−I{zs+1:n}I{os+1:n}|xs)

which, by conjugacy, implies that

Ps+1(I{os+1:n}(I{zs+1:n}− I{x∗s+1:n})|xs)≤ Ps+1(I{zs+1:n}I{os+1:n}|xs)−Ps+1(I{x∗s+1:n}I{os+1:n}|xs).

Using Equation (42), we see that Ps+1(I{os+1:n}(I{zs+1:n}− I{x∗s+1:n})|xs) ≤ 0. Since this holds for all
zs+1:n ∈Xs+1:n, we infer from Equation (14) that x∗s+1:n ∈ opt(Xs+1:n|xs,os+1:n).
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