

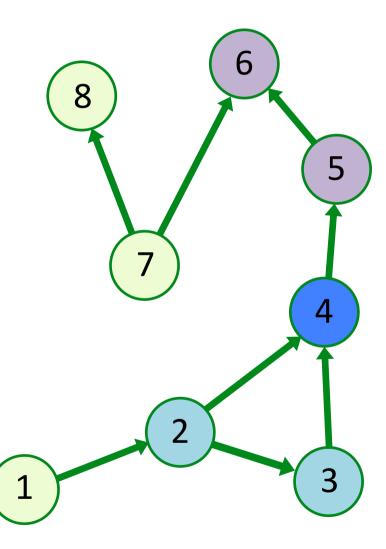
Credal networks an overview of different approaches

Jasper De Bock

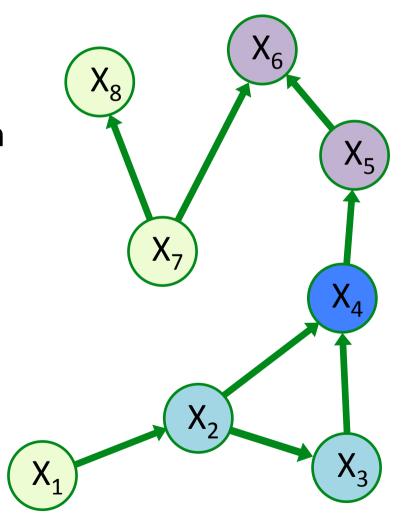
11 June 2013

Graphical structure: DAG

 $\implies \forall s \in G: P(s), D(s), N(s)$

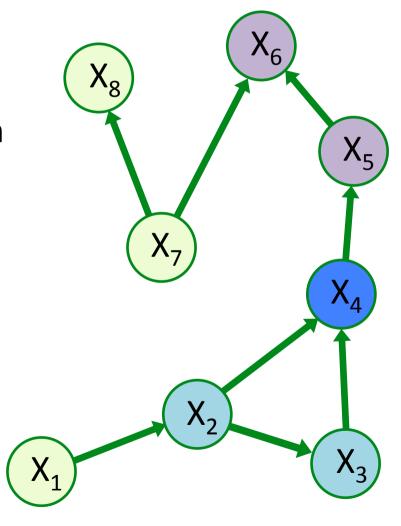


- Graphical structure: DAG⇒ ∀s ∈ G: P(s), D(s), N(s)
- Variables X_s take values X_s in a finite non-empty set X_s



- Graphical structure: DAG $\implies \forall s \in G: P(s), D(s), N(s)$
- Variables X_s take values X_s in a finite non-empty set X_s
- Local uncertainty models: mass functions $q(X_s|x_{P(s)})$

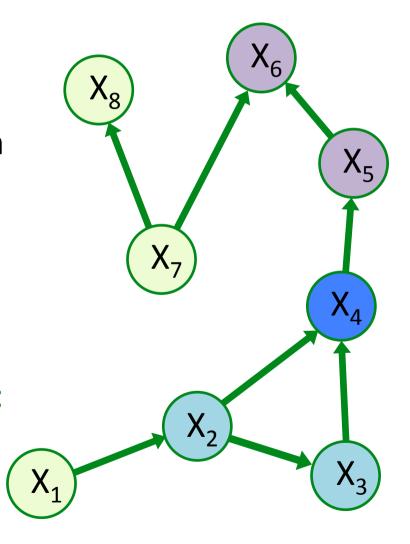
Example: $q(X_4 | x_{\{2,3\}})$



Graphical structure: DAG⇒ ∀s ∈ G: P(s), D(s), N(s)

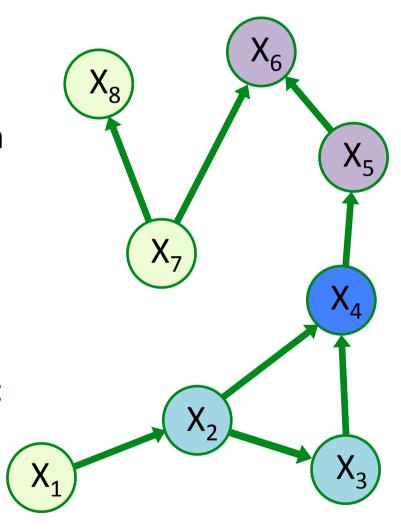
- Variables X_s take values X_s in a finite non-empty set X_s
- Local uncertainty models: mass functions $q(X_s|x_{P(s)})$
- Independence assumptions:

 $\forall s \in G: I(N(s), s | P(s))$



- Graphical structure: DAG⇒ ∀s ∈ G: P(s), D(s), N(s)
- Variables X_s take values X_s in a finite non-empty set X_s
- Local uncertainty models: mass functions $q(X_s|x_{P(s)})$
- Independence assumptions:

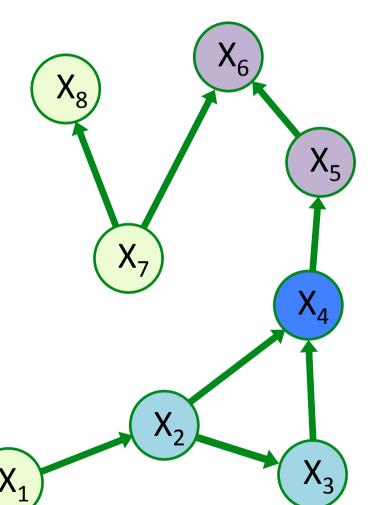
 $\forall s \in G: I(N(s), s | P(s))$



$$p(x_s|x_{P(s)},x_{N(s)}) = p(x_s|x_{P(s)})$$

EQUIVALENT

$$p(x_{N(s)}|x_{P(s)},x_s) = p(x_{N(s)}|x_{P(s)})$$



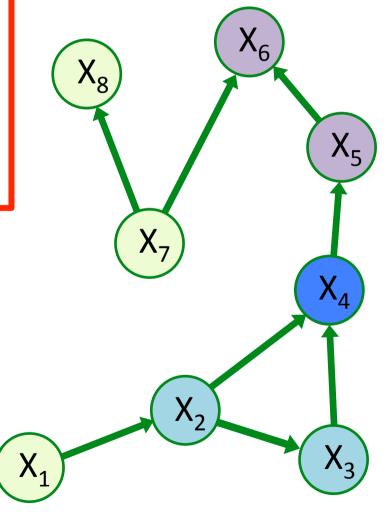
• Independence assumptions:

 $\forall s \in G: I(N(s), s \mid P(s))$

• Local uncertainty models: mass functions $q(X_s|x_{P(s)})$

• Independence assumptions:

 $\forall s \in G: I(N(s), s | P(s))$

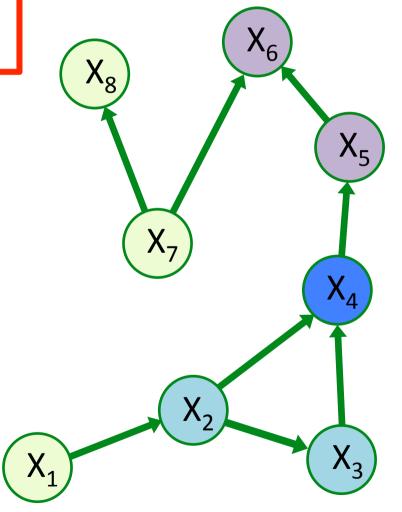


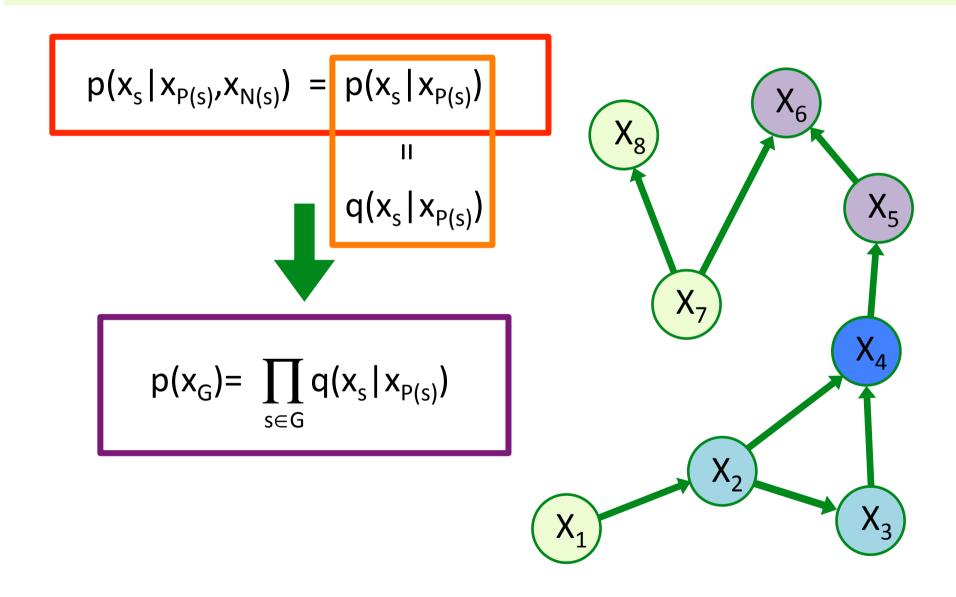
$$p(x_s | x_{P(s)}, x_{N(s)}) = p(x_s | x_{P(s)})$$
 $q(x_s | x_{P(s)})$

• Local uncertainty models: mass functions $q(X_s|x_{P(s)})$

• Independence assumptions:

 $\forall s \in G: I(N(s), s | P(s))$





Credal networks: basic setup

Graphical structure: DAG

 $\implies \forall s \in G: P(s), D(s), N(s)$

• Variables X_s take values x_s in a finite non-empty set X_s

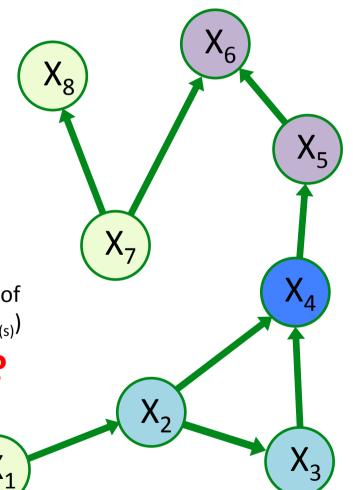
Local uncertainty models:

credal sets $\mathcal{M}(X_s | x_{P(s)})$?

Closed and convex set of mass functions $q(X_s|x_{P(s)})$

? Independence assumptions ?

 $\forall s \in G: ?!?(N(s), s | P(s))$

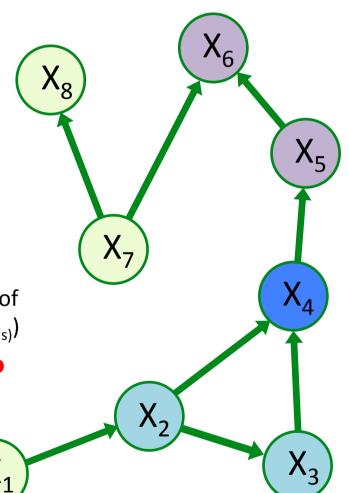


- Graphical structure: DAG
 ⇒ ∀s ∈ G: P(s), D(s), N(s)
- Variables X_s take values x_s in a finite non-empty set X_s
- Local uncertainty models: credal sets $\mathcal{M}(X_s | x_{P(s)})$?

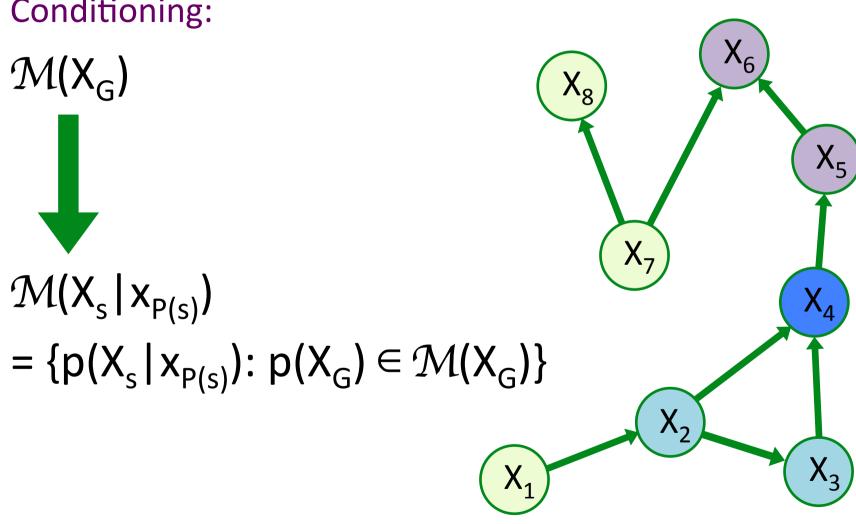
Closed and convex set of mass functions $q(X_s|x_{P(s)})$

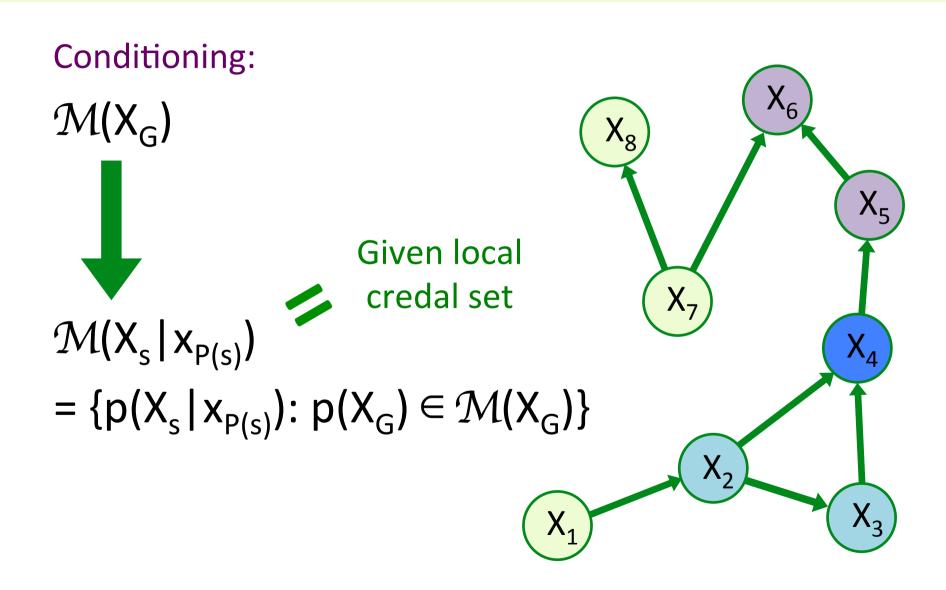
? Independence assumptions ?

 $\forall s \in G: ?!?(N(s), s | P(s))$



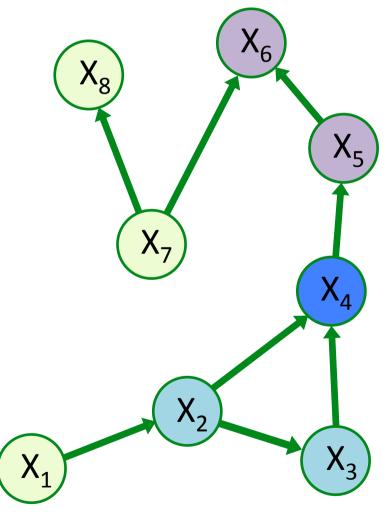
Conditioning:





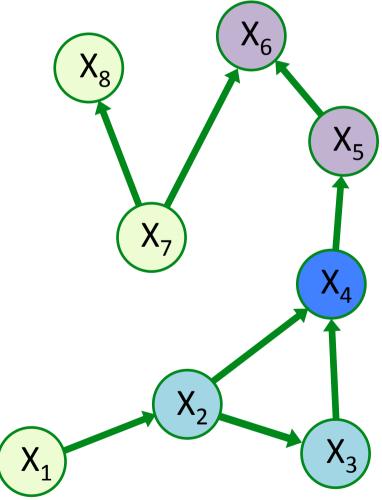
? Independence assumptions?

- Strong independence
- Epistemic irrelevance
- Epistemic independence



? Independence assumptions?

- Strong independence
- Epistemic irrelevance
- Epistemic independence

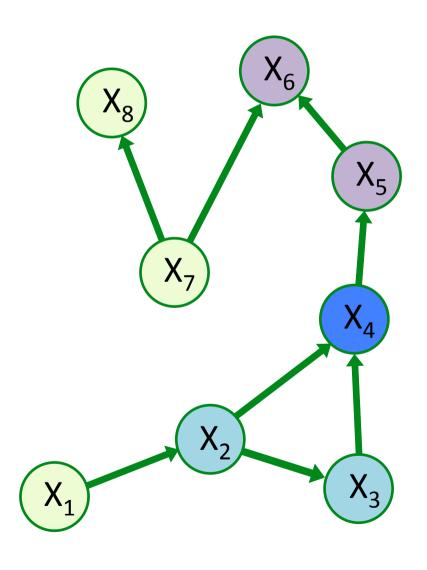


Strong independence

 $\forall s \in G: SI(N(s), s | P(s))$

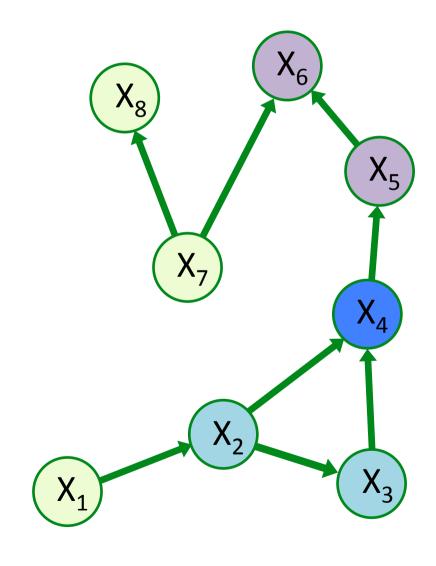
 $\mathcal{M}(X_G)$ is the convex hull of a set of mass functions $p(X_G)$ that satisfy the usual independence assumption:

 $\forall s \in G: I(N(s), s | P(s))$



Strong independence

 $\forall s \in G$: **SI**(N(s), s|P(s)) + Local models $\mathcal{M}(X_s|x_{P(s)})$ not unique! $\mathcal{M}(X_G)$



Credal networks: joint model $\mathcal{M}^{\text{str}}(X_G)$?

Strong independence

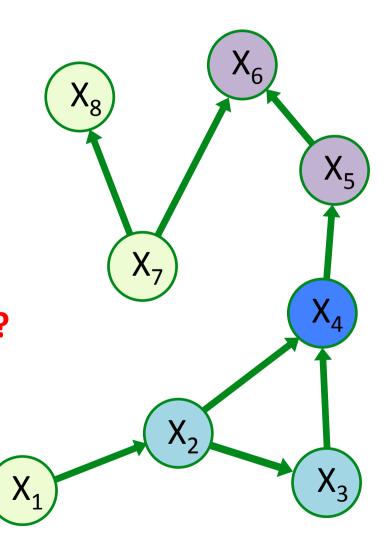
 $\forall s \in G: SI(N(s), s | P(s))$

+

Local models $\mathcal{M}(X_s | x_{P(s)})$

largest solution!

The strong extension $\mathcal{M}^{str}(X_G)$?



Strong independence

 $\forall s \in G: SI(N(s), s | P(s))$

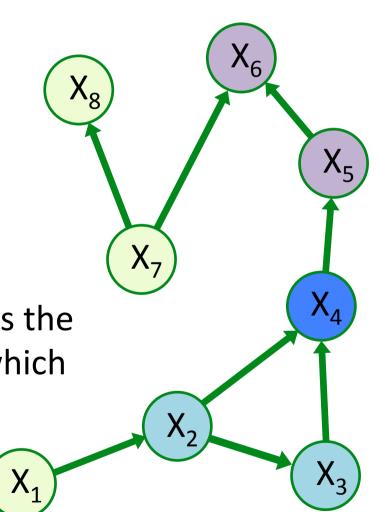
Local models $\mathcal{M}(X_s | x_{P(s)})$

largest solution!

The strong extension $\mathcal{M}^{str}(X_G)$ is the convex hull of those $p(X_G)$ for which

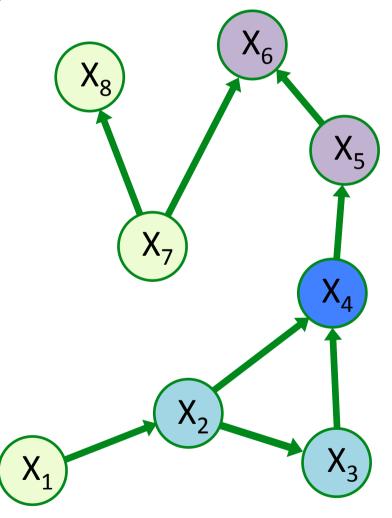
$$p(x_G) = \prod_{s \in G} q(x_s | x_{P(s)})$$

$$\mathcal{M}(X_s | x_{P(s)})$$



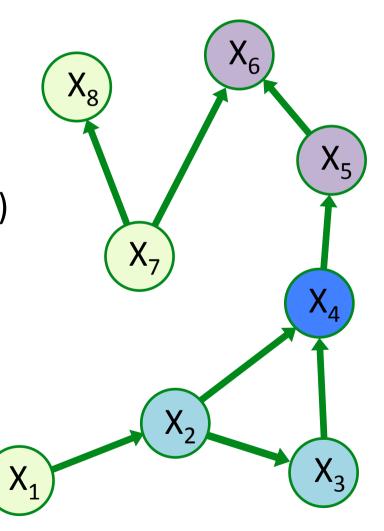
? Independence assumptions?

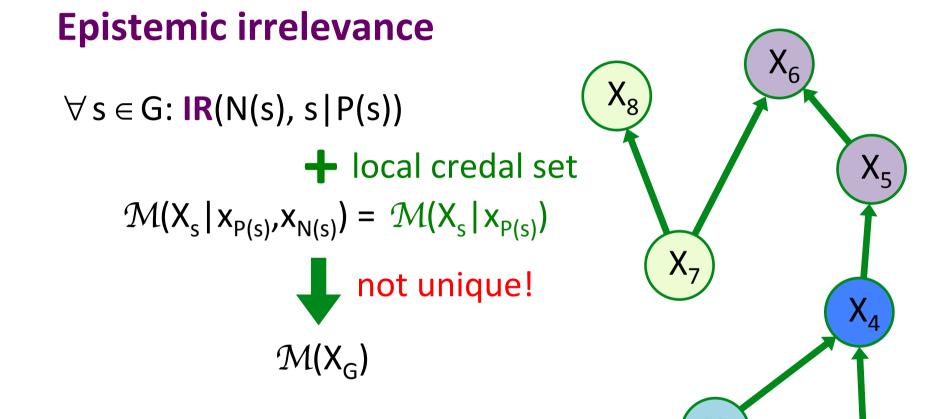
- Strong independence
- Epistemic irrelevance
- Epistemic independence

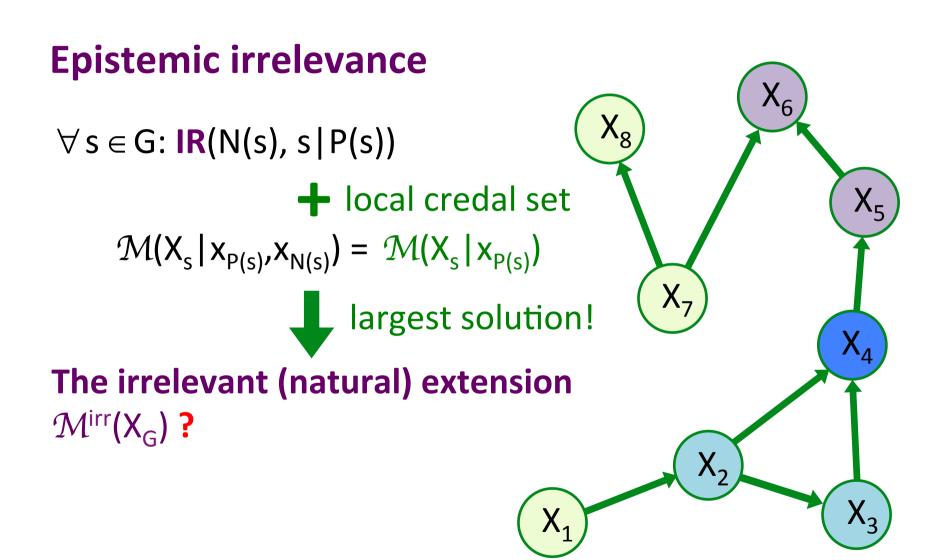


Epistemic irrelevance

 $\mathcal{M}(X_s | X_{P(s)}, X_{N(s)}) = \mathcal{M}(X_s | X_{P(s)})$







Epistemic irrelevance

 $\forall s \in G: IR(N(s), s \mid P(s))$

+ local credal set

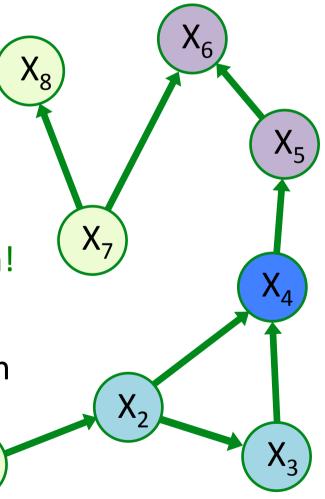
$$\mathcal{M}(X_s | x_{P(s)}, x_{N(s)}) = \mathcal{M}(X_s | x_{P(s)})$$

L largest solution!

The irrelevant (natural) extension

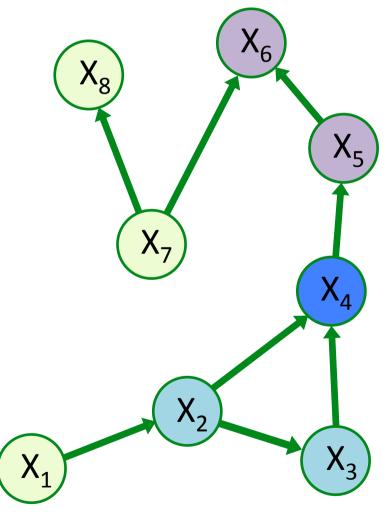
 $\mathcal{M}^{irr}(X_G)$ is the set of $p(X_G)$ for which

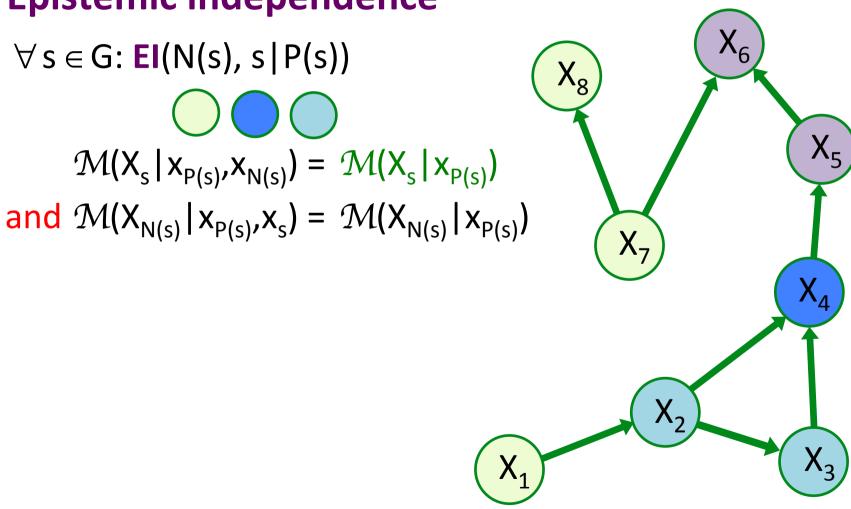
$$P(X_s | x_{P(s)}, x_{N(s)}) \in \mathcal{M}(X_s | x_{P(s)})$$

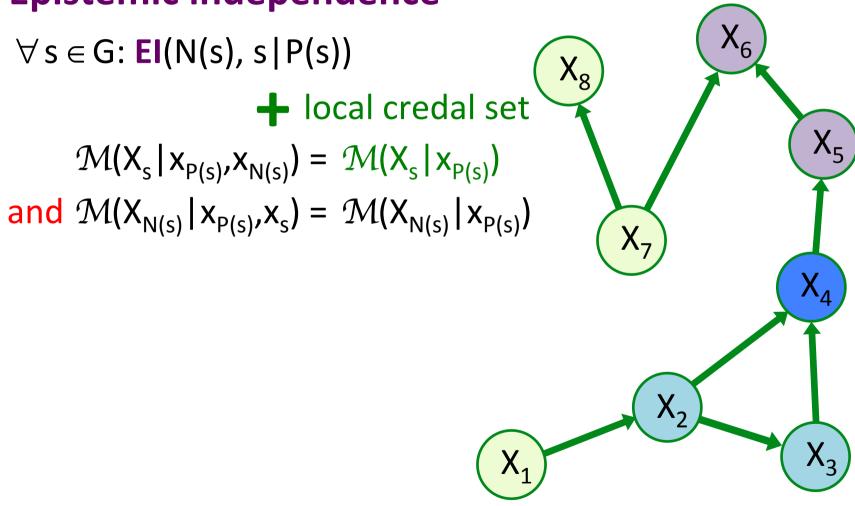


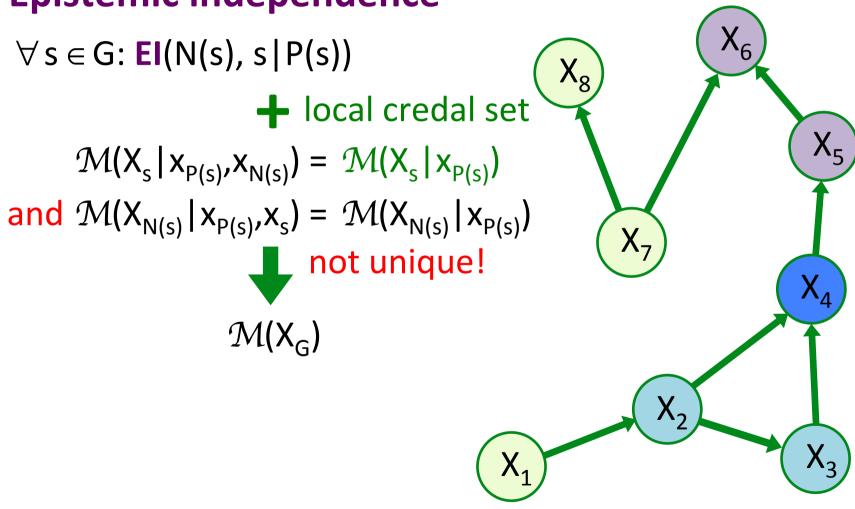
? Independence assumptions?

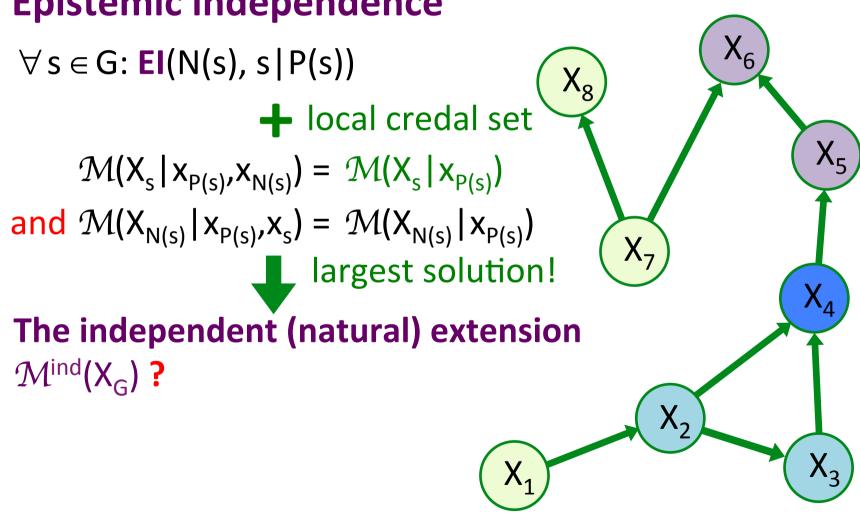
- Strong independence
- Epistemic irrelevance
- Epistemic independence

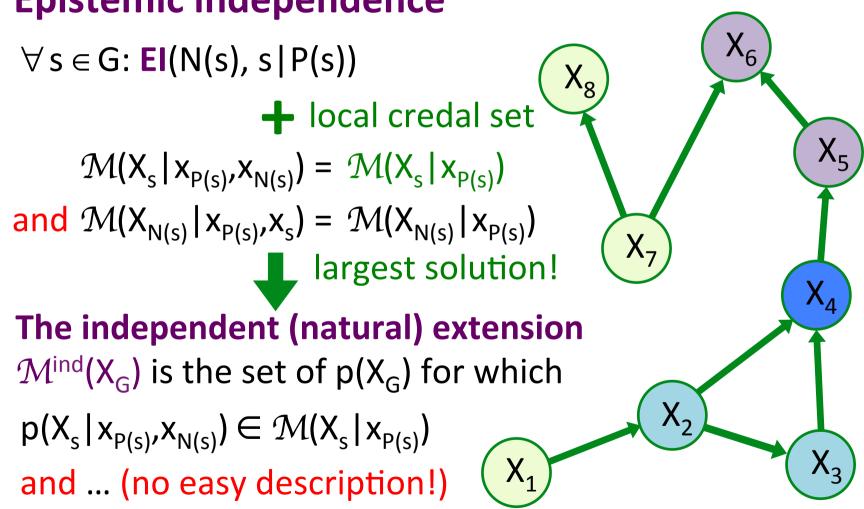












Credal networks

