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Conditioning:

M(Xg) (%)
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= {p(X;] Xp(s))3 p(Xs) € M(Xg)}
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Credal networks: joint model ‘M(X.) ?

Strong independence

Vs € G: SI(N(s), s|P(s))
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‘M(X;) is the convex hull of

a set of mass functions p(X;)
that satisfy the usual
independence assumption:

Vs e G: I(N(s), s|P(s))
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‘ not unique!
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Credal networks: joint model ‘Ms"(X)

Strong independence

V's € G: SI(N(s), s|P(s)) @
=k

Local models ‘M(X,|xp)

‘ largest solution! e

The strong extension M*""(X;) is the
convex hull of those p(X;) for which

p(XG)= H q(Xs | XP(s))
seG M
M(Xs | XP(s))



Credal networks: joint model ‘M(X.) ?

? Independence assumptions ?

= Strong independence
= Epistemic irrelevance

= Epistemic independence



Credal networks: joint model ‘M(X.) ?

Epistemic irrelevance

Vs € G: IR(N(s), s|P(s)) @
ol IO

MUX [ Xp(spXnis) = MIX [ Xp())




Credal networks: joint model ‘M(X.) ?

Epistemic irrelevance

Vs € G: IR(N(s), s|P(s)) @
<4 local credal set
MK [ XpepXnis) = MK X))

‘ not unique!

M(Xg)




Credal networks: joint model M (X,) ?

Epistemic irrelevance

Vs € G: IR(N(s), s|P(s)) @
<4 local credal set
MK [ XpepXnis) = MK X))

‘ largest solution! @

The irrelevant (natural) extension
Mirr(XG) ?



Credal networks: joint model M (X)

Epistemic irrelevance

Vs € G: IR(N(s), s|P(s)) @
<4 local credal set
MK [ XpepXnis) = MK X))

‘ largest solution! e

The irrelevant (natural) extension
M"(X;) is the set of p(X;) for which

P(X,] xP(S),xN(S)) e M(X,| xp(s))



Credal networks: joint model ‘M(X.) ?

? Independence assumptions ?

= Strong independence
= Epistemic irrelevance

= Epistemic independence



Credal networks: joint model ‘M(X.) ?

Epistemic independence
Vs € G: EI(N(s), s|P(s)) @

MUX [ Xp(spXnis) = MIX [ X))
and M(Xy) 1 XpspXs) = M(Xys) | Xp(s))




Credal networks: joint model ‘M(X.) ?

Epistemic independence

V's € G: EI(N(s), s|P(s)) @
< local credal set

M(X,| xP(S),xN(S)) = M(X,] xP(S))
and M(Xy) 1 XpspXs) = M(Xys) | Xp(s))




Credal networks: joint model ‘M(X.) ?

Epistemic independence

Vs eG: EI(N(s), s| P(s)) @

<4 local credal set
MUX [ Xp(spXnis) = MIX [ X))

and M(Xy) | Xp(sXs) = M(Xyi) | Xp(s)) e

* not unique!

M(Xg)




Credal networks: joint model M"9(X..) ?

Epistemic independence

Vs € G: EI(N(s), s|P(s)) @
< local credal set
MUX [ Xp(spXnis) = MIX [ X))

and M(Xy) | Xp(sXs) = M(Xyi) | Xp(s)) e
largest solution!

The independent (natural) extension
Mind(XG) ?



Credal networks: joint model M"9(X..) ?

Epistemic independence

Vs € G: EI(N(s), s|P(s)) @
< local credal set
MUX [ Xp(spXnis) = MIX [ X))

and M(Xy | Xp(pXs) = M(Xyig) | Xpys)) e
largest solution!

The independent (natural) extension
Mnd(X.) is the set of p(X;) for which

P(Xs [ Xp(spXns) € MUX, [ Xpy))
and ... (no easy description!)



Credal networks

Questions?




