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Abstract
We generalise Cozman’s concept of a credal network under
epistemic irrelevance [2, Section 8.3] to the case where
lower (and upper) probabilities are allowed to be zero. Our
main definition is expressed in terms of coherent lower
previsions and imposes epistemic irrelevance by means of
strong coherence rather than element-wise Bayes’s rule. We
also present a number of alternative representations for the
resulting joint model, both in terms of lower previsions and
credal sets, a notable example being an intuitive character-
isation of the joint credal set by means of linear constraints.
We end by applying our method to a simple case: the in-
dependent natural extension for two binary variables. This
allows us to, for the first time, find analytical expressions
for the extreme points of this special type of independent
product.
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sion, independent natural extension.

1 Introduction

Standard Bayesian networks can be generalised to allow
for imprecise probability assessments in a multitude of
ways; see Ref. [3, Section 3] for an overview. One way
to do so is by means of a credal network under epistemic
irrelevance. It differs from standard Bayesian networks in
two ways: beliefs are modelled by means of closed convex
sets of probability measures (so-called credal sets) rather
than single probability measures, and the non-parent non-
descendants of a variable are epistemically irrelevant to
that variable given its parents, rather than independent of it.

Credal networks under epistemic irrelevance were intro-
duced by Cozman in Ref. [2, Section 8.3]. In order to im-
pose the assessment of epistemic irrelevance, he assumed
that all conditioning events have strictly positive lower
probability. Under this assumption, a credal set can be con-
ditioned by applying Bayes’s rule to each of its probability
measures. However, we feel this assumption to be rather

restrictive since an event with zero lower probability may
have strictly positive upper probability. Therefore, in the
present paper, we get rid of this positivity assumption. We
do so by using coherent lower previsions as an alternat-
ive, equivalent representation for credal sets and using the
concept of (strong) coherence to impose epistemic irrelev-
ance assessments, even when the conditioning events have
lower or upper probability zero. See Ref. [8] for an earlier
successful application of this method to the special case of
credal trees.

The graphical structure of a credal network is a directed
acyclic graph, of which we recall some basic definitions
in Section 2. Section 3 goes on to introduce some basic
terminology regarding the variables in the network and we
explain in Section 4 how to model a subject’s beliefs re-
garding the values of these variables by means of coherent
lower previsions. Section 5 introduces the notion of a credal
network under epistemic irrelevance. We first recall how
it is defined under the positivity assumption, then provide
a definition that does not need that assumption, and prove
a number of useful properties and alternative characterisa-
tions. We explain how to describe the joint model by means
of a set of linear constraints in Section 6, and reformulate
this approach in Section 7 for the special case of the so-
called independent natural extension. Finally, in Section 8,
we apply our method to the independent natural extension
of two binary variables and use it to, for the first time, ob-
tain analytical expressions for the extreme points of this
extension.

2 Directed acyclic graphs

A directed acyclic graph (DAG) is a graphical model that is
well known for its use in Bayesian networks. It consists of a
finite set of nodes (vertices), which are joined together into
a network by a set of directed edges, each edge connecting
one node with another. Since this directed graph is assumed
to be acyclic, it is not possible to follow a sequence of
directed edges from node to node and end up back at the
same node you started out from.



We denote the set of nodes associated with a given DAG
by G. For two nodes s and t in G, if there is a directed edge
from s to t, we denote this as s→ t and say that s is a parent
of t and t is a child of s. A single node can have multiple
parents and multiple children. For any node s, its set of
parents is denoted by P(s) and its set of children by C(s).
If a node s has no parents, P(s) = /0, and we call s a root
node. If C(s) = /0, then we call s a leaf, or terminal node.

Two nodes s and t, are said to have a directed path between
them if one can start from s, follow the edges of the DAG
taking their direction into account, and end up in t. In other
words: one can find a sequence of nodes s = s1, . . . ,sn = t,
n≥ 1, in G such that it holds for all i ∈ {1, . . . ,n−1} that
si → si+1. In that case we also say that s precedes t and
write sv t. If sv t and s 6= t, we say that s strictly precedes
t and write s @ t. For any node s, we denote its set of
descendants by D(s) :={t ∈G : s@ t} , its set of ascendants
by A(s) := {t ∈ G : t @ s} and its set of non-parent non-
descendants by N(s) :=G\ (P(s)∪{s}∪D(s)).

3 Variables and gambles on them

With each node s in G, we associate a variable Xs taking
values in some non-empty finite set Xs. Generic elements
of this set are denoted by xs or zs. A real-valued function
on Xs is called a gamble and we use G (Xs) to denote the
set of all of them. Generic gambles are denoted by f , g or γ .
As a special kind of gambles we consider indicators IA of
events A ⊆Xs. IA is equal to 1 if the event A occurs (the
variable Xs assumes a value in A) and zero otherwise.

We extend this notation to more complicated situations as
follows. For any subset S of G, we denote by XS the tuple
of variables (with one component Xs for each s ∈ S) that
takes values in the Cartesian product XS :=×s∈SXs. We
assume logical independence, meaning that XS may assume
all values in XS. Generic elements of the finite set XS are
denoted by xS or zS. Also, if we mention a tuple xS, then
for any s ∈ S, the corresponding element in the tuple will
be denoted by xs. The set G (XS) contains all gambles on
XS and IA is again used to denote the indicator of an event
A⊆XS.

We will frequently use the simplifying device of identifying
a gamble fS on XS with its cylindrical extension to XU ,
where S ⊆U ⊆ G. This is the gamble fU on XU defined
by fU (xU ) := fS(xS) for all xU ∈XU . To give an example,
this device allows us to identify the gambles I{xS} on XS
and I{xS}×XU\S on XU , and therefore also the events {xS}
and {xS}×XU\S.

When S = /0, we let X /0 := {x /0} be a singleton. The cor-
responding variable X/0 can only take this single value x /0,
so there is no uncertainty about it. G (X /0) can then be
identified with the set R of real numbers.

4 Modelling beliefs about the network

For two disjoint subsets O and I of G and any xI ∈XI we
consider two equivalent methods of modelling a subject’s
beliefs about the value that XO will assume in XO, given
the observation that XI = xI .

The first approach is to use a credal set K(XO|xI), defined
as a closed and convex subset of the so-called XO-
simplex ΣXO , which is the set containing all probability
mass functions on XO. A generic element of K(XO|xI) is
denoted by p(XO|xI). It is a probability mass function on
XO conditional on the observation that XI = xI

The second approach is to use a coherent lower pre-
vision PO(·|xI), defined as a real-valued functional on
G (XO) that satisfies the following three conditions: for
all f ,g ∈ G (XO) and all real λ ≥ 0

C1. PO( f |xI)≥min f ,

C2. PO(λ f |xI) = λPO( f |xI),

C3. PO( f +g|xI)≥ PO( f |xI)+PO(g|xI).

The conjugate of PO(·|xI) is called a coherent upper
prevision. It is denoted by PO(·|xI) and defined for all
f ∈ G (XO) by PO( f |xI) :=−PO(− f |xI). We will focus on
coherent lower previsions, but it is useful to keep in mind
that all our results can be reformulated in terms of coherent
upper previsions by applying this conjugacy property.

Both approaches are equivalent because there is a one-to-
one correspondence between them [12, Section 3.3.3]. If we
denote by PO(·|xI) the expectation operator on G (XO) that
corresponds to a probability mass function p(XO|xI), then
a credal set K(XO|xI) defines a unique coherent lower pre-
vision PO(·|xI) in the following way. For all f ∈ G (XO):

PO( f |xI) :=min{PO( f |xI) : p(XO|xI) ∈ K(XO|xI)}.

Its conjugate coherent upper prevision PO(·|xI) is given for
all f ∈ G (XO) by

PO( f |xI) :=max{PO( f |xI) : p(XO|xI) ∈ K(XO|xI)}.

Conversely, the unique credal set K(XO|xI) that corresponds
to a coherent lower prevision PO(·|xI) is given by

K(XO|xI) :={p(XO|xI) ∈ ΣXO :
(∀ f ∈ G (XO))PO( f |xI)≥ PO( f |xI)}. (1)

If I = /0, then XI = X/0 assumes its only possible value x /0
with certainty, so conditioning on X/0 = x /0 amounts to not
conditioning at all. We reflect this in our notation by us-
ing K(XO) and PO as alternative notations for K(XO|x /0)
and PO(·|x /0) respectively. A notable example is I = /0 and
O = G, for which we obtain a credal set K(XG) and coher-
ent lower prevision PG that can be used to model a subject’s



beliefs about the value that the joint variable XG will assume
in XG.

When given for all xI ∈ XI , a coherent lower prevision
PO(·|xI) on G (XO), this defines a unique corresponding
coherent conditional lower prevision PO∪I(·|XI). It is a spe-
cial two-place function that is defined, for all f ∈ G (XO∪I)
and all xI ∈XI , by PO∪I( f |xI) :=PO( f (·,xI)|xI).

5 Irrelevant natural extension

We will now show how to construct a joint model for the
variables in the network in the form of a credal set K(XG),
or equivalently, a coherent lower prevision PG.

5.1 Local uncertainty models

We start by adding local uncertainty models to each of the
nodes s ∈ G. These local models are assumed to be given
beforehand and will be used as basic building blocks to
construct the joint model.

If s is not a root node of the network, i.e. has a non-empty set
of parents P(s), then we have a conditional local model for
every instantiation of its parents: for each xP(s) ∈XP(s), we
have a credal set K(Xs|xP(s)) and a corresponding coherent
lower prevision Ps(·|xP(s)). They represent our subject’s
beliefs about the variable Xs conditional on the information
that its parent variables XP(s) assume the value xP(s).

If s is a root node, i.e. has no parents, then our subject’s
local beliefs about the variable Xs are represented by an
unconditional local model. We are given a credal set K(Xs)
and a corresponding coherent lower prevision Ps. As ex-
plained in Section 4, we can also use the common generic
notations K(Xs|xP(s)) and Ps(·|xP(s)) in this unconditional
case, since for a root node s, its set of parents P(s) is empty.

In order to turn these local uncertainty models into a joint
model, we introduce the important concept of epistemic
irrelevance.

5.2 Epistemic irrelevance

We discuss conditional epistemic irrelevance, as the un-
conditional version can easily be recovered as a special
case.

Consider three disjoint subsets C, I, and O of G. When
a subject judges XI to be epistemically irrelevant to XO
conditional on XC, he assumes that if he knew the value of
XC, then learning in addition which value XI assumes in XI
would not affect his beliefs about XO. More formally put,
he assumes for all xC ∈XC and xI ∈XI that

K(XO|xC∪I) = K(XO|xC) and PO(·|xC∪I) = PO(·|xC).

It should be clear that it suffices for the unconditional case,
in the discussion above, to let C = /0. This makes sure the

variable XC has only one possible value, so conditioning on
that variable amounts to not conditioning at all.

Using this concept of epistemic irrelevance, we can provide
the graphical structure of the network with an interpretation.

5.3 Interpretation of the graphical model

In Bayesian networks, the graphical structure is taken to
represent the following assessments: for any node s, the
associated variable is independent of its non-parent non-
descendant variables, given its parent variables.

When generalising this interpretation to imprecise graph-
ical networks, the classical notion of independence gets
replaced by a more general, imprecise-probabilistic notion
of independence. In this paper, we choose to use epistemic
irrelevance. We provide the graphical structure of the net-
work with the following interpretation: for any node s and
all subsets I of its non-parent non-descendants N(s), the
variable XI is judged to be epistemically irrelevant to Xs
conditional on XP(s).

More formally put, we assume for all s ∈ G, I ⊆ N(s) and
xP(s)∪I ∈XP(s)∪I that

K(Xs|xP(s)∪I):=K(Xs|xP(s)) and Ps(·|xP(s)∪I):=Ps(·|xP(s)).

5.4 Non-zero lower probabilities

Together with the local uncertainty models, the irrelevance
assessments that are encoded in the network provide us
with a number of belief models about the variables in the
network: for all s ∈ G, I ⊆ N(s) and xP(s)∪I ∈XP(s)∪I , we
are given a credal set K(Xs|xP(s)∪I), or equivalently, a co-
herent lower prevision Ps(·|xP(s)∪I). In order to arrive at a
joint model, we need to provide a method of translating
these belief models into constraints on the joint.

An approach that is often used when dealing with assess-
ments of epistemic irrelevance [6, 2], is to assume that all
lower probabilities are strictly positive, or equivalently, that
for every probability mass function p(XG) in the joint credal
set K(XG), all events have strictly positive probability. For
all s ∈ G, I ⊆ N(s) and xP(s)∪I ∈XP(s)∪I , this assumption
allows us to apply Bayes’s rule to every p(XG) in K(XG),
resulting in a set of conditional probability mass functions
p(Xs|xP(s)∪I). This procedure is called applying element-
wise Bayes’s rule. One can now impose that, for all s ∈ G,
I ⊆ N(s) and xP(s)∪I ∈XP(s)∪I , the set of conditional prob-
ability mass functions that is obtained in this way must be
equal to the given model K(Xs|xP(s)∪I). Any joint credal set
K(XG) that satisfies these constraints is called an irrelevant
product of the local models.

One particular credal set that was proven to be an irrelev-
ant product in Ref. [2]—under the positivity assumption
mentioned above—is the so-called strong extension of the
network. Its credal set Kstr(XG) is the convex hull of the



set P , which contains all joint probability mass functions
p(XG) that, for all xG ∈XG, satisfy

p(xG) = ∏
s∈G

p(xs|xP(s)),

where each p(Xs|xP(s)) is selected from the local credal set
K(Xs|xP(s)). The corresponding coherent lower prevision
Pstr

G is given for all f ∈ G (XG) by

Pstr
G ( f ) = min{PG( f ) : p(XG) ∈P}.

The strong extension is not the only irrelevant product of
the local models. Although it has the advantage of having
an intuitive similarity to standard Bayesian networks, it
is somewhat arbitrary in that it satisfies more constraints
than those needed to be called an irrelevant product. We
prefer to use a least committal strategy: to only satisfy those
constraints that are imposed by the network, and no others.
The resulting model is the largest of all credal sets that
are an irrelevant product. We call it the irrelevant natural
extension of the network an denote it by Kirr(XG).

This irrelevant natural extension was introduced by Cozman
in Ref. [2], but only under the assumption that all lower
probabilities are strictly positive. We feel this assumption to
be rather restrictive since an event with zero lower probabil-
ity may occur with a strictly positive upper probability. The
first contribution of this paper will therefore be to extend
Cozman’s definition of the irrelevant natural extension such
that it allows for lower (and upper) probabilities to be zero.

5.5 Getting rid of the positivity assumption

If the conditioning event has lower probability zero, the
credal set K(Xs|xP(s)∪I) can no longer be uniquely related to
the joint model K(XG) through element-wise Bayes’s rule.
Therefore, we have to impose our assessments of epistemic
irrelevance in some other way. Here, we choose to do so by
means of strong coherence, defining the irrelevant natural
extension in terms conditional lower previsions, rather than
their corresponding credal sets.

As mentioned in the beginning of Section 5.4, the irrelev-
ance assessments, together with the local uncertainty mod-
els, provide us with a number of coherent lower previsions:
for all s ∈ G, I ⊆ N(s) and xP(s)∪I ∈XP(s)∪I we are given
a coherent lower prevision Ps(·|xP(s)∪I) :=Ps(·|xP(s)) on
G (Xs). As was explained in Section 4, this provides us
with a number of coherent conditional lower previsions:
for all s ∈ G and I ⊆ N(s), we have a coherent condi-
tional lower prevision P{s}∪P(s)∪I(·|XP(s)∪I), defined for all
f ∈ G (X{s}∪P(s)∪I) and xP(s)∪I ∈XP(s)∪I by

P{s}∪P(s)∪I( f |xP(s)∪I) :=Ps( f (·,xP(s)∪I)|xP(s)).

We will denote the set consisting of all these conditional
lower previsions as I (P{s}∪P(s)(·|XP(s)),s ∈ G).

In order to turn these coherent conditional lower pre-
visions into constraints on a joint model, given in the
form of a coherent lower prevision PG on G (XG), we
use the concept of (strong) coherence [12, Section 7.1.4]:
we require PG to be strongly coherent with the family
I (P{s}∪P(s)(·|XP(s)),s ∈ G) of coherent conditional lower
previsions. Any PG that satisfies this property, is called
an irrelevant product. The least committal—pointwise
smallest— irrelevant product is called the irrelevant natural
extension of the network and will be denoted by Pirr

G .

As strong coherence is a rather involved requirement, we
will not get into the details of what it means. For our present
purposes, it suffices to think of it as a generalisation of the
element-wise Bayes’s rule approach that was explained in
Section 5.4. For the interested reader: Ref. [12, Section
7.1.4] provides a general definition and a behavioural in-
terpretation in terms of supremum buying prices, turning
strong coherence into a rationality requirement.

We would like to stress that strong coherence is a consist-
ency criterion, rather than a conditioning rule.1 In fact, it is
compatible with a number of fundamentally different condi-
tioning rules, all of which reduce to element-wise Bayes’s
rule if the conditioning event has positive lower probability.
Also, strong coherence regards conditional models as funda-
mental, rather than deriving them from unconditional ones.
In that respect, it shares fundamental ideas with the well-
known concept of full conditional measures. See Ref. [1]
for a similar, coherence-based approach to stochastic inde-
pendence, which has been applied to credal networks in
Ref. [11].

When it comes to strong coherence, the so-called Reduc-
tion Theorem [12, Theorem 7.1.5] is a very useful result;
see also Ref. [9, Theorem 2]. It implies that the uncon-
ditional coherent lower prevision PG is strongly coherent
with the family I (P{s}∪P(s)(·|XP(s)),s ∈ G) of conditional
ones—is an irrelevant product—, if and only if (i) the fam-
ily I (P{s}∪P(s)(·|XP(s)),s ∈ G) is strongly coherent on its
own and (ii) PG is weakly coherent [12, Section 7.1.4] with
I (P{s}∪P(s)(·|XP(s)),s ∈ G).

Using an approach that uses so-called sets of desirable
gambles rather than coherent lower previsions, it is relat-
ively easy to show that requirement (i) is always satisfied
[5, Proposition 16].

Proposition 1. Consider arbitrary coherent lower previ-
sions Ps(·|xP(s)) on G (Xs), s ∈ G and xP(s) ∈XP(s). Then
the family I (P{s}∪P(s)(·|XP(s)),s ∈G) is strongly coherent.

It follows that PG is an irrelevant product if and only if it

1Refs. [7, Definition 12] and [4, Section 3.2.4] provide definitions for
epistemic irrelevance that are based on a conditioning rule that is similar
to Walley’s notion of regular extension [12, Appendix J]. These definitions
are applicable in the presence of zero lower probabilities as well. It is
not clear to us whether they can be used to construct a joint model from
conditional ones, as is done in the current paper.



is weakly coherent with I (P{s}∪P(s)(·|XP(s)),s ∈G). In its
original form [12, Section 7.1.4], weak coherence is still
rather involved, but due to Ref. [9, Theorem 1], it can be
reformulated in a very elegant manner that leads directly to
the following characterisation of an irrelevant product.

Corollary 2. A coherent lower prevision PG on G (XG) is
strongly coherent with I (P{s}∪P(s)(·|XP(s)),s ∈ G)—is an
irrelevant product—if and only if for all s ∈ G, I ⊆ N(s),
xP(s)∪I ∈XP(s)∪I and g ∈ G (Xs):

PG(IxP(s)∪I [g−Ps(g|xP(s))]) = 0.

The condition imposed in this result is called the Gener-
alised Bayes’s Rule (GBR), and reduces to element-wise
Bayes’s rule when all conditioning events have strictly
positive lower probabilities [12, Theorem 6.4.2]. It should
therefore be clear that the definition of an irrelevant product,
as it was given in Section 5.4 under the assumption of
strictly positive lower probabilities, is a special case of the
definition given in the current section.

Proposition 3. The strong extension is an irrelevant
product: the coherent lower prevision Pstr

G is strongly coher-
ent with I (P{s}∪P(s)(·|XP(s)),s ∈ G).

This result guarantees the existence of at least one irrelev-
ant product, making the irrelevant natural extension well
defined: since strong coherence is preserved under taking
lower envelopes [12, Section 7.1.6], the irrelevant natural
extension is the lower envelope of all irrelevant products,
implying that it is indeed pointwise dominated by all other
irrelevant products. It should be clear that Corollary 2
provides us with an immediate characterisation for this
irrelevant natural extension.

Corollary 4. The irrelevant natural extension of a network
is the pointwise smallest coherent lower prevision Pirr

G on
G (XG) such that for all s ∈G, I ⊆ N(s), xP(s)∪I ∈XP(s)∪I
and g ∈ G (Xs):

PG(IxP(s)∪I [g−Ps(g|xP(s))]) = 0.

Similar to what has been shown in Ref. [2, Lemma 13]—
under the positivity assumption—most of the constraints in
Corollary 4 turn out to be redundant. We find that we only
need to impose those constraints for which I = N(s).

Theorem 5. The irrelevant natural extension of a network
is the pointwise smallest coherent lower prevision Pirr

G on
G (XG) such that for all s ∈G, xP(s)∪N(s) ∈XP(s)∪N(s) and
g ∈ G (Xs):

PG(IxP(s)∪N(s) [g−Ps(g|xP(s))]) = 0.

Although we have defined the irrelevant natural extension
in terms of coherent (conditional) lower previsions—since
strong coherence is not particularly well-suited for a formu-
lation in terms of credal sets—, it is valid for credal sets as

well. Due to the correspondence between credal sets and
coherent lower previsions, it suffices to consider the credal
set that corresponds to the irrelevant natural extension Pirr

G .
We denote it by Kirr(XG) and will also refer to it as the
irrelevant natural extension of the network. Using Eq. (1),
we find that

Kirr(XG) = {p(XG) ∈ ΣXG :

(∀ f ∈ G (XG))PG( f )≥ Pirr
G ( f )}.

The following result provides an intuitive characterisation.

Theorem 6. A probability mass function p(XG) ∈ ΣXG be-
longs to Kirr(XG) if and only if for all s∈G and xP(s)∪N(s) ∈
XP(s)∪N(s) there are a real number λ ≥ 0 and a probability
mass function p(Xs|xP(s)) ∈ K(Xs|xP(s)) such that

∑
zD(s)∈XD(s)

p(xP(s)∪N(s),Xs,zD(s)) = λ p(Xs|xP(s)).

5.6 Marginalisation properties

Given a credal network with nodes G and local models
K(Xs|xP(s)), s ∈ G and xP(s) ∈XP(s), a top sub-network is
a network formed by a subset of nodes S ⊆ G such that
for all s ∈ S, its ascendants A(s) also belong to S. The
underlying graphical structure consists of those edges in
the original network that connect nodes in S and the local
models K(Xs|xP(s)), s ∈ S and xP(s) ∈XP(s), are taken to
be identical to those of the original model. We denote the
irrelevant natural extension of such a top sub-network as
Kirr(XS). It turns out to be closely related to the irrelevant
natural extension of the original network, a result that was
already present in Ref. [2, Theorem 15] under the assump-
tion that all lower probabilities are strictly positive.

Proposition 7. Consider a credal network with nodes G
and a top sub-network with nodes S. Let Kirr(XG) and
Kirr(XS) be their respective irrelevant natural extensions.
Denote by margS(K

irr(XG)) the credal set obtained by
element-wise marginalisation to XS of the probability mass
functions in Kirr(XG), then

Kirr(XS) = margS(K
irr(XG)).

We believe that the irrelevant natural extension also satisfies
marginalisation properties for sub-networks other than the
very specific subclass of top sub-networks, but we defer
any formal result to future work. See Ref. [5] to get an idea
of what might be possible.

6 A linear programming approach

The goal of the current section is to construct a set of linear
constraints that is able to fully characterise the joint credal
set Kirr(XG) of the irrelevant natural extension of a given
network.



In order to derive such a representation for the joint model,
we start from similar representations for the local models.
For all s ∈ G and xP(s) ∈XP(s), we characterise the local
credal set K(Xs|xP(s)) as the set of all real-valued functions
p(zs|xP(s)) ∈ RXs that satisfy the unitary constraint

∑
zs∈Xs

p(zs|xP(s)) = 1 (2)

and a (possibly infinite) set of linear homogeneous inequal-
ities

∑
zs∈Xs

p(zs|xP(s))γ(zs)≥ 0, (3)

where γ takes values in a (possibly infinite) set Γ(s,xP(s))
of gambles on Xs.

Such a description for K(Xs|xP(s)) always exists, as it can
be derived from the corresponding coherent lower prevision
Ps(·|xP(s)) by letting

Γ(s,xP(s)) = { f −Ps( f |xP(s)) : f ∈ G (Xs)}. (4)

Indeed, for this particular choice of Γ(s,xP(s)), the combin-
ation of Eqs. (2) and (3) will always be equivalent with
the constraints imposed by Eq. (1), thereby fully charac-
terising K(Xs|xP(s)). To understand why this equivalence
holds, start by noticing that if γ = f − Ps( f |xP(s)), with
f ∈ G (Xs), then due to Eq. (2), Eq. (3) becomes equival-
ent to

∑
zs∈Xs

p(zs|xP(s)) f (zs)≥ Ps( f |xP(s)). (5)

Coherence of Ps(·|xP(s)) now implies, for all zs ∈ Xs,
that Ps(I{zs}|xP(s)) ≥ 0 and therefore, due to Eq. (5), that
p(zs|xP(s)) ≥ 0. By combining this with Eq. (2), we find
that p(Xs|xP(s)) ∈ ΣXs . This allows us to rewrite the left-
hand side of Eq. (5) as Ps( f |xP(s)), thereby establishing the
equivalence with the constraints imposed by Eq. (1).

Eq. (4) produces an infinite set of constraints that is guar-
anteed to characterise K(Xs|xP(s)), but in practice, most
of these constraints will often be redundant. This is espe-
cially the case for so-called finitely generated local mod-
els, for which the corresponding coherent lower prevision
Ps(·|xP(s)) is fully determined by its value in only a finite
number of gambles. For such local models, one can easily
construct a set Γ(s,xP(s)) that contains only a finite number
of constraints and yet fully characterises K(Xs|xP(s)). The
credal set of such a finitely generated local model will al-
ways be the convex hull of a finite number of probability
mass functions. The reason for this equivalence being that a
compact convex set can be specified as the intersection of a
finite number of closed half spaces if and only if it is the con-
vex hull of a finite number of vertices [10, Theorem 3.1.3].

The importance of these local representations in terms of
linear constraints—regardless of whether Γ(s,xP(s)) is finite
or not—is that we can use the local constraints to derive
global ones, thereby obtaining the following representation
for the irrelevant natural extension of a network.

Proposition 8. Consider a credal network for which each
of the local credal sets K(Xs|xP(s)), s∈G and xP(s) ∈XP(s),
is fully characterised by means of Eqs. (2) and (3). Then
Kirr(XG) consists of those p(XG) ∈ ΣXG for which for all
s ∈ G, xP(s)∪N(s) ∈XP(s)∪N(s) and γ ∈ Γ(s,xP(s)):

∑
zs∈Xs

∑
zD(s)∈XD(s)

p(xP(s)∪N(s),zs,zD(s))γ(zs)≥ 0.

When all lower probabilities are strictly positive, this result
is fairly straightforward. The global inequalities can then
be obtained by imposing all irrelevancies through element-
wise Bayes’s rule and clearing the denominators, as is done
in Ref. [2, Section 8.3]. The importance of our result is that
it shows that these inequalities remain valid if lower (and
upper) probabilities are allowed to be zero.

Ref. [2] does not explicitly impose p(XG) ∈ ΣXG as a con-
straint. It seems to assume that it suffices to impose only the
unitary constraint ∑zG∈XG

p(zG) = 1, making the require-
ment that p(zG) ≥ 0, zG ∈XG, redundant. Although we
agree with this statement, we do not believe it to be trivial
and therefore choose to provide it with a proof.
Theorem 9. Consider a credal network for which each of
the local credal sets K(Xs|xP(s)), s ∈ G and xP(s) ∈XP(s),
is fully characterised by means of Eqs. (2) and (3).
Then Kirr(XG) consists of those real-valued functions
p(XG) ∈ RXG for which ∑zG∈XG

p(zG) = 1 and for all
s ∈ G, xP(s)∪N(s) ∈XP(s)∪N(s) and γ ∈ Γ(s,xP(s)):

∑
zs∈Xs

∑
zD(s)∈XD(s)

p(xP(s)∪N(s),zs,zD(s))γ(zs)≥ 0.

Proposition 8 and Theorem 9 are valid for both finite and
infinite sets Γ(s,xP(s)), but in the infinite case, their value
is mainly of a theoretical nature. They can only be used in
practice—at least in an exact way—if L(s,xP(s)) is finite
for all s ∈ G and xP(s) ∈XP(s), or equivalently, if all local
credal sets are finitely generated.2 Indeed, in that case, Pro-
position 8 and Theorem 9 will provide linear programs with
a finite number of constraints. Although the size of these
programs is still exponential in the number of variables
that define the network, it allows for inference problems
in small networks to be solved in an exact manner. Initial
ideas on how to reduce this exponential complexity are
provided in our conclusions.

7 Independent natural extension

An important special case is obtained when all nodes in the
network are unconnected. Every node s ∈ G is then both

2If we allow for non-linear constraints, then local credal sets that are
not finitely generated could be practical as well, as they can often be
described by means of a finite set of non-linear constraints. We believe
that Proposition 8 and Theorem 9 could be adapted easily to allow for such
non-linear (homogeneous) constraints, thereby expanding their practical
use when combined with non-linear solvers.



a root and a leaf of the network—meaning that P(s) and
C(s) are empty—, its non-parent non-descendants are given
by N(s) = G\{s} and the local model is an unconditional
credal set K(Xs), or equivalently, a coherent lower prevision
Ps on G (Xs).

For such a network, the irrelevancies that are encoded by
the network are the following. For every s ∈ G and all
I ⊆G\{s}, the variable XI is epistemically irrelevant to Xs,
implying that for any two nodes s, t ∈ G, Xs and Xt are mu-
tually epistemically irrelevant and therefore by definition
epistemically independent. The resulting irrelevant natural
extension is called the many-to-one independent natural
extension and has been treated in full detail in Ref. [9]. That
same reference also introduces the so-called many-to-many
independent natural extension, which requires that for all
disjoint subsets O and I of G, XI is epistemically irrelevant
to XO. The many-to-one and many-to-many independent
natural extensions are shown to be equivalent [9, Theorem
23] and we can therefore simply call it the independent nat-
ural extension. Its coherent lower prevision is denoted by
⊗s∈GPs and its credal set by ⊗s∈GK(Xs). For this special
case, Theorem 9 can be reformulated in the following way.

Corollary 10. Consider a finite number of local credal
sets K(Xs), s ∈ G, each of which is fully characterised
means of Eqs. (2) and (3). Then ⊗s∈GK(Xs) consists
of those real-valued functions p(XG) ∈ RXG for which
∑zG∈XG

p(zG) = 1 and for all s ∈ G, xG\{s} ∈XG\{s} and
γ ∈ Γ(s):

∑
zs∈Xs

p(xG\{s},zs)γ(zs)≥ 0.

We leave it to the reader to reformulate some of the other
results that were obtained in the two previous sections,
taking the simplifications that correspond to the special
case of the independent natural extension into account. In
fact, Ref. [9, Proposition 14, Corollary 16 and Theorem 20]
already provides results that could be regarded as special
cases of Proposition 3, Corollary 2 and Proposition 7.

8 Case study of two binary variables

As an example, we apply our results to the very simple
case of two unconnected binary variables X1 and X2. For
all i ∈ {1,2}, the variable Xi assumes values in its binary
state space Xi = {hi, ti} and has a given local uncertainty
model in the form of a credal set K(Xi). We set out to con-
struct the independent natural extension K(X1)⊗K(X2) of
these two local models. In order to do so, we will describe
it by means of linear constraints and then use this charac-
terisation to find analytical expressions for the so-called
extreme points of K(X1)⊗K(X2), which are those elements
of K(X1)⊗K(X2) that cannot be written as a convex com-
bination of the other elements. K(X1)⊗K(X2) is then equal
to the convex hull of these extreme points.

For a binary variable Xi, i ∈ {1,2}, the credal set K(Xi) is
uniquely characterised by the lower and upper probability
of hi, respectively denoted as p(hi) and p(hi). Each of these
two probabilities defines a mass function on Xi and

K(Xi) =
{

p ∈ ΣXi : p(hi) ∈ [ p(hi), p(hi)]
}

is obtained by taking their convex hull. The corres-
ponding lower and upper probability of ti is given by
p(ti) :=1− p(hi) and p(ti) :=1− p(hi).

In order to apply the method described in Section 6, we
first need to characterise K(Xi) by means of the unitary
constraint and a finite number of linear homogeneous in-
equalities. In this particular binary case, the following two
inequalities suffice:

p(ti)p(hi)− p(hi)p(ti)≥ 0

−p(ti)p(hi)+ p(hi)p(ti)≥ 0.

By applying Corollary 10, these local inequalities can be
used to obtain eight global inequalities.

p(t1)p(h1,h2)− p(h1)p(t1,h2)≥ 0 (I1)

−p(t1)p(h1,h2)+ p(h1)p(t1,h2)≥ 0 (I2)

p(t1)p(h1, t2)− p(h1)p(t1, t2)≥ 0 (I3)

−p(t1)p(h1, t2)+ p(h1)p(t1, t2)≥ 0 (I4)

p(t2)p(h1,h2)− p(h2)p(h1, t2)≥ 0 (I5)

−p(t2)p(h1,h2)+ p(h2)p(h1, t2)≥ 0 (I6)

p(t2)p(t1,h2)− p(h2)p(t1, t2)≥ 0 (I7)

−p(t2)p(t1,h2)+ p(h2)p(t1, t2)≥ 0 (I8)

Together with the global unitary constraint

p(h1,h2)+ p(h1, t2)+ p(t1,h2)+ p(t1, t2) = 1,

they fully characterise the credal set K(X1)⊗K(X2). If the
inequalities in equations (I1)–(I8) are replaced by equalit-
ies, we refer to them as (E1)–(E8).

Lemma 11. Every extreme point of K(X1)⊗K(X2) is the
unique solution to the unitary constraint and three of the
equations (E1)–(E8).

The extreme points of the independent natural extension
K(X1)⊗K(X2) can therefore be found in the following
way. We need to consider every possible subset of three
equalities out of (E1)–(E8). For every such combination of
three equalities, we need to combine them with the unit-
ary constraint and check whether this results in a unique
solution, and if so, whether this unique solution satisfies
the inequalities in (I1)–(I8). If so, that unique solution is an
extreme point of K(X1)⊗K(X2).

As there are 56 possible ways of choosing three equalities
out of eight, one might suspect that this problem cannot be



p(h1,h2)∑ p(h1, t2)∑ p(t1,h2)∑ p(t1, t2)∑ ∑

pS1 p(h1)p(h2) p(h1)p(t2) p(t1)p(h2) p(t1)p(t2) 1

pS2 p(h1)p(h2) p(h1)p(t2) p(t1)p(h2) p(t1)p(t2) 1

pS3 p(h1)p(h2) p(h1)p(t2) p(t1)p(h2) p(t1)p(t2) 1

pS4 p(h1)p(h2) p(h1)p(t2) p(t1)p(h2) p(t1)p(t2) 1

pA1 p(h1)p(h1)p(h2) p(h1)p(h1)p(t2) p(t1)p(h1)p(h2) p(h1)p(t1)p(t2) p(h1)p(t2)+ p(h1)p(h2)

pA2 p(h1)p(h1)p(h2) p(h1)p(h1)p(t2) p(h1)p(t1)p(h2) p(t1)p(h1)p(t2) p(h1)p(h2)+ p(h1)p(t2)

pA3 p(h1)p(t1)p(h2) p(t1)p(h1)p(t2) p(t1)p(t1)p(h2) p(t1)p(t1)p(t2) p(t1)p(t2)+ p(t1)p(h2)

pA4 p(t1)p(h1)p(h2) p(h1)p(t1)p(t2) p(t1)p(t1)p(h2) p(t1)p(t1)p(t2) p(t1)p(h2)+ p(t1)p(t2)

pB1 p(h2)p(h2)p(h1) p(t2)p(h2)p(h1) p(h2)p(h2)p(t1) p(h2)p(t2)p(t1) p(h2)p(t1)+ p(h2)p(h1)

pB2 p(h2)p(t2)p(h1) p(t2)p(t2)p(h1) p(t2)p(h2)p(t1) p(t2)p(t2)p(t1) p(t2)p(t1)+ p(t2)p(h1)

pB3 p(h2)p(h2)p(h1) p(h2)p(t2)p(h1) p(h2)p(h2)p(t1) p(t2)p(h2)p(t1) p(h2)p(h1)+ p(h2)p(t1)

pB4 p(t2)p(h2)p(h1) p(t2)p(t2)p(h1) p(h2)p(t2)p(t1) p(t2)p(t2)p(t1) p(t2)p(h1)+ p(t2)p(t1)

Table 1: Candidates for the extreme points of the independent natural extension of two binary variables

solved manually. However, due to the extreme symmetry—
switching X1 and X2, h1 and t1 or h2 and t2 yields an equi-
valent set of inequalities—, only 7 of those 56 cases need
to be considered, as the others can be related to these 7
by an argument of symmetry. In this way, we managed
to obtain analytical expressions for the extreme points of
K(X1)⊗K(X2).

Theorem 12. Analytical expressions for the extreme points
of K(X1)⊗K(X2) can be found by means of Table 1 and
Figure 1. Table 1 contains expressions for 12 probability
mass functions, which can be obtained by dividing the num-
bers in columns 2–5 by the denominator in column 6. The
diagram in Figure 1 shows, depending on the particular
values of p(h1), p(h1), p(t1), p(t1), p(h2), p(h2), p(t2) and
p(t2), which of these 12 probability mass functions are ex-
treme points of K(X1)⊗K(X2). In this diagram, we use the
shorthand notation pS1=S2 to denote that pS1 and pS2 are
two coinciding extreme points.

Although the diagram in Figure 1 considers quite a number
of special or degenerate cases, the main result can be sum-
marised quite easily. If one of the local models is precise
or vacuous, then the independent natural extension has the
same extreme points as—and therefore coincides with—the
strong extension. In all other cases, the independent natural
extension has up to four additional extreme points.

9 Summary and Conclusions

In this paper, we have developed a definition for credal net-
works under epistemic irrelevance that allows for zero lower

(and upper) probabilities, generalising Cozman’s defini-
tion [2, Section 8.3], which requires the lower probabilit-
ies of conditioning events to be strictly positive. For the
resulting joint model, we have derived a number of proper-
ties and alternative characterisations. Some of these results
were already mentioned by Cozman, but are now proved
to remain valid when his positivity requirement is dropped.
One particular result is that the joint credal set that cor-
responds to a credal network under epistemic irrelevance
can be described by means of linear constraints. As a first
toy example, we have used this approach to obtain analyt-
ical expressions for the extreme points of the independent
natural extension of two binary variables.

The main future goal that we intend to pursue is to develop
algorithms for credal networks under epistemic irrelevance
that are able to perform inference in an efficient manner.
This problem has been tackled before by Cozman [2, Sec-
tion 8.4], but we suspect that a more efficient solution can
be obtained. The idea would be to derive counterparts to
the marginalisation and graphoid properties that are proven
in Ref. [5] and combine these with a linear programming
approach that builds upon Theorem 9.
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Is (at least) one of the local models K(Xi), i ∈ {1,2},
precise? (p(hi) = p(hi) and p(ti) = p(ti))

Is (at least) one of the local models K(Xi), i ∈ {1,2},
vacuous? (p(hi) = p(ti) = 0 and p(hi) = p(ti) = 1)

pS1=S3,
pS2=S4

pS1=S2=S3=S4
pS1=S2,
pS3=S4

K(X1)
K(X1)
and

K(X2)
K(X2)

pS1, pS2,
pS3, pS4

p(h1)p(t1)p(h2)p(t2) ? p(h1)p(t1)p(h2)p(t2)

no

yes no

p(h2) = 0 or p(t2) = 0?
>

pS1, pS2,
pS3, pS4,
pA2, pA4

p(h2) pS1, pS2,
pS3, pS4,
pA1, pA3

p(t2)

pS1, pS2, pS3, pS4,
pA1, pA2, pA3, pA4

no

p(h1) = 0 or p(t1) = 0?
<

pS1, pS2,
pS3, pS4,
pB3, pB4

p(h1) pS1, pS2,
pS3, pS4,
pB1, pB2

p(t1)

pS1, pS2, pS3, pS4,
pB1, pB2, pB3, pB4

no

p(h1) = 0 or p(t1) = 0?

=

p(h2) = 0 or p(t2) = 0?
p(h1)

pS1, pS2,
pS3, pS4,
pA4=B4

p(h2) pS1, pS2,
pS3, pS4,
pA3=B3

p(t2)

p(h2) = 0 or p(t2) = 0?
p(t1)

pS1, pS2,
pS3, pS4,
pA2=B2

p(h2) pS1, pS2,
pS3, pS4,
pA1=B1

p(t2)

K(X1) = K(X2)?

no

pS1, pS2, pS3, pS4,
pA1=A4=B1=B4,
pA2=A3=B2=B3

yes pS1, pS2, pS3, pS4,
pA1=A4, pB1=B4,
pA2=A3, pB2=B3

no

Figure 1: Diagram to obtain the extreme points of the independent natural extension of two binary variables
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