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Bishop-De Leeuw theorem

Let V be a locally convex Hausdorff topological linear space, and let C
be a non-empty convex and compact subset of V. Denote by A(C) the
linear space of all continuous affine real maps a on C. Then for every
¢ € C there exists a o-additive probability measure p. supported on
the set ext(C) of extreme points of C such that

ale) = / a(e)dp(e) for all a € A(C).
ext(C)
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Coherent lower previsions

A variable X takes values x in some non-empty 2" (finite in this talk).
Y(Z) is the set of all gambles f (real valued maps) on 2.

A coherent lower prevision P is a real valued functional on 4(2")
such thatforall f, g€ 9(2") and all real A >0

1. P(f) > minf [boundedness]
2. P(Af) = AP(f) [non-negative homogeneity]
3. P(f+g) > P(f)+P(g) [super-additivity]

We denote the set of all coherent lower previsions on ¥(2") by P(.2").
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Coherent lower previsions

We partition P(.27) in three disjoint subsets

1. P(27): the set of all linear previsions
2. P(27): the set of all fully imprecise lower previsions

P
3. P(%27): the set of all partially imprecise lower previsions

Partially imprecise lower previsions

B(2):=B(2)\{B(2)UB(2)}




Extreme lower previsions

A coherent lower prevision P € P(%") is called exireme if it is not
possible to find P, and P, in P(Z"), with P, # P,, and A € (0,1) such
that P= AP, + (1 — 1)P,, meaning that

P(f) = AP\() + (1 - 2)Py(f) for all f € ().

What is the set extP(.2") of all extreme lower previsions on ¢¥(.27)?
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Extreme lower previsions are never partially imprecise

Any partially imprecise lower prevision P € P(Z") can be uniquely
written as a convex combination AP, + (1 —A)P, of a linear previ-
sion Py € P(2") and a fully imprecise lower prevision P, € P(Z").

)=, if( WP(Iy,) forallf € 9(2)

) A=Y P0,)
Po(f) = =B — 7o Pi () for all f € () -
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Extreme lower previsions: the linear ones

A linear prevision P € P(2") is exireme if and only if it is degen-
erate. Furthermore, any other linear prevision can be uniquely
written as a convex combination of these degenerate ones.

n

P(f) =) p(xi)P;(f) forall f € 4(2")

i=1

P;(f):=f(x;) forall f e 4(Z)




Extreme lower previsions: the fully imprecise ones

A fully imprecise lower prevision P € P(2") is exireme if and only
if its projected credal set Kp is Minkowski indecomposable.

P —= Mp = Kp




Minkowski decomposition
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Extreme lower previsions: n=1, & = {x}

A variable that can assume only one value has no uncertainty
associated with it...



Extreme lower previsions: n =2, & = {x1,x}

The linear lower previsions are the degenerate ones.

1 —

There is only one fully imprecise lower prevision.
There are no partially imprecise lower previsions.

}———{:1/2}—0—{+1/2~



Extreme lower previsions: n =3, Z = {x1,x,x3}

@ Silverman, R. Decomposition of plane convex sets, part I.

For possibility spaces 2" = {x,x»,x3} containing only three ele-
ments, a fully imprecise lower prevision P € M(Z") is extreme if
and only if it is the lower envelope of three linear previsions.
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Extreme lower previsions: n > 3

It gets rather more complicated! However, quite a lot of results are
available... We refer to the literature on Minkowski decomposition.

@ Griinbaum, B.
Convex polytopes.
Springer, 2nd edition (2003)

@ Meyer, W.
Indecomposable polytopes.
Transactions of the American Mathematical Society 190, 77—86
(1974)

[ Sallee, G.T.
Minkowski decomposition of convex sets.
Israel Journal of Mathematics 12, 266276 (1972)



Decomposing non-extreme lower previsions

Decomposition of a partially imprecise lower prevision, n =3
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Decomposing non-extreme lower previsions

Decomposition of a fully imprecise lower prevision, n =3

(0,A,1—2)

:/01

P(f) = /O 'pL()dA for all f € 9(2)



onte Carlo with imprecise probabilities!
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Further reading

Coherent lower previsions

[§ Miranda, E.
A survey of the theory of coherent lower previsions.
International Journal of Approximate Reasoning 48(2), 628—-658
(2008)

[§ Walley, P.
Statistical Reasoning with Imprecise Probabilities.
Chapman and Hall, London (1991)

[@ Troffaes, M., De Cooman, G.
Lower Previsions.
Wiley & Sons (soon to be published!)



Further reading

Representation results, extreme lower previsions, . ..

[ MaaB, S.
Exact functionals, functionals preserving linear inequalities,
Lévy’s metric.
Ph.D. thesis, Universitat Bremen (2003)

[d Quaeghebeur, E.
Characterizing the set of coherent lower previsions with a finite
number of constraints or vertices.
Proceedings of UAI 2010, 466—473 (2010)

[8 Quaeghebeur, E., De Cooman, G.
Extreme lower probabilities.
Fuzzy Sets and Systems 159, 2163—-2175 (2008)
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