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Bishop-De Leeuw theorem

Let V be a locally convex Hausdorff topological linear space, and let C
be a non-empty convex and compact subset of V. Denote by A(C) the
linear space of all continuous affine real maps a on C. Then for every
c ∈ C there exists a σ -additive probability measure µc supported on
the set ext(C) of extreme points of C such that

a(c) =
∫

ext(C)

a(e)dµc(e) for all a ∈ A(C).
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e ∈ ext(C)⇐
⇒

e = λc1 +(1−λ )c2
c1,c2 ∈ C, λ ∈ [0,1]
⇒ e = c1 or e = c2

c

a(c) =
4

∑
i=1

a(ei)µc({ei}) for all a ∈ A(C)

ax(c) := c(x) =⇒ c(x) = ∑
4
i=1ei(x)µc({ei})

ay(c) := c(y) =⇒ c(y) = ∑
4
i=1ei(y)µc({ei})

c =
4

∑
i=1

eiµc({ei})
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This trick keeps working
for more general cases!

If C consists of real-valued
functions c on some space Ω

c(ω) =
∫

ext(C)

e(ω)dµc(e) for all ω ∈Ω.
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de Finetti’s representation
theorem (Hewitt & Savage)

If C consists of all infinitely
exchangeable probability
measures P on {0,1}N

P(x1, . . . ,xn) =
∫

ext(C)

∫ 1

0

n

∏
i=1

θ
xi(1−θ)xidµP(θ) for all (x1, . . . ,xn)∈ {0,1}n.



Bishop-De Leeuw theorem

Let V be a locally convex Hausdorff topological linear space, and let C
be a non-empty convex and compact subset of V. Denote by A(C) the
linear space of all continuous affine real maps a on C. Then for every
c ∈ C there exists a σ -additive probability measure µc supported on
the set ext(C) of extreme points of C such that

a(c) =
∫

ext(C)

a(e)dµc(e) for all a ∈ A(C).

Dempster-Shafer theory
(Choquet)

If C consists of all infinitely
monotone capacities (belief
functions) on 2X (finite X ).

bel(A) =
∫

ext(C)

∑
B⊆A

m(B) = ∑
B⊆X

belB(A)m(B) for all A⊆X .
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(Troffaes & De Cooman)

If C is a set of so-called
‘inequality preserving’
functionals c.

c(ω) =
∫

ext(C)

e(ω)dµc(e) for all ω ∈Ω.
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Coherent lower previsions

A variable X takes values x in some non-empty X (finite in this talk).

G (X ) is the set of all gambles f (real valued maps) on X .

A coherent lower prevision P is a real valued functional on G (X )
such that for all f , g ∈ G (X ) and all real λ > 0

1. P(f )≥min f [boundedness]
2. P(λ f ) = λP(f ) [non-negative homogeneity]
3. P(f +g)≥ P(f )+P(g) [super-additivity]

We denote the set of all coherent lower previsions on G (X ) by P(X ).

There is a one-to-one correspondence with credal sets:

MP =
{

p ∈ ΣX : Pp(f )≥ P(f ) for all f ∈ G (X )
}
,

P(f ) = min{Pp(f ) : p ∈MP} for all f ∈ G (X ).

We denote the set of all credal sets on X by M(X ).
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Coherent lower previsions

We partition P(X ) in three disjoint subsets

1. P(X ): the set of all linear previsions
2. P(X ): the set of all fully imprecise lower previsions
3. P˜(X ): the set of all partially imprecise lower previsions

Linear previsions
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Linear previsions

P ∈ P(X ) ⇐⇒ MP = {p}, with p ∈ ΣX
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We partition P(X ) in three disjoint subsets

1. P(X ): the set of all linear previsions
2. P(X ): the set of all fully imprecise lower previsions
3. P˜(X ): the set of all partially imprecise lower previsions

Fully imprecise lower previsions

P ∈ P(X ) ⇐⇒ (∀i ∈ N≤n) P(I{xi}) = 0



Coherent lower previsions

We partition P(X ) in three disjoint subsets

1. P(X ): the set of all linear previsions
2. P(X ): the set of all fully imprecise lower previsions
3. P˜(X ): the set of all partially imprecise lower previsions

Partially imprecise lower previsions

P˜(X ) :=P(X )\{P(X )∪P(X )}



Extreme lower previsions

A coherent lower prevision P ∈ P(X ) is called extreme if it is not
possible to find P1 and P2 in P(X ), with P1 6= P2, and λ ∈ (0,1) such
that P = λP1 +(1−λ )P2, meaning that

P(f ) = λP1(f )+(1−λ )P2(f ) for all f ∈ G (X ).

What is the set extP(X ) of all extreme lower previsions on G (X )?

A credal set M ∈M(X ) is called extreme if it is not possible to find
M1 and M2 in M(X ), with M1 6= M2, and λ ∈ (0,1) such that
M = λM1 +(1−λ )M2, meaning that

M = {λp1 +(1−λ )p2 : p1 ∈M1 and p2 ∈M2}.

What is the set extM(X ) of all extreme credal sets on X ?
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Extreme lower previsions are never partially imprecise

Any partially imprecise lower prevision P∈ P˜(X ) can be uniquely
written as a convex combination λP1 +(1−λ )P2 of a linear previ-
sion P1 ∈ P(X ) and a fully imprecise lower prevision P2 ∈ P(X ).

P1(f ) =
1
λ

n

∑
i=1

f (xi)P(I{xi}) for all f ∈ G (X )

P2(f ) =
1

1−λ
P(f )− λ

1−λ
P1(f ) for all f ∈ G (X )

λ =
n

∑
i=1

P(I{xi})

= 1
2 + 1

2



Extreme lower previsions: the linear ones

A linear prevision P ∈ P(X ) is extreme if and only if it is degen-
erate. Furthermore, any other linear prevision can be uniquely
written as a convex combination of these degenerate ones.

P(f ) =
n

∑
i=1

p(xi)P◦i (f ) for all f ∈ G (X )

P◦i (f ):=f (xi) for all f ∈ G (X )

= 1
6 + 1

3 + 1
2



Extreme lower previsions: the fully imprecise ones

A fully imprecise lower prevision P ∈ P(X ) is extreme if and only
if its projected credal set KP is Minkowski indecomposable.

P ⇐⇒ MP ⇐⇒ KP

?



Minkowski decomposition

= 3
8 + 5

8
credal

decomposition

= 3
8 + 5

8

projected
credal

decomposition

= +
Minkowski

decomposition



Extreme lower previsions: n = 1, X = {x}

A variable that can assume only one value has no uncertainty
associated with it... .



Extreme lower previsions: n = 2, X = {x1,x2}

The linear extreme lower previsions are the degenerate ones.

There is only one fully imprecise extreme lower prevision.

There are no partially imprecise extreme lower previsions.

= 1/2 + 1/2 1/2



Extreme lower previsions: n = 3, X = {x1,x2,x3}

Silverman, R. Decomposition of plane convex sets, part I.
Pacific Journal of Mathematics 47, 521–530 (1973)

For possibility spaces X = {x1,x2,x3} containing only three ele-
ments, a fully imprecise lower prevision P ∈M(X ) is extreme if
and only if it is the lower envelope of three linear previsions.

. . .



Extreme lower previsions: n > 3

It gets rather more complicated! However, quite a lot of results are
available... We refer to the literature on Minkowski decomposition.

Grünbaum, B.
Convex polytopes.
Springer, 2nd edition (2003)

Meyer, W.
Indecomposable polytopes.
Transactions of the American Mathematical Society 190, 77–86
(1974)

Sallee, G.T.
Minkowski decomposition of convex sets.
Israel Journal of Mathematics 12, 266–276 (1972)



Decomposing non-extreme lower previsions
Decomposition of a partially imprecise lower prevision, n = 3

= 3
16 + 5

16

+ 1
12 + 1

6 + 1
4



Decomposing non-extreme lower previsions
Decomposition of a fully imprecise lower prevision, n = 3

M

=
∫ 1

0

(0,λ ,1−λ )

dλ

Mλ

P(f ) =
∫ 1

0
Pλ (f )dλ for all f ∈ G (X )



Monte Carlo with imprecise probabilities!

n

1/n ∑
n
k=1 Pλk

(f )

100 101 102 103 104 105
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

f = (1/3,1,0)

5/18



Further reading
Coherent lower previsions

Miranda, E.
A survey of the theory of coherent lower previsions.
International Journal of Approximate Reasoning 48(2), 628–658
(2008)

Walley, P.
Statistical Reasoning with Imprecise Probabilities.
Chapman and Hall, London (1991)

Troffaes, M., De Cooman, G.
Lower Previsions.
Wiley & Sons (soon to be published!)



Further reading
Representation results, extreme lower previsions, . . .

Maaß, S.
Exact functionals, functionals preserving linear inequalities,
Lévy’s metric.
Ph.D. thesis, Universität Bremen (2003)

Quaeghebeur, E.
Characterizing the set of coherent lower previsions with a finite
number of constraints or vertices.
Proceedings of UAI 2010, 466–473 (2010)

Quaeghebeur, E., De Cooman, G.
Extreme lower probabilities.
Fuzzy Sets and Systems 159, 2163–2175 (2008)
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