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Abstract Coherent lower previsions constitute a convex set that is closed and
compact under the topology of point-wise convergence, and Maaß [2] has shown
that any coherent lower prevision can be written as a ‘countably additive convex
combination’ of the extreme points of this set. We show that when the possibility
space has a finite number n of elements, these extreme points are either degenerate
precise probabilities, or in a one-to-one correspondence with the (Minkowski)
indecomposable compact convex subsets of Rn−1.
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1 Introduction

In his Ph.D. dissertation, Maaß [2] proved a general, Choquet-like representation re-
sult for what he called inequality preserving functionals. When we apply his results to
coherent lower previsions, which have an important part in the theory of imprecise prob-
abilities, we find that the set of all coherent lower previsions defined on a subset of the
linear space of all bounded real-valued maps (gambles) on a possibility space X con-
stitute a convex set, that is furthermore closed and compact under the topology of point-
wise convergence, and that any coherent lower prevision can be written as a ‘countably
additive convex combination’ of the extreme points of this set.

It became apparent quite soon, however, that finding these extreme coherent lower
previsions was a non-trivial task. Contributions to solving this problem were made by
Quaeghebeur [5], who essentially concentrated on coherent lower previsions defined on
finite domains. In this paper, we look at the extreme points of the set of all coherent
lower previsions defined on the space of all real-valued maps on a finite set X , contain-
ing n elements. We begin by defining (extreme) coherent lower previsions in Section 2.
In Section 3, we recall that coherent lower previsions are in a one-to-one relationship
with compact convex sets of probability mass functions, which allows us, in Sections 4
and 5, to establish a link between extreme coherent lower previsions on the one hand,
and (Minkowski) indecomposable compact convex subsets of Rn−1 on the other.

This link allows us to reduce the problem of finding all extreme coherent lower
previsions to a problem that has received quite a bit of attention in the mathematical
literature, and to use existing solutions for that problem. We give a short discussion of
what can and could be learned from this connection in Section 6, and go on to discuss a
number of avenues for further research and possible applications.



2 Coherent Lower Previsions

Consider a variable X taking values in some non-empty set X , called possibility space.
We will restrict ourselves to finite possibility spaces X = {x1, . . . ,xn}, with n ∈N>1.1,2

The theory of coherent lower previsions models a subject’s beliefs regarding the uncer-
tain value of X by means of lower and upper previsions of so-called gambles. A gamble
is a real-valued map on X and we use G (X ) to denote the set of all of them. A lower
prevision P is a real-valued functional defined on this set G (X ). P is said to be coherent
if it satisfies the following three conditions: for all f ,g ∈ G (X ) and all real λ > 0

C1. P( f )≥min f
C2. P(λ f ) = λP( f ) [non-negative homogeneity]
C3. P( f +g)≥ P( f )+P(g) [super-additivity]

The set of all coherent lower previsions on G (X ) is denoted by P(X ). The conjugate
of a lower prevision P ∈ P(X ) is called an upper prevision. It is denoted by P and
defined by P( f ) :=−P(− f ) for all gambles f ∈ G (X ). Coherent lower and upper pre-
visions can be given a behavioural interpretation in terms of buying and selling prices,
turning the three conditions above into criteria for rational behaviour; see Ref. [9] for
an in-depth study, and Ref. [4] for a recent survey.

2.1 Extreme Lower Previsions

Coherence is preserved under taking convex combinations [9, Section 2.6.4]. Consider
two coherent lower previsions P1 and P2 in P(X ) and any λ ∈ [0,1]. Then the lower
prevision P = λP1 + (1− λ )P2, defined by P( f ) := λP1( f ) + (1− λ )P2( f ) for all
f ∈ G (X ), will also be coherent. One can now wonder whether every coherent lower
prevision can be written as such a convex combination of others: given a coherent lower
prevision P ∈ P(X ), is it possible to find coherent lower previsions P1 and P2 in P(X )
and λ ∈ [0,1] such that P = λP1 +(1−λ )P2? If we exclude the trivial decompositions,
where λ = 0, λ = 1 or P1 = P2 = P, then the answer can be no. We will refer to those co-
herent lower previsions for which no non-trivial decomposition exists as extreme lower
previsions. The goal of this paper is to characterise, and where possible to find, the set
extP(X ) of all extreme lower previsions on G (X ).

2.2 Special Kinds of Coherent Lower Previsions

In order to find these extreme lower previsions, it will be useful to split the set P(X )
into three disjoint subsets: linear previsions, lower previsions that are fully imprecise
and lower previsions that are partially imprecise.

1 N denotes the positive integers (excluding zero) and R the real numbers. Subsets are denoted
by using predicates as subscripts; e.g., N≤n :={i ∈ N : i≤ n}= {1, . . . ,n} denotes the positive
integers up to n and R>0 :={r ∈ R : r > 0} the strictly positive real numbers.

2 We do not consider n = 1 because this case is both trivial and of no practical use. Indeed, a
variable that can only assume a single value has no uncertainty associated with it.



A coherent lower prevision P ∈ P(X ) is called a linear prevision if it has the addi-
tional property that P( f +g) = P( f )+P(g) for all f ,g ∈ G (X ). It is then generically
denoted by P and we use P(X ) to denote the set of all of them. It can be shown that
for every mass function p in the so-called X -simplex

ΣX :=
{

p ∈ RX :
n

∑
i=1

p(xi) = 1 and p(xi)≥ 0 for all i ∈ N≤n

}
, (1)

the corresponding expectation operator Pp, defined by Pp( f ) :=∑
n
i=1 f (xi)p(xi) for all

f ∈ G (X ), is a linear prevision in P(X ). Conversely, every linear prevision P ∈ P(X )
has a unique mass function p ∈ ΣX for which P = Pp. It is defined by p(xi) :=P(I{xi}),
i ∈ N≤n, where I{xi} denotes the indicator of {xi}: for all x ∈X , I{xi}(x) = 1 if x = xi
and I{xi}(x) = 0 otherwise.

Another special kind of coherent lower previsions are those that are fully imprecise.
They are uniquely characterised by the property that P(I{xi}) = 0 for all i ∈ N≤n. As
we shall see further on, we can interpret P(I{xi}) as the lower probability of xi, thereby
making fully imprecise lower previsions those for which the lower probability of all
elements in the possibility space is zero. We will use P(X ) to denote the set of all
such fully imprecise lower previsions. The reason why we call them fully imprecise is
because they differ most from the precise, linear previsions. This distinction is already
apparent from the following Proposition, but will become even clearer in Section 5.1,
where we prove that every coherent lower prevision that is neither linear nor fully im-
precise can be uniquely decomposed into a linear and a fully imprecise part.

Proposition 1. P(X ) and P(X ) are disjoint subsets of P(X ): linear previsions are
never fully imprecise.

We refer to coherent lower previsions in P(X ) that are neither fully imprecise nor
linear previsions as partially imprecise, and we denote by P˜(X ) the set of all partially
imprecise lower previsions. The next corollary is a direct consequence of Proposition 1.

Corollary 1. P(X ), P(X ) and P˜(X ) constitute a partition of P(X ).

3 Credal Sets

Linear previsions are not the only coherent lower previsions that can be characterised
by means of mass functions in ΣX . It is well known [9, Section 3.6] that every coherent
lower prevision can be uniquely characterised by a so-called credal set, which is a
closed (and therefore compact3) convex subset of ΣX . We denote a generic credal set by
M and use M(X ) to denote the set of all of them. For any P∈ P(X ), its corresponding
credal set MP is the set of all mass functions that define a dominating linear prevision:

MP :=
{

p ∈M : Pp( f )≥ P( f ) for all f ∈ G (X )
}
. (2)

3 Since we only consider finite possibility spaces X , we can use the Euclidean topology instead
of the weak*-topology that is usually adopted for credal sets.



The original lower prevision P and its conjugate upper prevision P can be derived from
the credal set MP: for all f ∈ G (X )

P( f ) = min{Pp( f ) : p ∈MP} and P( f ) = max{Pp( f ) : p ∈MP}. (3)

We can use this equation to justify our earlier statement in Section 2.2 that for all
i ∈ N≤n, we can interpret P(I{xi}) as the lower probability of xi. Indeed, we find that

P(I{xi}) = min{Pp(I{xi}) : p ∈MP}= min{p(xi) : p ∈MP} (4)

is the smallest probability of xi corresponding with the mass functions in MP.
Credal sets are therefore in a one-to-one correspondence with coherent lower pre-

visions, allowing us to think of a coherent lower prevision as a closed and convex set
of mass functions instead of as an operator on gambles. This geometric approach will
be useful in our search for extreme lower previsions, since it will enable us to establish
links with results already proved in fields other than coherent lower prevision theory.

3.1 Extreme Credal Sets

Similarly to what we have done in Section 2.1 for coherent lower previsions, we can
also take convex combinations of credal sets. Consider two credal sets M1 and M2 in
M(X ) and any λ ∈ [0,1]. Then the set M :=λM1 +(1−λ )M2, given by

M :={λ p1 +(1−λ )p2 : p1 ∈M1 and p2 ∈M2}, (5)

will again be a credal set in M(X ). Due to the equivalence between credal sets and
coherent lower previsions, the following proposition should not cause any surprise.

Proposition 2. Consider coherent lower previsions P, P1 and P2 in P(X ) and their
corresponding credal sets MP, MP1 and MP2 in M(X ). Then for all λ ∈ [0,1]:

P = λP1 +(1−λ )P2⇔MP = λMP1 +(1−λ )MP2 . (6)

We now define an extreme credal set as a credal set M ∈M(X ) that cannot be written
as a convex combination of two other credal sets M1 and M2 other than in a trivial way,
trivial meaning that λ = 0, λ = 1 or M1 = M2 = M . We will denote the set of all such
extreme credal sets as extM(X ). The following immediate corollary of Proposition 2
shows that they are in a one-to-one correspondence with extreme lower previsions.

Corollary 2. A coherent lower prevision is extreme iff its credal set is. For all P ∈ P(X ):

P ∈ extP(X )⇔MP ∈ extM(X ). (7)

3.2 Special Kinds of Credal Sets

Because of the one-to-one correspondence between coherent lower previsions and credal
sets, the special subsets of P(X ) that were introduced in Section 2.2 immediately lead
to corresponding subsets of M(X ). The set

M(X ) :={MP : P ∈ P(X )}= {{p} : p ∈ ΣX } (8)



of credal sets that correspond to linear previsions in P(X ) is the easiest one.
Another subset of M(X ), which will become very important further on, contains

those credal sets that correspond to fully imprecise coherent lower previsions:

M(X ):={MP : P ∈ P(X )} (9)

={M ∈M(X ) : min{p(xi) : p ∈M }= 0 for all i ∈ N≤n}, (10)

where the second equality is a consequence of Eq. (4) and the definition of fully impre-
cise lower previsions. It should also clarify our statement in Section 2.2 that for fully
imprecise lower previsions the lower probability of all elements of the possibility space
is zero. We refer to elements of M(X ) as fully imprecise credal sets.

The final subset of M(X ) that we need to consider contains the partially imprecise
credal sets, corresponding to partially imprecise lower previsions in P˜(X ):

M˜ (X ) :={MP : P ∈ P˜(X )}=M(X )\{M(X )∪M(X )}. (11)

Finally, the following result is a direct consequence of Corollary 1.

Corollary 3. M(X ), M(X ) and M˜ (X ) constitute a partition of M(X ).

3.3 Projected Credal Sets

Mass functions on the possibility space X = {x1, . . . ,xn} are uniquely characterised by
the probability of the first n−1 elements because the final probability follows from the
requirement that ∑

n
i=1 p(xi) = 1. This leads us to identify a mass function p on X with

a point vp in Rn−1, defined by (vp)i := p(xi) for all i ∈ N<n. Similarly, a credal set M
can be identified with a subset of Rn−1 by letting

KM :={vp : p ∈M }. (12)

We call KM the projected credal set of M . We will use KP as a shorthand notation for
KMP and call it the projected credal set of P. For all M ∈M(X ), KM is a closed and
convex subset of the so-called projected X -simplex

KX =

{
v ∈ Rn−1 :

n−1

∑
i=1

vi ≤ 1 and vi ≥ 0 for all i ∈ N<n

}
, (13)

which is a compact, closed and convex subset of Rn−1. The set of all closed (and there-
fore compact) convex subsets of KX is denoted by K(X ). To show that both repre-
sentations are indeed equivalent, let us define for every point v ∈KX a corresponding
mass function pv on X , defined by pv(xi) :=vi for all i ∈N<n and pv(xn) :=1−∑

n−1
i=1 vi.

It should be clear that vpv = v and pvp = p, whence the equivalence. Similarly, we can
define for all K ∈KX a corresponding credal set

MK :={pv : v ∈ K}. (14)

Again, we have that KMK = K and MKM
= M . Finally, the following intuitive result

shows that projecting credal sets on KX preserves convex combinations.

Proposition 3. Consider credal sets M , M1 and M2 in M(X ) and their correspond-
ing projected credal sets KM , KM1 and KM2 in K(X ). Then for all λ ∈ [0,1]:

M = λM1 +(1−λ )M2⇔ KM = λKM1 +(1−λ )KM2 . (15)



3.4 Special Kinds of Projected Credal Sets

Due the equivalence between credal sets and their projected versions, we can use the
partition of M(X ) in Corollary 3 to construct a similar partition of K(X ). The first
set in that partition corresponds to the credal sets of linear previsions and is equal to

K(X ) :={KM : M ∈M(X )}= {K ∈K(X ) : K = {v}, with v ∈KX }. (16)

The second set consists of the projections of the credal sets in M(X ):

K(X ):={KM : M ∈M(X )} (17)

=

{
K ∈K(X ) : min

v∈K
vi = 0 for all i ∈ N<n and max

v∈K

n−1

∑
i=1

vi = 1
}
. (18)

The final set contains the projected credal sets of partially imprecise lower previsions:

K˜(X ) :={KM : M ∈M˜ (X )}=K(X )\{K(X )∪K(X )}. (19)

4 Minkowski Decomposition

Given two compact convex subsets A1 and A2 of Rn−1, their Minkowski sum or vector
sum is given by A1 +A2 :={a1 +a2 : a1 ∈ A1 and a2 ∈ A2}. They are called homothetic
if A1 = v+λA2 := {v+λa2 : a2 ∈ A2} for some λ > 0 and v ∈ Rn−1. If A = A1 +A2,
with A, A1 and A2 compact convex subsets of Rn−1, then A1 and A2 are called summands
of A. We say that A is written as a Minkowski sum in a non-trivial way, if neither of
its summands is homothetic to A or a singleton. If such a non-trivial decomposition
exists, we say that A is Minkowski decomposable. Otherwise, A is called Minkowski
indecomposable. Sections 6.2 and 6.3 point to relevant literature, where, incidentally,
the prefix “Minkowski” is not always used. We add it in the present paper to avoid
confusion with the decomposition of credal sets and lower previsions.

4.1 Connecting Both Theories

One of the main contributions of this paper will be to show how the extensive literature
on Minkowski decomposition of convex sets can be related to the search for extreme
lower previsions in imprecise probability theory. The results in this section take the first
step towards doing so, and will turn out to be crucial for our main theorem further on.

We start by associating with any compact set A⊆ Rn−1 a point m(A) ∈ Rn−1 , de-
fined by mi(A) :=min{vi : v ∈ A} for all i ∈ N<n and a real number µ(A), given by

µ(A) :=max
{n−1

∑
i=1

vi : v ∈ A
}
−

n−1

∑
i=1

mi(A). (20)

Both m(A) and µ(A) are well-defined due to the compactness of A. If A is not a single-
ton, then it is easy to see that µ(A)> 0 and we can define

A :=
1

µ(A)

(
A−m(A)

)
=

{
1

µ(A)
(v−m(A)) : v ∈ A

}
. (21)



Proposition 4. For any compact convex subset A of Rn−1 that is not a singleton, the
corresponding set A is an element of K(X ).

Proposition 5. A compact convex subset A of Rn−1 that is not a singleton is Minkowski
decomposable iff the corresponding set A is Minkowski decomposable.

The following result shows how the transformation that we have just introduced can be
usefully exploited to reformulate the property of Minkowski decomposability.

Theorem 1. A compact convex subset A of Rn−1 that is not a singleton is Minkowski
decomposable iff its corresponding set A can be written as a non-trivial convex combina-
tion λK1 +(1−λ )K2, with K1 and K2 both elements of K(X ), K1 6= K2 and 0 < λ < 1.

5 Characterising Extreme Lower Previsions

We now have all the tools needed to characterise the set extP(X ) of all extreme lower
previsions on G (X ), or equivalently, the set extM(X ) of all extreme credal sets. We
will show that partially imprecise lower previsions are never extreme as they can be
split up in a linear and a fully imprecise part. The only extreme linear previsions are
the degenerate ones, and the extreme fully imprecise models will turn out to be closely
related to the Minkowski indecomposable convex compact sets of Section 4.

5.1 Partially Imprecise Lower Previsions

We claimed earlier on in Section 2.2 that every partially imprecise lower prevision can
be uniquely decomposed in a linear and a fully imprecise part. To see why this is true,
first consider the following proposition, which is the counterpart of that statement in the
language of credal sets. The desired property is then a direct consequence of this result.

Proposition 6. Any partially imprecise credal set M ∈M˜ (X ) can be uniquely written
as a convex combination λM1 +(1−λ )M2 of a credal set M1 ∈M(X ) that contains
only a single mass function p1 ∈ ΣX and a fully imprecise credal set M2 ∈M(X ).
Moreover, 0 < λ :=∑

n
i=1 min{p(xi) : p ∈M }< 1, the mass function p1 that charac-

terises M1 is given by p1(xi) =
1
λ

min{p(xi) : p ∈M } for all i ∈ N≤n, and

M2 =

{
1

1−λ
p− λ

1−λ
p1 : p ∈M

}
. (22)

Corollary 4. Any partially imprecise lower prevision P ∈ P˜(X ) can be uniquely writ-
ten as a convex combination λP1 +(1−λ )P2 of a linear prevision P1 ∈ P(X ) and a
fully imprecise lower prevision P2 ∈ P(X ). Moreover, 0 < λ :=∑

n
i=1 P(I{xi})< 1 and

P1( f ) =
1
λ

n

∑
i=1

f (xi)P(I{xi}) and P2( f ) =
1

1−λ
P( f )− λ

1−λ
P1( f ) for all f ∈ G (X ).

(23)



The fact that partially imprecise models can be decomposed in this way has some im-
mediate important consequences for extreme credal sets and lower previsions.

Corollary 5. Extreme credal sets and lower previsions are never partially imprecise:

M ∈M˜ (X )⇒M /∈ extM(X ) and P ∈ P˜(X )⇒ P /∈ extP(X ). (24)

In our search for extreme lower previsions, we therefore only need to look at the subsets
of the linear previsions and of the fully imprecise lower previsions.

5.2 Linear Previsions

A special class of linear previsions are those that correspond to degenerate mass func-
tions. For every i ∈ N≤n, the corresponding degenerate mass function p◦i ∈ ΣX has
all its probability mass in xi and is therefore defined by p◦i := I{xi}. They satisfy the
following important property.

Proposition 7. A credal set M ∈M(X ) containing only a single mass function is ex-
treme iff that single mass function is degenerate. Furthermore, any other mass function
can be written as a convex combination of those degenerate ones.

The linear previsions that correspond to such a degenerate mass function are called
degenerate linear previsions. For every i ∈ N≤n, we have a corresponding degenerate
linear prevision P◦i , defined for all f ∈ G (X ) by P◦i ( f ) := f (xi). As a direct conse-
quence of Proposition 7, we find that these degenerate linear previsions are the only
linear previsions that are extreme.

Corollary 6. A linear prevision P ∈ P(X ) is extreme iff it is degenerate. Furthermore,
any other linear prevision can be written as a convex combination of degenerate ones.

For coherent lower previsions that are defined on a finite domain K ⊂ G (X ), a result
that combines Corollary 5 and 6 was already mentioned in Ref. [5, Proposition 1].

5.3 Fully Imprecise Lower Previsions

So far, we have shown that partially imprecise models are never extreme and that the
extreme linear models are those that are degenerate. The only models that are thus left to
investigate are those that are fully imprecise. We start with a property of decompositions
of fully imprecise credal sets.

Proposition 8. If a fully imprecise credal set M ∈M(X ) can be written as a non-
trivial convex combination λM1 +(1−λ )M2, with M1,M2 ∈M(X ), M1 6= M2 and
0 < λ < 1, then M1 and M2 are both fully imprecise and therefore elements of M(X ).

In the language of coherent lower previsions, this turns into the following corollary.

Corollary 7. If a fully imprecise coherent lower prevision P ∈ P(X ) can be written as
a non-trivial convex combination λP1 +(1−λ )P2, with P1,P2 ∈ P(X ), P1 6= P2 and
0 < λ < 1, then P1 and P2 are both fully imprecise and therefore elements of P(X ).



Combined with Proposition 3 and Theorem 1, Proposition 8 leads to a crucial result.

Theorem 2. A fully imprecise credal set M ∈M(X ) can be written as a non-trivial
convex combination λM1 +(1−λ )M2, with M1,M2 ∈M(X ), M1 6= M2 and 0 <
λ < 1 iff its projected credal set KM is Minkowski decomposable.

When stated in terms of coherent lower previsions, this result looks as follows.

Corollary 8. A fully imprecise coherent lower prevision P ∈ P(X ) can be written as
a non-trivial convex combination λP1 +(1−λ )P2, with P1,P2 ∈ P(X ), P1 6= P2 and
0 < λ < 1 iff its projected credal set KP is Minkowski decomposable.

The importance of these two results is that they provide us with an easy characterisation
of the extreme models that are fully imprecise.

Corollary 9. A fully imprecise credal set M ∈M(X ) is extreme iff its projected credal
set KM is Minkowski indecomposable. Equivalently, a fully imprecise lower prevision
P ∈ P(X ) is extreme iff its projected credal set KP is Minkowski indecomposable.

These alternative characterisations of fully imprecise extreme credal sets and lower pre-
visions will allow us to import known results from the literature on Minkowski decom-
posability, using them to find the sets extM(X ) and extP(X ), containing all extreme
credal sets and lower previsions respectively.

To conclude this section, we want to mention a very special fully imprecise credal
set. It contains every single mass function in ΣX and will be denoted as MV :=ΣX . It is
used to model complete ignorance and is called the vacuous credal set. The correspond-
ing (fully imprecise) lower prevision PV is referred to as the vacuous lower prevision
and is given, for all f ∈ G (X ), by PV ( f ) = min f .

Proposition 9. The vacuous credal set is extreme: MV ∈ extM(X ).

Corollary 10. The vacuous lower prevision is extreme: PV ∈ extP(X ).

6 Finding All Extreme Lower Previsions

The size of extM(X ) and extP(X ) and the complexity of their elements, turns out
to depend heavily on the number of elements in the possibility space X = {x1, . . . ,xn}.
We consider three distinct cases: n = 2, n = 3 and n > 3. We focus on constructing
extM(X ), since extP(X ) can be derived from it by applying Corollary 2.

6.1 Possibility Spaces with Two States

For n = 2, constructing extM(X ) is almost trivial. Nevertheless, it serves as a good
didactic exercise to get to know the basic tools in this paper.

It follows from the results in Section 5 that in our search for the extreme credal sets,
we do not need to consider the partially imprecise ones. It suffices to look at the precise
and the fully imprecise credal sets. We know from Proposition 7 that of all the precise
credal sets (those consisting of only a single mass function) the only extreme ones are



those that correspond to a degenerate mass function. In the current binary case, with
X = {x1,x2}, this yields the extreme credal sets M ◦

1 := {p◦1} and M ◦
2 := {p◦2}. All

other extreme credal sets will be fully imprecise. We know from Proposition 9 that MV
is one of those fully imprecise extreme credal sets, but finding the other ones would
normally require the use of Corollary 9. However, in this simple binary case, MV is
the only fully imprecise credal set (we leave the simple proof of this statement as an
exercise for the reader) and we can therefore conclude that for binary possibility spaces:

extM(X ) = {M ◦
1 ,M

◦
2 ,MV}. (25)

By applying Corollary 2, we obtain the corresponding result for lower previsions:

extP(X ) = {P◦1 ,P◦2 ,PV}. (26)

6.2 Possibility Spaces with Three States

For n = 3, finding extM(X ) becomes a bit more involved. As always, the partially
imprecise credal sets are never extreme and the only precise extreme credal sets are
the degenerate ones. Finding the fully imprecise credal sets that are extreme is however
more difficult then it was in the binary case. Here, the vacuous credal set MV will not
be the only fully imprecise extreme credal set. In order to find the others, we rely on
Corollary 9, using it to import the following result by Silverman into our framework.

Theorem 3 ([8, Theorem 4]). A compact convex subset of R2 is Minkowski indecom-
posable if and only if it is a triangle or a line segment.

This theorem is highly non-trivial since it holds for general compact convex subsets
of R2 and not only for convex polygons. It allows us to derive the next result, which
concludes our search for the extreme credal sets of ternary possibility spaces.

Corollary 11. For possibility spaces X = {x1,x2,x3} containing only three elements,
a fully imprecise credal set M ∈M(X ) is extreme if and only if it is the convex closure
of three probability mass functions: we can find p1, p2, p3 ∈ ΣX such that

M =

{ 3

∑
i=1

λi pi : (λ1,λ2,λ3) ∈ ΣX

}
. (27)

Figure 1 should provide this result with some intuition. It presents an example of a fully
imprecise credal set with four vertices and its decomposition into two extreme ones with
three vertices. We depict the credal sets using the well-known simplex representation [9,
Section 4.2.3].

In order to obtain the extreme lower previsions of a ternary possibility space, all we
need to do now is apply Corollary 2. We find that apart from the three degenerate linear
previsions P◦1 , P◦2 and P◦3 , all other extreme lower previsions are characterised by the
following translation of Corollary 11.

Corollary 12. For possibility spaces X = {x1,x2,x3} containing only three elements,
a fully imprecise lower prevision P ∈M(X ) is extreme if and only if it is the lower
envelope of three linear previsions: one can find P1,P2,P3 ∈ P(X ) such that

P( f ) = min
i∈N≤3

Pi( f ) for all f ∈ G (X ). (28)
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Figure 1. Decomposition of a fully imprecise credal set into two extreme ones

6.3 General Possibility Spaces

Due to the page limit constraint, we are not able to discuss the case n > 3 in full detail.
In contrast to the cases n = 2 and n = 3, we will not construct the set of all extreme
credal sets. It should however be clear that all extreme credal sets will again be fully
imprecise, except for the degenerate precise ones. We restrict ourselves to stating some
relevant results from the theory of Minkowski decomposability. Their implications for
extreme credal sets (and thus also extreme lower previsions) are fairly intuitive, but we
defer any more formal result to future work.

We know from Corollary 9 that fully imprecise extreme credal sets correspond to
Minkowski indecomposable compact and convex subsets of Rn−1. For n = 3, we were
dealing with Minkowski indecomposability in the plane, which is completely deter-
mined by Theorem 3. In higher dimensions, Minkowski indecomposability is not yet
fully resolved in the literature.

Most known results deal only with polytopes. Grünbaum [1, Chapter 15] provides
a good summary, explaining (amongst other interesting results) why every simplicial
polytope is indecomposable and every simple polytope, with the exception of a simplex,
is decomposable. Meyer [3, Theorem 3] provides two rather complicated algebraic con-
ditions, which are both necessary and sufficient for a polytope to be indecomposable.

For non-polytopes, the most important reference seems to be Ref. [7], in which
Sallee shows that a wide class of compact convex sets is decomposable, the only condi-
tion being that they have on their boundary a sufficiently smooth neighbourhood. How-
ever, unlike in the case of R2, in higher dimensions Minkowski indecomposable com-
pact convex sets need not be polytopes.

7 Conclusions

We have shown that when X has a finite number n of elements, then the extreme coher-
ent lower previsions on G (X ) are either degenerate linear previsions or fully imprecise
and in a one-to-one correspondence with (Minkowski) indecomposable compact convex
subsets of Rn−1. Using this connection, we have constructed the set of all extreme lower
previsions for the cases n = 2 and n = 3 and suggested what these sets might look like
for n > 3. For the case n = 3, we have found that a fully imprecise coherent lower
prevision is extreme if and only if it is the lower envelope of three linear previsions.

A first and rather obvious avenue of future research would be to use the results
mentioned in Section 6.3 to try and construct extM(X ) and extP(X ) if n > 3, or to



at least get a better idea of what kind of elements they contain. Consider for example
the case n = 4. Can one find non-degenerate extreme lower previsions that are not the
lower envelope of four linear ones? And are fully imprecise lower previsions that are
the lower envelope of four linear previsions always extreme? We intend to answer these
questions in an extended journal version of this paper.

It would also be interesting to compare our results with those in Ref. [5], which con-
centrated on coherent lower previsions defined on finite domains, and Ref. [6], which
investigated the even more particular case of extreme lower probabilities. We conjec-
ture that our results subsume (at least some of) those obtained in Refs. [5] and [6], but a
detailed study is beyond the scope of this conference paper. Ref. [6] also looked at the
extreme points of sets formed by all lower probabilities that satisfy certain properties,
such as k-monotonicity and permutation invariance. We suspect that our results can be
adapted to conduct a similar study for extreme coherent lower previsions as well.

Finally, we would like to see to what extent extreme lower previsions can be used
to tackle practical problems. One idea would be to adapt the existing algorithms for
Minkowski decomposition to decompose coherent lower previsions into convex com-
binations of extreme ones. Such decompositions can then be used to approximate co-
herent lower previsions in such a way as to satisfy certain properties or to develop a
generalisation of the so-called random set product from the theory of belief functions.
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