SYSTeMS dialogue

Imprecise Bernoulli processes

Jasper De Bock & Gert de Cooman

26 April 2012

An infinite sequence of binary random variables

$$X_1, X_2, ..., X_n, ...$$

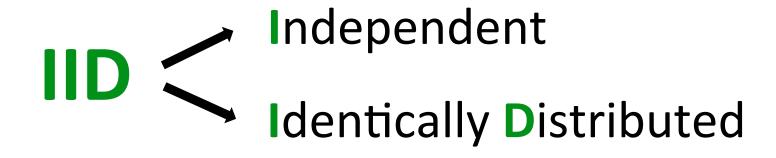
assuming values in the set

$$\mathcal{X} = \{a, b\}$$

An infinite sequence of binary random variables

$$X_1, X_2, ..., X_n, ...$$

defining properties



An infinite sequence of binary random variables

$$X_1, X_2, ..., X_n, ...$$

! IMPLICIT ASSUMPTION!

a single Bernoulli experiment X_i has a precise and precisely known probability mass function

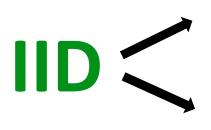
$$P(X_i = a) = \theta$$
 $P(X_i = b) = 1 - \theta$

with a fixed
$$\theta \in [0,1]$$

a single Bernoulli experiment X_i has a precise and precisely known probability mass function

$$P(X_i = a) = \theta$$
 $P(X_i = b) = 1 - \theta$

with a fixed $\theta \in [0,1]$



Independent

Identically Distributed

$$X_1, X_2, \dots, X_n$$

BINOMIAL DISTRIBUTION

with parameters heta and n

$$X_1, X_2, ..., X_n$$
 BINOMIAL DISTRIBUTION with parameters θ and n

BINOMIAL DISTRIBUTION

For every
$$x = (x_1, ..., x_n)$$
 in \mathcal{X}^n :

Probability of occurrence $p(x) = \theta^{n(a)}(1-\theta)^{n(b)}$

$$X_1, X_2, ..., X_n$$
 BINOMIAL DISTRIBUTION with parameters θ and n

BINOMIAL DISTRIBUTION

For every $x = (x_1, ..., x_n)$ in \mathcal{X}^n :

Probability of occurrence $p(x) = \theta^{n(a)}(1-\theta)^{n(b)}$

For every gamble (real valued map) f on \mathscr{X}^n :

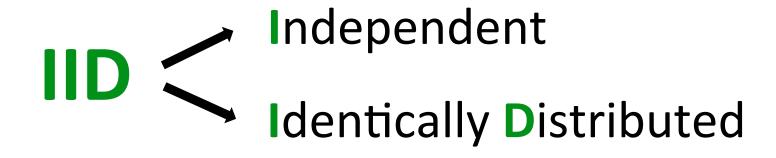
Expected value

$$E(f) = Bn^{n}(f \mid \theta) = \sum_{x \in \mathcal{X}^{n}} f(x)p(x)$$

An infinite sequence of binary random variables

$$X_1, X_2, ..., X_n, ...$$

defining properties



An infinite sequence of binary random variables

$$X_1, X_2, ..., X_n, ...$$

! Introducing imprecision!

a single Bernoulli experiment X_i has a precise and precisely known probability mass function

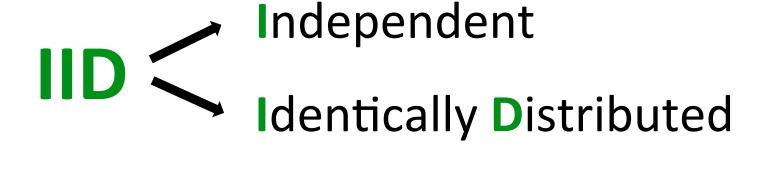
$$P(X_i = a) = \theta$$
 $P(X_i = b) = 1 - \theta$

heta varies over an interval $[\underline{ heta}, \overline{ heta}]$

a single **Bernoulli experiment X**_i has a **precise** and **precisely known probability mass function**

$$P(X_i = a) = \theta$$
 $P(X_i = b) = 1 - \theta$

heta varies over an interval $[\underline{ heta}, \overline{ heta}]$



For a fixed $\, heta \in [0,1]$:

For every gamble f on \mathcal{X}^n :

Expected value: E(f) = Bnⁿ(f |
$$\theta$$
) = $\sum_{x \in \mathcal{X}^n} f(x)p(x)$

For a fixed $\, heta \in [0,1]$:

For every gamble f on \mathcal{X}^n :

Expected value: E(f) = Bnⁿ(f |
$$\theta$$
) = $\sum_{x \in \mathcal{X}^n} f(x)p(x)$

If heta varies over an interval $[\underline{ heta},\overline{ heta}]$:

For a fixed $\, heta\in[0,1]$:

For every gamble f on \mathcal{X}^n :

Expected value: E(f) = Bnⁿ(f |
$$\theta$$
) = $\sum_{x \in \mathcal{X}^n} f(x)p(x)$

If heta varies over an interval $[{ar{ heta}},{\overline{ heta}}]$:

Lower and upper expected value:

$$\overline{E}(f) = \max\{ \operatorname{Bn^n}(f|\theta) : \theta \in [\underline{\theta}, \overline{\theta}] \}$$

$$\underline{E}(f) = \min\{ \operatorname{Bn^n}(f|\theta) : \theta \in [\underline{\theta}, \overline{\theta}] \}$$

An infinite sequence of binary random variables

$$X_1, X_2, ..., X_n, ...$$

! dropping both assumptions!

a single **Bernoulli experiment X**_i has a **procise** and **precisely known probability mass function**

An infinite sequence of binary random variables

$$X_1, X_2, ..., X_n, ...$$

a single **Bernoulli experiment X**_i is regarded as **inherently imprecise**

We do not assume the existence of an underlying precise probability distribution

Sets of Desirable gambles

Serafin Moral

Peter Walley

No underlying precise probability distribution!

A set \mathcal{D} of desirable gambles

We model a subject's beliefs regarding the possible outcomes Ω of an experiment by looking at the gambles he is willing to accept

No underlying precise probability distribution!

A set \mathcal{D} of desirable gambles

Rationality criteria:

COHERENT

```
C1. if f = 0 then f \notin \mathcal{D};

C2. if f > 0 then f \in \mathcal{D};

C3. if f \in \mathcal{D} then \lambda f \in \mathcal{D} [scaling];

C4. if f_1, f_2 \in \mathcal{D} then f_1 + f_2 \in \mathcal{D} [combination].
```

$$(f > 0 \text{ iff } f \ge 0 \text{ and } f \ne 0)$$

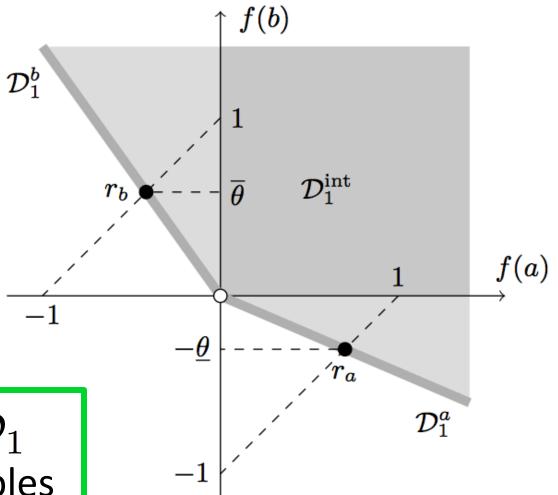
a single
Bernoulli
experiment

f(b) $\mathcal{D}_1^{\mathrm{int}}$ f(a)

A coherent set \mathcal{D}_1 of desirable gambles

Due to coherence:

$$0 \le \underline{\theta} \le \overline{\theta} \le 1$$

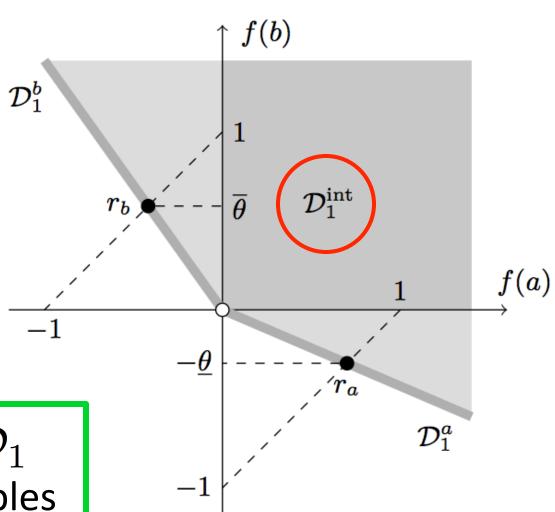


A coherent set \mathcal{D}_1 of desirable gambles

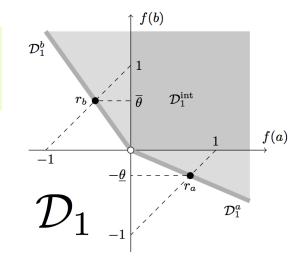
Due to coherence:

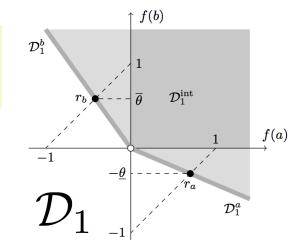
$$0 \times \underline{\theta} \times \overline{\theta} \times 1$$

A coherent set \mathcal{D}_1 of desirable gambles



Single Bernoulli experiment





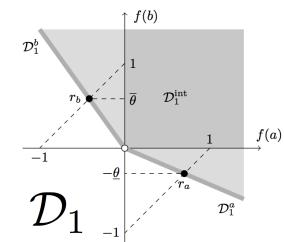
Single Bernoulli experiment \mathcal{D}_1

Imprecise Bernoulli process

Infinite sequence $X_1, X_2, ..., X_n, ...$

Family of coherent sets \mathcal{D}_n of desirable gambles \mathscr{X}^n

(for all $n \in \mathbb{N}_0$)

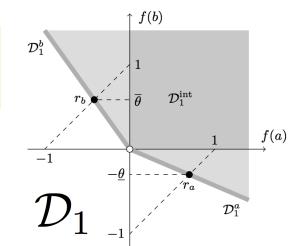


Single Bernoulli experiment

Imprecise Bernoulli process

Infinite sequence $X_1, X_2, ..., X_n, ...$

Family of coherent sets \mathcal{D}_n of desirable gambles \mathscr{X}^n time consistent!



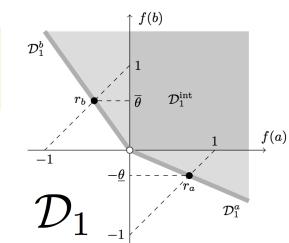
Single Bernoulli experiment \mathcal{D}_1

- Exchangeability
- Epistemic independence

Imprecise Bernoulli process

Infinite sequence X_1 , X_2 , ..., X_n , ...

Family of coherent sets \mathcal{D}_n of desirable gambles \mathscr{X}^n (for all $n \in \mathbb{N}_0$) time consistent!



Single Bernoulli experiment

- Exchangeability
 Epistemic independence

Imprecise Bernoulli process

Infinite sequence X_1 , X_2 , ..., X_n , ...

Family of coherent sets \mathcal{D}_n of desirable gambles \mathscr{X}^n (for all $n \in \mathbb{N}_0$) time consistent!

Exchangeability for Sets of Desirable gambles

Gert de Cooman

Erik Quaeghebeur

Exchangeability

```
Consider any permutation \pi of the set of indices \{1, 2, ..., n\}
For any \mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n) in \mathscr{X}^n we let \pi \mathbf{x} := (\mathbf{x}_{\pi(1)}, \mathbf{x}_{\pi(2)}, ..., \mathbf{x}_{\pi(n)})
For any gamble \mathbf{f} on \mathscr{X}^n we let \pi^t \mathbf{f} := \mathbf{f} \circ \pi, so (\pi^t \mathbf{f})(\mathbf{x}) = \mathbf{f}(\pi \mathbf{x})
```

Exchangeability

Consider any permutation π of the set of indices $\{1, 2, ..., n\}$ For any $x = (x_1, x_2, ..., x_n)$ in \mathcal{X}^n we let $\pi x := (x_{\pi(1)}, x_{\pi(2)}, ..., x_{\pi(n)})$ For any gamble f on \mathcal{X}^n we let $\pi^t f := f \circ \pi$, so $(\pi^t f)(x) = f(\pi x)$

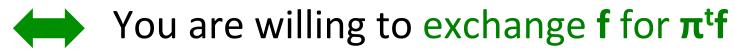
 $X_1, X_2, ..., X_n$ is assessed to be exchangeable

You are willing to exchange f for $\pi^t f$

Exchangeability

Consider any permutation π of the set of indices $\{1, 2, ..., n\}$ For any $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n)$ in \mathscr{X}^n we let $\pi \mathbf{x} := (\mathbf{x}_{\pi(1)}, \mathbf{x}_{\pi(2)}, ..., \mathbf{x}_{\pi(n)})$ For any gamble \mathbf{f} on \mathscr{X}^n we let $\pi^t \mathbf{f} := \mathbf{f} \circ \pi$, so $(\pi^t \mathbf{f})(\mathbf{x}) = \mathbf{f}(\pi \mathbf{x})$

 $X_1, X_2, ..., X_n$ is assessed to be exchangeable



 \mathcal{D}_n is exchangeable

+ f – π^tf is (weakly) desirable \approx f – π ^tf $\in \mathcal{D}_n$

Exchangeability

Infinite exchangeable sequence X₁, X₂, ..., X_n, ...

Family of coherent sets \mathcal{D}_n of desirable gambles \mathscr{X}^n time consistent! (for all $n \in \mathbb{N}_0$)

Exchangeability

Infinite exchangeable sequence X₁, X₂, ..., X_n, ...

Family of coherent sets \mathcal{D}_n of desirable gambles \mathscr{X}^n time consistent! (for all $n \in \mathbb{N}_0$)

Each \mathcal{D}_n should be exchangeable!

Exchangeability

Infinite exchangeable sequence X₁, X₂, ..., X_n, ...

Family of coherent sets \mathcal{D}_n of desirable gambles \mathscr{X}^n time consistent! (for all $n \in \mathbb{N}_0$)

Each \mathcal{D}_n should be exchangeable!

How to impose this property?

Exchangeability

BINOMIAL DISTRIBUTION (heta and n)

E(f) = Bnⁿ(f |
$$\theta$$
) = $\sum_{x \in \mathcal{X}^n} f(x)p(x)$
 $\theta^{n(a)}(1-\theta)^{n(b)}$

Exchangeability

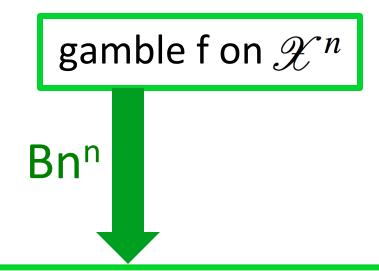
BINOMIAL DISTRIBUTION (θ and n)

For every gamble f on \mathcal{X}^n :

E(f) = Bnⁿ(f |
$$\theta$$
) = $\sum_{x \in \mathcal{X}^n} f(x)p(x)$
 $x \in \mathcal{X}^n \longrightarrow \theta^{n(a)} (1-\theta)^{n(b)}$

Bnⁿ(f) := Bnⁿ(f |
$$\theta$$
) (deg(p) \leq n)

Exchangeability



Bnⁿ(f) := Bnⁿ(f
$$\mid \theta$$
) (deg(p) \leq n)

Exchangeability

2ⁿ-dimensional space

gamble f on \mathscr{X}^n

Bnr

(n+1)-dimensional space

Bnⁿ(f) := Bnⁿ(f |
$$\theta$$
) (deg(p) \leq n)

Exchangeability

2ⁿ-dimensional space

gamble f on \mathcal{X}^n

Bnⁿ

$$Bn^{n}(\pi f) = Bn^{n}(f)$$

(n+1)-dimensional space

Bnⁿ(f) := Bnⁿ(f |
$$\theta$$
) (deg(p) \leq n)

Exchangeability

Infinite exchangeable sequence X₁, X₂, ..., X_n, ...

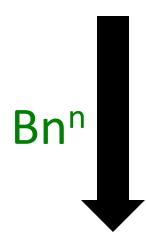
Family of coherent sets \mathcal{D}_n of desirable gambles \mathscr{X}^n time consistent! (for all $n \in \mathbb{N}_0$)

Exchangeability

Infinite exchangeable sequence X₁, X₂, ..., X_n, ...

Family of coherent sets \mathcal{D}_n of desirable gambles \mathscr{X}^n

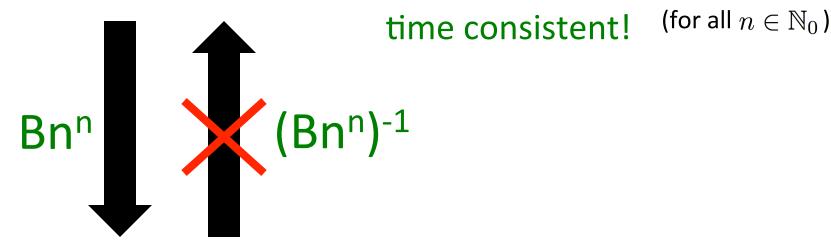
time consistent! (for all $n \in \mathbb{N}_0$)



Exchangeability

Infinite exchangeable sequence X₁, X₂, ..., X_n, ...

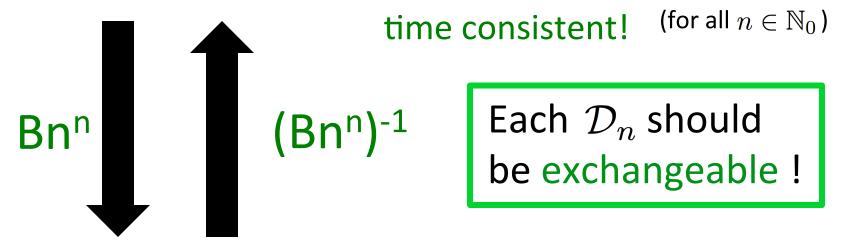
Family of coherent sets \mathcal{D}_n of desirable gambles \mathscr{X}^n



Exchangeability

Infinite exchangeable sequence X₁, X₂, ..., X_n, ...

Family of coherent sets \mathcal{D}_n of desirable gambles \mathscr{X}^n



Exchangeability

Infinite exchangeable sequence X₁, X₂, ..., X_n, ...

Bernstein coherent:

```
B1. if p = 0 then p \notin \mathcal{H};
```

B2. if
$$p \in \mathcal{V}^+$$
, then $p \in \mathcal{H}$;

B3. if
$$p \in \mathcal{H}$$
 then $\lambda p \in \mathcal{H}$;

B4. if
$$p_1, p_2 \in \mathcal{H}$$
 then $p_1 + p_2 \in \mathcal{H}$.

Exchangeability

Infinite exchangeable sequence X₁, X₂, ..., X_n, ...

Bernstein coherent:

B1. if
$$p = 0$$
 then $p \notin \mathcal{H}$.

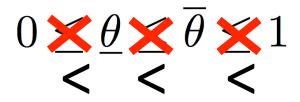
B1. if
$$p = 0$$
 then $p \notin \mathcal{H}$.
B2. if $p \in \mathcal{V}^+$ then $p \in \mathcal{H}$;

B3. if
$$p \in \mathcal{H}$$
 then $\lambda p \in \mathcal{H}$;

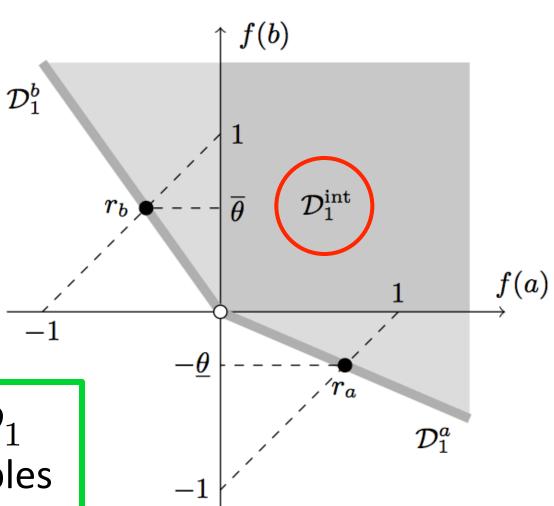
B4. if
$$p_1, p_2 \in \mathcal{H}$$
 then $p_1 + p_2 \in \mathcal{H}$.

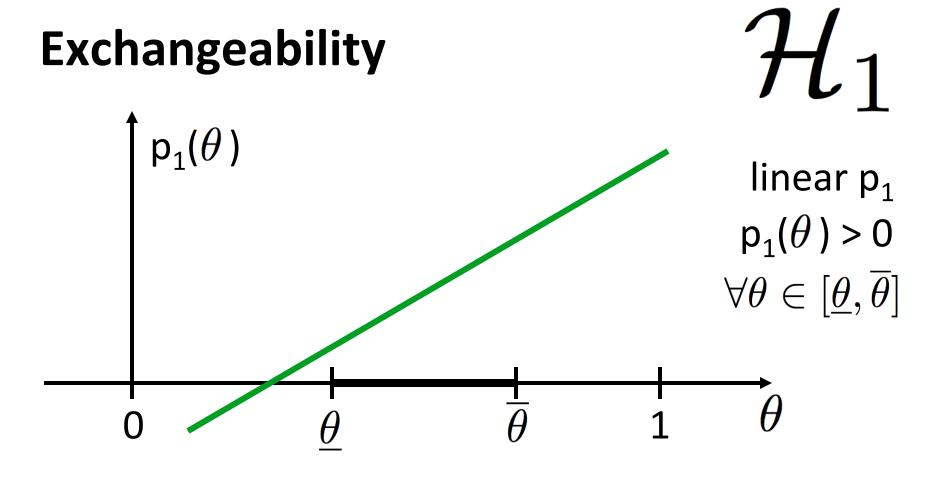
$$(p(\theta) > 0) \forall \theta \in]0,1[$$

Exchangeability



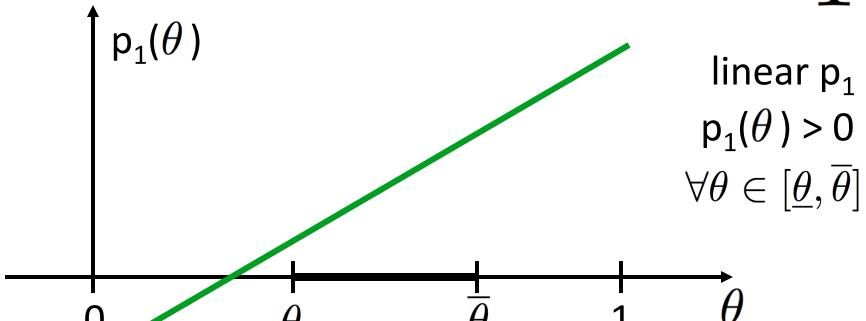
A coherent set \mathcal{D}_1 of desirable gambles

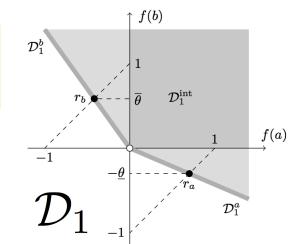




Exchangeability

 \mathcal{H}_1





Single Bernoulli experiment

• Epistemic independence

Epistemic independence

Infinite sequence $X_1, X_2, ..., X_n, ...$

assessment of epistemic independence

Epistemic independence

Infinite sequence $X_1, X_2, ..., X_n, ...$

assessment of epistemic independence

Learning the value of any finite number of variables does not change our beliefs about any finite subset of the remaining, unobserved ones.

Epistemic independence

Infinite sequence $X_1, X_2, ..., X_n, ...$

assessment of epistemic independence

Epistemic independence

Infinite sequence $X_1, X_2, ..., X_n, ...$

assessment of epistemic independence

$$p \in \mathcal{H} \stackrel{\triangleright}{>} \theta p \in \mathcal{H}$$
 $(1-\theta)p \in \mathcal{H}$

Exchangeability:

Set ${\mathcal H}$ of polynomial functions

Bernstein coherent:

B1. if p = 0 then $p \notin \mathcal{H}$;

B2. if $p \in \mathcal{V}^+$, then $p \in \mathcal{H}$;

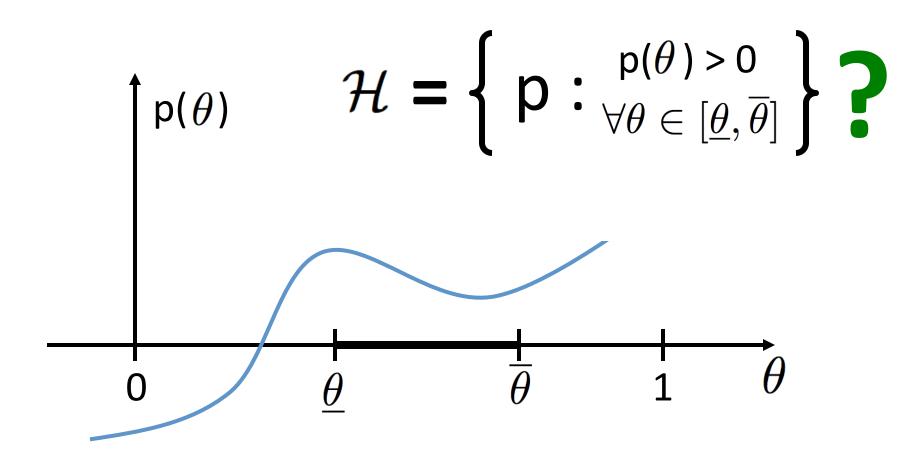
B3. if $p \in \mathcal{H}$ then $\lambda p \in \mathcal{H}$;

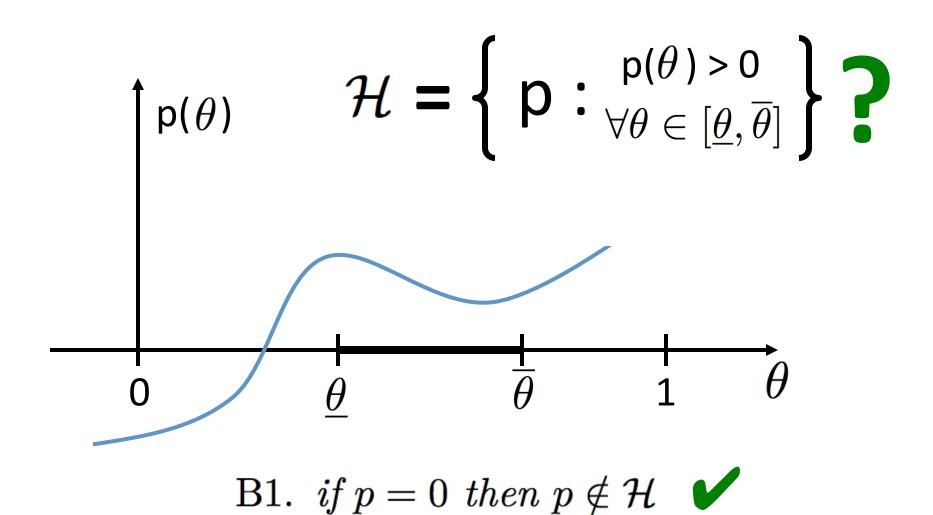
B4. if $p_1, p_2 \in \mathcal{H}$ then $p_1 + p_2 \in \mathcal{H}$.

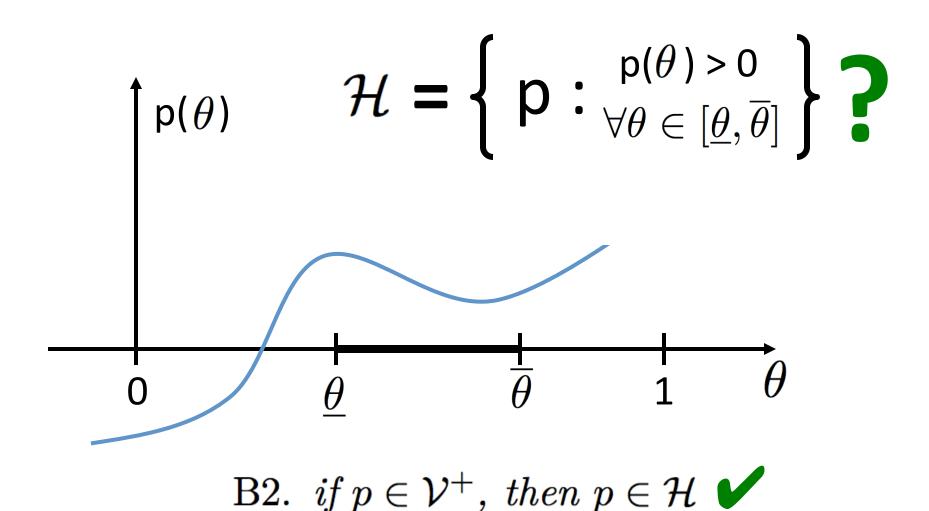
Epistemic independence:

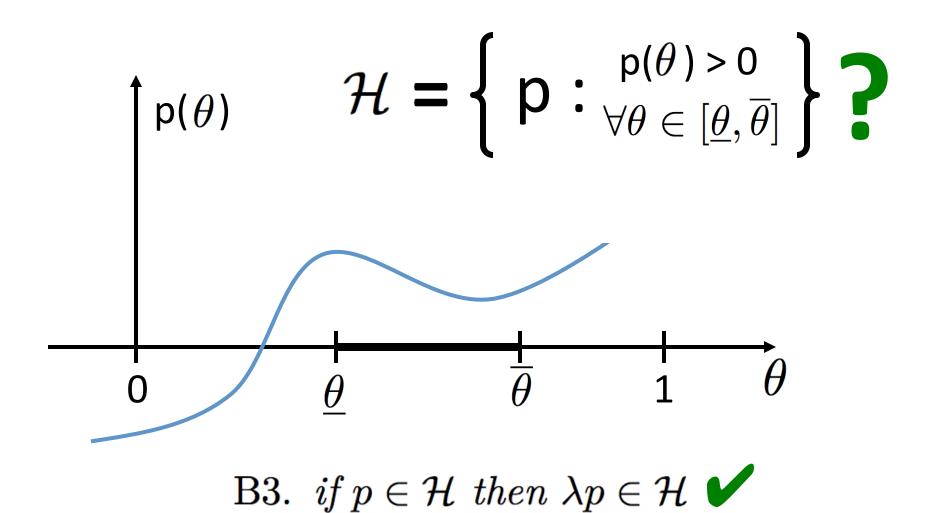
$$p \in \mathcal{H} \overset{\triangleright\!\!\!\!>}{>\!\!\!\!>} \frac{\theta \, p \in \mathcal{H}}{(1-\theta) \, p \in \mathcal{H}}$$

We are looking for the smallest such set ${\cal H}$ (most conservative inferences) that contains ${\cal H}_1$

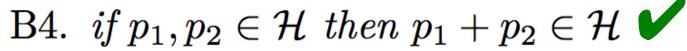


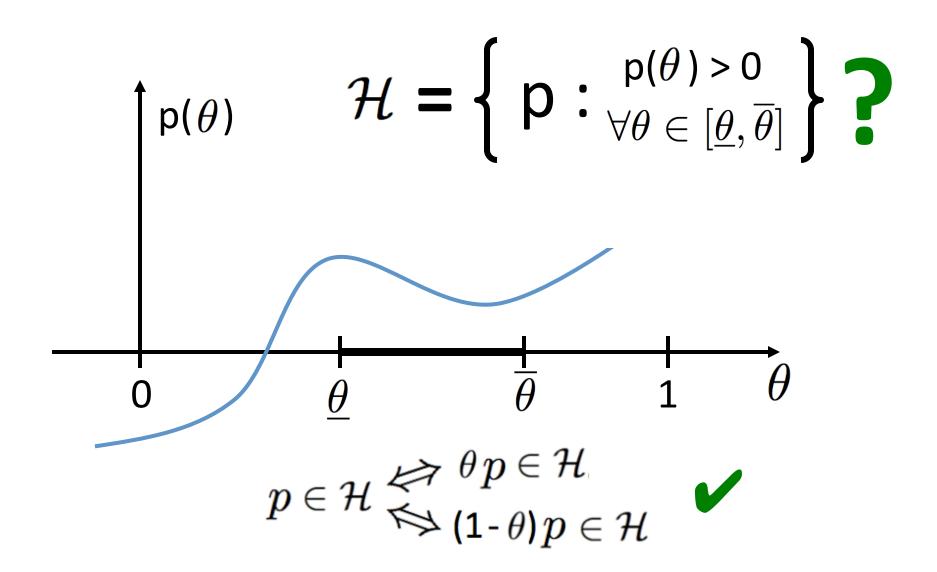


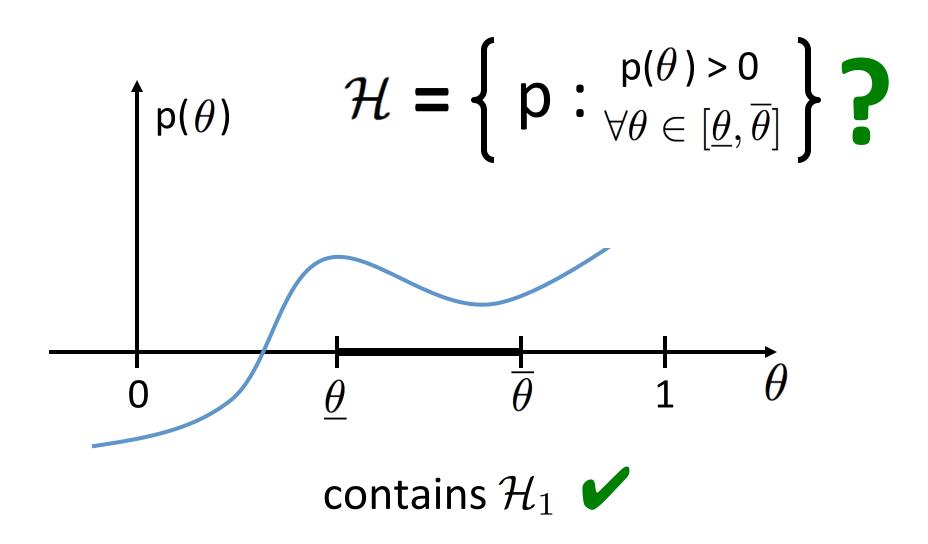


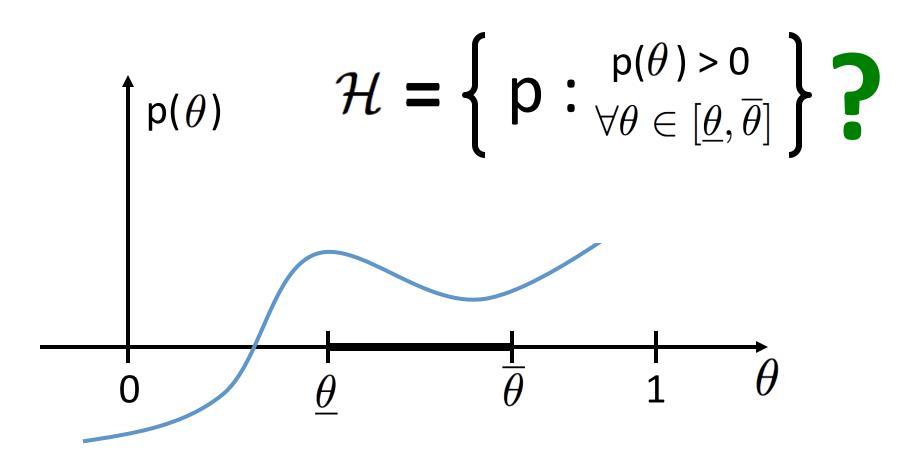




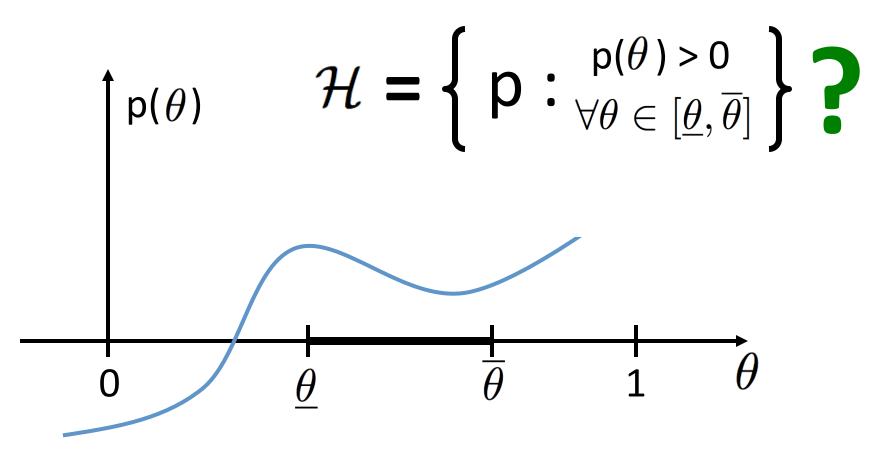




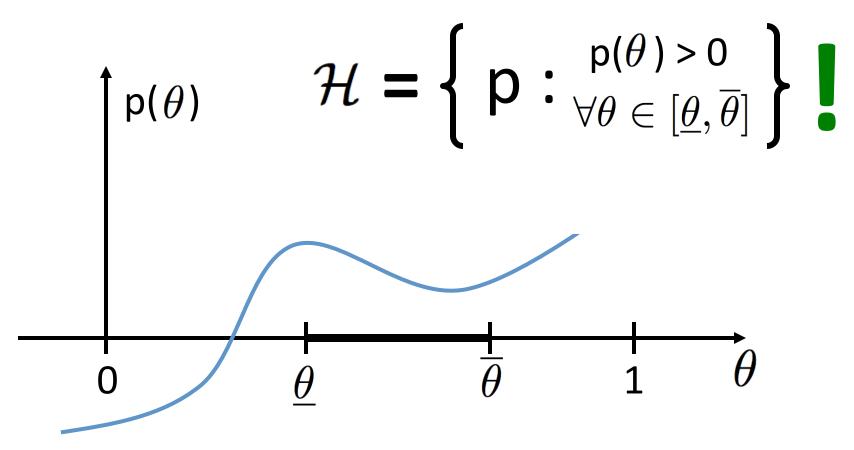




Smallest such set?

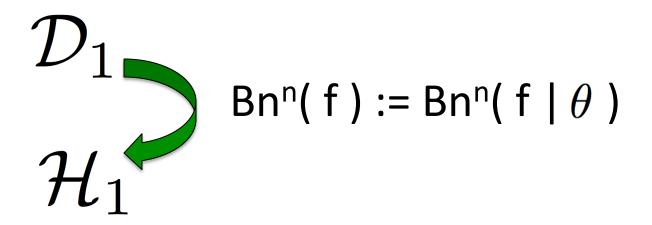


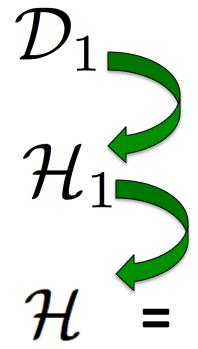
Smallest such set



Smallest such set

 \mathcal{D}_1

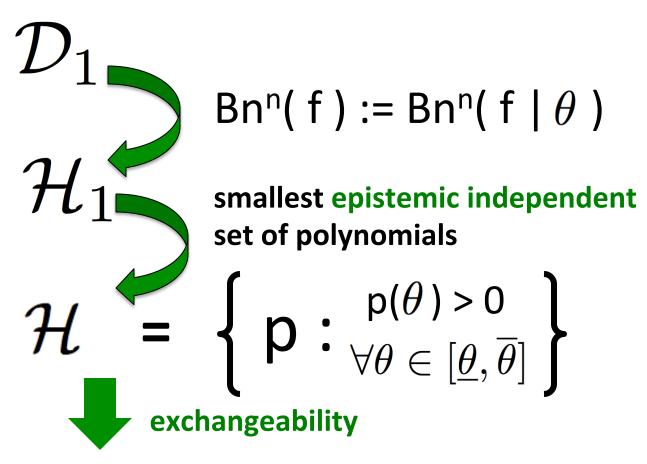




$$Bn^{n}(f) := Bn^{n}(f \mid \theta)$$

smallest epistemic independent set of polynomials

$$\left\{ \mathsf{p} : \mathsf{p}(\theta) > 0 \atop \forall \theta \in [\underline{\theta}, \overline{\theta}] \right\}$$



Family of coherent sets \mathcal{D}_n of desirable gambles \mathscr{X}^n time consistent! (for all $n \in \mathbb{N}_0$)

Link with sensitivity analysis

$$\underline{E}(f) := \sup \{ \mu \in \mathbb{R} : f - \mu \in \mathcal{D}_n \}$$
Suppremum acceptable buying price

Link with sensitivity analysis

$$\underline{E}(f) := \sup\{\mu \in \mathbb{R} : f - \mu \in \mathcal{D}_n\}$$
 $= \sup\{\mu \in \mathbb{R} : \operatorname{Bn^n}(f) - \mu \in \mathcal{H}\}$

Link with sensitivity analysis

$$\underline{E}(f) := \sup \{ \mu \in \mathbb{R} : f - \mu \in \mathcal{D}_n \}$$

$$= \sup \{ \mu \in \mathbb{R} : \operatorname{Bn^n}(f) - \mu \in \mathcal{H} \}$$

$$\operatorname{Bn^n}(f \mid \theta) - \mu \in \mathcal{H}$$

Link with sensitivity analysis

$$\underline{E}(f) := \sup \{ \mu \in \mathbb{R} : f - \mu \in \mathcal{D}_n \}$$

$$= \sup \{ \mu \in \mathbb{R} : \operatorname{Bn^n}(f) - \mu \in \mathcal{H} \}$$

$$\sharp$$

$$\operatorname{Bn^n}(f \mid \theta) - \mu \in \mathcal{H}$$

$$\sharp$$

$$\operatorname{Bn^n}(f \mid \theta) - \mu > 0 \ \forall \theta \in [\underline{\theta}, \overline{\theta}]$$

Link with sensitivity analysis

$$\begin{split} \underline{E}(f) &:= \sup\{\mu \in \mathbb{R} : f - \mu \in \mathcal{D}_{\!n}\!\} \\ &= \sup\{\mu \in \mathbb{R} : \operatorname{Bn^n}(f) - \mu \in \mathcal{H}\} \\ &= \sup\{\mu \in \mathbb{R} : \operatorname{Bn^n}(f \mid \theta) > \mu \ \forall \theta \in [\underline{\theta}, \overline{\theta}]\} \end{split}$$

Link with sensitivity analysis

$$\begin{split} \underline{E}(f) &:= \sup\{\mu \in \mathbb{R} : f - \mu \in \mathcal{D}_{\!n}\!\} \\ &= \sup\{\mu \in \mathbb{R} : \operatorname{Bn^n}(f) - \mu \in \mathcal{H}\} \\ &= \sup\{\mu \in \mathbb{R} : \operatorname{Bn^n}(f \mid \theta) > \mu \ \forall \theta \in [\underline{\theta}, \overline{\theta}]\} \end{split}$$

$$=\min\{\|\operatorname{\mathsf{Bn}}^{\mathsf{n}}(f| heta): heta\in[\underline{ heta},\overline{ heta}]\}$$

Link with sensitivity analysis

Sensitivity analysis:

$$\begin{split} \overline{E}(f) &= \max\{ \ \operatorname{Bn^n}(f|\theta): \theta \in [\underline{\theta}, \overline{\theta}] \} \\ \underline{E}(f) &= \min\{ \ \operatorname{Bn^n}(f|\theta): \theta \in [\underline{\theta}, \overline{\theta}] \} \end{split}$$

EXCHANGEABILITY + EPISTEMIC INDEPENDENCE

SENSITIVITY ANALYSIS