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Classical Bernoulli processes

X. X X BINOMIAL DISTRIBUTION
177227 =7 *n  with parameters @ and n

For every x = (X, ..., X,) in Z" :
Probability of occurence p(x) = §"@)(1- g)"(®)

For every gamble (real valued map) fon Z™" :
Expected value

E(f) =Bn"(f ] 6)= > f(x)p(x)

reXxXmn
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Sensitivity analysis in Bernoulli processes

For a fixed 6 € [0,1] :

For every gamble fon Z™" :

Expected value: E(f) =Bn"(f | §)= > f(x)p(x)
— reEXm
If @ varies over an interval |0, 0]:

Lower and upper expected value:
E(f) = max{ Bn"(f|0) : 0 € |
E(f) = min{ Bn"(f|0) :0 € |
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a single Bernoulli experiment X. has a
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An infinite sequence of binary random variables

X, Xy, o) X

n , o000

a single Bernoulli experiment X. is

regarded as inherently imprecise

We do not assume the existence of an
underlying precise probability distribution
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No underlying precise probability distribution!

A set D of desirable gambles

We model a subject’s beliefs regarding the
possible outcomes Q of an experiment by
looking at the gambles he is willing to accept
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No underlying precise probability distribution!

A set D of desirable gambles

Rationality criteria:

Cl. if f =0 then f ¢ D; COHERENT

C2. if f >0 then f € D;
C3. if f € D then \f € D [scaling/;
C4. if f1, fo € D then f1 + fo € D [combination].

(f>0ifff>0andf #0)
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n’ LN )

Family of coherent setsD,, of desirable gambles Z "
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Gert de Cooman  Erik Quaeghebeur
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Exchangeability

Consider any permutation mt of the set of indices {1, 2, ..., n}
For any x = (g, X, .., X,) in 2" we let 1tx := (X 4y, X 2ps -+ 5 X))

For any gamble f on 2" we let it'f := f o, so (r*f)(x) = f(rix)

X1, X5, ..., X is assessed to be exchangeable
@) You are willing to exchange f for rt'f

D,, is exchangeable
@) f-n'fis(weakly)desirable = f—nif €D,
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Exchangeability
Infinite exchangeable sequence X,, X,, ..., X_, ...

Family of coherent setsD,, of desirable gambles Z "
time consistent! (foralln € No)

Each D,, should be exchangeable !

How to impose this property?
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Exchangeability

BINOMIAL DISTRIBUTION (6 and n)
For every gamble f on " .

E(f) 9B (f ] 0)F > f(x)p(x)
l rTeEX™ L Hn(a)(l- 0)n(b)

Polynomial function of ¢
Bn"(f):=Bn"(f |0 ) (deg(p)<n)
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gamble f on "

(n+1)-dimensional space

Polynomial function of ¢

Bn"(f):=Bn"(f |6 ) (deg(p)=n)
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Exchangeability

2"-dimensional space

gamble f on "

Bnn Bn"( rtf ) = Bn"( )

(n+1)-dimensional space

Polynomial function of ¢
Bn"(f):=Bn"(f |0 ) (deg(p)<n)
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Exchangeability
Infinite exchangeable sequence X,, X,, ..., X_, ...

Family of coherent setsD,, of desirable gambles Z "
time consistent! (foralln € No)

(Bnn)-l Each D,, should
be exchangeable |
Set H of polynomial functions

Bn"
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Exchangeability
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Exchangeability

Infinite exchangeable sequence X,, X,, ..., X

Bernstein coherent:

Bl. ifp=0 thw
B2. zf@ enp e H,
B3. if p € H then A\p € H,;

B4. if p1,p2 € H then p1 + ps € H.

Set H of polynomial functions

n’ 000
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Exchangeability 7—[ 1
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linear p,
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Epistemic independence

Infinite sequence X,, X,, ..., X

n’ 000

assessment of epistemic independence

L

Learning the value of any finite number of
variables does not change our beliefs about any
finite subset of the remaining, unobserved ones.
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Epistemic independence

Infinite sequence X;, X,, ..., X, ...

assessment of epistemic independence

L7 peH
S\ (1-0)p € H

Set H of polynomial functions ?
0

peEH



Imprecise Bernoulli processes

Exchangeability: BL #p—0 thenpd ¥
.Y p= eEn p y

Set { of polynomial functions B2 #pc V7, thenpcH;
B3. if p € H then \p € H,;

Bernstein coherent: B4. ifp,p, € H then p; +py € H.

Epistemic independence:

@01)67{

pEH@-(l-e)peH

We are looking for the smallest such set H

(most conservative inferences) that contains H 1
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. _ . p(0)>0
p(0) H‘{p'vee[e,é]}?
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0

B4. if p1,p2 € H then p1 +p2 € H ‘/
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Dr
D Bn"(f):=Bn"(f|6)
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D1
> Bn"(f):=Bn"(f|0)
smallest epistemic independent
> set of polynomials

. p(0)>0
' VO € [0, 0]
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D1
D Bn"(f):=Bn"(f|6)
H 1 smallest epistemic independent
D set of polynomials
H - ~p(@)>o0
= 1P wepg

exchangeability

4

Family of coherent setsD,, of desirable gambles Z "
time consistent! (foralln € No)
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Link with sensitivity analysis
For every gamble fon @7

E(f)=sup{p €R: f—p €D}
=sup{p € R:Bn"(f) — p € H}

Bn"(f|0)— u € 'H

|

Bn(f|0)— 1 >0 VO e[6,d
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Link with sensitivity analysis
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Link with sensitivity analysis

For every gamble fon @7

E(f)=sup{p € R: f —pe D}
=sup{pu € R:Bn(f) — pu € H}
=sup{p € R:Bn"(f|0) > voeco,o}

= min{ Bn"(f|0): 0 € [0,0]}
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Link with sensitivity analysis

Sensitivity analysis:

E(f) = max{ Bn"(f

E(f) = min{ Bn"(f
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EXCHANGEABILITY

-
EPISTEMIC INDEPENDENCE

l

SENSITIVITY ANALYSIS




