5th SIPTA school on imprecise probability

16-20 July 2012, Pescara (Italy)

State sequence estimation in imprecise hidden Markov models

Jasper De Bock

Ghent University (Belgium) jasper.debock@ugent.be

State sequence estimation in precise hidden Markov models

A sequence of hidden state variables

A sequence of hidden state variables

$$X_i =$$
 or \bigcirc or \bigcirc

$$O_i =$$
 or or

A sequence of hidden state variables

A sequence of hidden state variables

$$X = X_1 X_2 X_3$$

$$O = O_1 O_2 O_3$$

A sequence of hidden state variables

A sequence of hidden state variables

A sequence of hidden state variables

Marginal model for the first hidden variable

Transition models for the next hidden variables

Output models for the observable output variables

$$Q_1(X_1)$$

$$Q_2(X_2|X_1)$$

$$Q_2(X_3|X_2)$$

Local

models

$$S_1 (O_1 | X_1)$$

$$S_2(O_2|X_2)$$

$$S_3 (O_3 | X_3)$$

$$Q_1(X_1)$$

$$Q_2(X_2|X_1)$$

$$Q_2(X_3|X_2)$$

Local INDEPENDENCE models

Joint model P (X,O)

$$S_1 (O_1 | X_1)$$

$$S_2(O_2|X_2)$$

$$S_3 (O_3 | X_3)$$

State sequence estimation in imprecise hidden Markov models

A sequence of hidden state variables

How to estimate the hidden state sequence

Highest conditional probability p(X | 次 🏡)!

Highest conditional probability p(X | 次 🏡)!

$$p(X| \dot{\chi}) = \frac{p(X, \dot{\chi})}{p(\dot{\chi})}$$

Highest conditional probability p(X | 次 🏡)!

Highest conditional probability p(X | 入 点)! (or equally high!)

$$p(X \mid \lambda, \lambda, \triangleq) = \frac{p(X, \lambda, \lambda, \triangleq)}{p(\lambda, \lambda, \triangleq)}$$

Highest conditional probability p(X | 入 点)! (or equally high!)

$$p(X| \dot{\chi} \dot{\chi} \underline{\wedge}) = \frac{p(X, \dot{\chi} \dot{\chi} \underline{\wedge})}{p(\dot{\chi} \dot{\chi} \underline{\wedge}) \neq 0}$$

Highest conditional probability $p(X \mid X \triangleq)!$ (or equally high!)

$$p(X \mid \lambda, \lambda, \infty) = \frac{p(X, \lambda, \lambda, \infty)}{p(\lambda, \lambda, \infty) \neq 0}$$
What do we

Highest conditional probability p(X | 入 魚 (or equally high!)

$$p(X \mid \lambda \land \triangle) = \frac{p(X, \lambda \land \triangle)}{p(\lambda \land \triangle) \neq 0}$$

How to make our criterion easier to check and include the zero-case at the same time?

Highest unconditional probability p(X, 太 魚)! (or equally high!)

How to make our criterion easier to check and include the zero-case at the same time?

Highest unconditional probability p(X, 次 点)!

Highest unconditional probability p(X, 太 太 金)?

Highest unconditional probability p(X, 太 太 金)?

Highest unconditional probability p(X, 次 点)?

EXERCISE!

q(X)s(O|X)

Estimate the (hidden) state!

Estimate the (hidden) state!

$$q($\hat{\ }$$
) = 10% $s($\hat{\ }$ | $$\hat{\ }$) = 10%

Estimate the (hidden) state!

$$q()) = 7/10 \quad s() \Rightarrow |\rangle = 2/10$$

$$q(\frac{1}{4}) = 1/10$$
 $s(\frac{1}{2}) = 1/10$

Estimate the (hidden) state!

$$q()) = 7/10 \quad s() \Rightarrow |\rangle = 2/10$$

$$q(\frac{1}{4}) = 1/10$$
 $s(\frac{1}{2}) = 1/10$

Which state(s) X has (have) the highest unconditional probability p(X, 太)?

Estimate the (hidden) state!

$$p(\stackrel{\leftarrow}{,},\stackrel{\leftarrow}{,}) = 0.14 = 14/100$$

 $p(\stackrel{\leftarrow}{,},\stackrel{\leftarrow}{,}) = 0.12 = 12/100$
 $p(\stackrel{\leftarrow}{,},\stackrel{\leftarrow}{,}) = 0.01 = 1/100$

Which state(s) X has (have) the highest unconditional probability p(X, 太)?

Estimate the (hidden) state!

$$p(\stackrel{\leftarrow}{,},\stackrel{\wedge}{,}) = 0.14 = 14/100$$

 $p(\stackrel{\leftarrow}{,},\stackrel{\wedge}{,}) = 0.12 = 12/100$
 $p(\stackrel{\leftarrow}{,},\stackrel{\wedge}{,}) = 0.01 = 1/100$

Which state(s) X has (have) the highest unconditional probability $p(X, 1)? \implies$

Epistemic Irrelevance yields formulas that recursively construct a global model (Details: see lesson by Gert)

State sequence estimation nimprecise hidden Markov models

Conditioning the joint model on the observations

Conditioning the joint model on the observations

How to estimate the state sequence?

PRECISE: total ordering

$$A > B$$
 if $p(A|O) > p(B|O)$

Maximal sequence(s): the undominated sequence(s) in this total ordering

PRECISE: total ordering

$$A > B$$
 if $p(A|O) > p(B|O)$

Maximal sequence(s): the undominated sequence(s) in this total ordering

IMPRECISE?

$$A > B$$
 if $p(A|O) \rightarrow p(B|O)$

IMPRECISE:

A > B if p(A|O) > p(B|O) for all p(X|O) in P(X|O)

Criterion of MAXIMALITY!

(hence the name: maximal sequences)

IMPRECISE:

$$A > B$$
 if $p(A|O) > p(B|O)$ for all $p(X|O)$ in $P(X|O)$

$$\Leftrightarrow$$
 P(I_A|O) > P(I_B|O) for all P(X|O) in P(X|O)

$$\Leftrightarrow$$
 P(I_A-I_B|O) > 0 for all P(X|O) in P(X|O)

$$\Leftrightarrow \underline{P}(I_A - I_B | O) > 0$$

Always correct, but hard to calculate... Can we use the joint directly?

IMPRECISE:

A > B if p(A|O) > p(B|O) for all p(X|O) in P(X|O)

p(A,O) > p(B,O) for all p(X,O) in P(X,O)

- $\langle \Rightarrow P(I_A I_O) > P(I_B I_O) \text{ for all } P(X,O) \text{ in } \underline{P}(X,O)$
- \Leftrightarrow P([I_A I_B] I_O) > 0 for all P(X,O) in <u>P(X,O)</u>
- $\Leftrightarrow \underline{P}([I_A I_B] I_O) > 0$

IMPRECISE:

A > B if p(A|O) > p(B|O) for all p(X|O) in P(X|O)

if p(O)>0 for all p(X,O) in P(X,O) (P(O)>0) necessary?

We want to allow local lower probabilities to be zero!

$$\underline{P}([I_A - I_B] I_O) > 0$$

IMPRECISE:

A > B if p(A|O) > p(B|O) for all p(X|O) in P(X|O)

$$\underline{P}([I_A - I_B] I_O) > 0$$

IMPRECISE:

$$A > B$$
 if $P([I_A - I_B] I_O) > 0$

IMPRECISE: partial ordering

A > B if $P([I_A - I_B] I_O) > 0$

Maximal sequence(s): undominated sequence(s) in this partial ordering

X is maximal

5th SIPTA school (2012)

Jasper De Bock

IMPRECISE: partial ordering

A > B if $P([I_A - I_B] I_O) > 0$

Maximal sequence(s): undominated sequence(s) in this partial ordering

X is maximal

For all Y: $Y \not > X \Leftrightarrow For all Y: \underline{P}([I_Y - I_X] I_O) \leq 0$

X is maximal
$$\langle \neg \rangle$$
 For all Y : $\underline{P}([I_Y - I_X] I_0) \le 0$

How can we determine the set of maximal sequences efficiently?

X is maximal \hookrightarrow For all Y : $\underline{P}([I_Y - I_X] I_0) \le 0$

How can we determine the set of maximal sequences efficiently?

EstiHMM: an efficient algorithm to determine the maximal state sequences in an imprecise hidden Markov model

How can we determine the set of maximal sequences efficiently?

Trick nr. 1

Using the joint model instead of the conditional one

$$Y > X$$
 if $\underline{P}(I_Y - I_X | O) > 0$ $\underline{\hspace{1cm}}\underline{P}([I_Y - I_X] | I_O) > 0$

In forward irrelevant HMMs with strictly positive local upper probabilities

How can we determine the set of maximal sequences efficiently?

Trick nr. 2

Working recursively

Principle of optimality (Bellman)

How can we determine the set of maximal sequences efficiently?

Trick nr. 2

Working recursively

Principle of optimality (Bellman)

How can we determine the set of maximal sequences efficiently?

Trick nr. 2

Working recursively

Principle of optimality (Bellman)

How can we determine the set of maximal sequences efficiently?

Trick nr. 3

Reformulating the criterion of maximality

X is maximal

$$\langle \alpha_k^{\text{opt}}(\hat{x}_k|x_{k-1}) \leq \alpha_k(\hat{x}_{k:n}).$$

How can we determine the set of maximal sequences efficiently?

Trick nr. 4

Storing solutions efficiently

6 (possibly) maximal sequences for a binary HMM of length 8:

Two state values: 0 or 1

{00001000,00001010,00001110,00011110,10001010,10001110}

Trick nr. 4

Storing solutions efficiently

(00001000, 00001010, 000011110, 000111110, 10001010, 10001110)

Trick nr. 4

Storing solutions efficiently

{00001000 00001010,00001110,00011110,10001010,10001110}

Trick nr. 4

Storing solutions efficiently

{00001000,00001010,00001110,00011110,10001010,10001110}

Trick nr. 4

Storing solutions efficiently

 $\{00001000,00001010,00001110,00011110,10001010,10001110\}$

Trick nr. 4

Storing solutions efficiently

 $\{00001000,00001010,00001110,00011110,10001010,10001110\}$

Trick nr. 4

Storing solutions efficiently

{00001000,00001010,00001110,00011110,10001010(10001110)

Trick nr. 4

Storing solutions efficiently

 $\{000021000,000021010,000021110,00011110,10001010,10001110\}$

EstiHMM: an efficient algorithm to determine the maximal state sequences in an imprecise hidden Markov model

Computational complexity

- Linear in the number of maximal sequences!
- Quadratic in the length of the HMM
- Cubic in the number of possible states

EXERCISE!

Estimate the (hidden) state!

Estimate the (hidden) state!

For all gambles **f** on X:

$$Q(f) = 0.9[0.7f() + 0.2f() + 0.1f()] + 0.1min\{f(), f(), f()\}$$

For all gambles f on O:

$$\underline{S}(f|) = 0.9[0.1f(|) + 0.2f(|) + 0.7f(|)] + 0.1min{f(|), f(|), f(|)}$$

$$\underline{S}(f|\bigcirc) = 0.9[0.3f(\bigcirc) + 0.6f(太) + 0.1f(\triangle)] + 0.1min{f(\bigcirc), f(太), f(\triangle)}$$

$$\underline{S}(f|\clubsuit) = 0.9[0.9f(□) + 0.1f(ጵ) + 0.0f(♠)]$$

+ 0.1min{ $f(□)$, $f(ጵ)$, $f(\clubsuit)$ }

PRECISE IMPRECISE

PRECISE IMPRECISE

Maximal estimates: undominated estimates in

Maximal estimates:

undominated estimates in the partial ordering >

