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Abstract In classical Bernoulli processes, it is assumed that a single
Bernoulli experiment can be described by a precise and precisely known
probability distribution. However, both of these assumptions can be re-
laxed. A first approach, often used in sensitivity analysis, is to drop only
the second assumption: one assumes the existence of a precise distribu-
tion, but has insufficient resources to determine it precisely. The result-
ing imprecise Bernoulli process is the lower envelope of a set of precise
Bernoulli processes. An alternative approach is to drop both assumptions,
meaning that we don’t assume the existence of a precise probability dis-
tribution and regard the experiment as inherently imprecise. In that case,
a single imprecise Bernoulli experiment can be described by a set of de-
sirable gambles. We show how this set can be extended to describe an
imprecise Bernoulli process, by imposing the behavioral assessments of
epistemic independence and exchangeability. The resulting analysis leads
to surprisingly simple mathematical expressions characterizing this pro-
cess, which turn out to be the same as the ones obtained through the
straightforward sensitivity analysis approach.

Keywords: imprecise Bernoulli processes, sets of desirable gambles, epis-
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nomials, IID processes, exchangeably independent natural extension.

1 Introduction

In classical probability theory, a Bernoulli process is defined as an infinite se-
quence of binary variables 𝑋1, . . . , 𝑋𝑛, . . . that are independent and identically
distributed (IID). In this definition, a single Bernoulli experiment is implicitly as-
sumed to have a precise and precisely known probability distribution. However
this assumption can be relaxed. A first approach, used in sensitivity analysis,
is to assume the existence of a precise probability distribution, but allowing
it to be imprecisely known, for example due to limited resources. The result-
ing imprecise Bernoulli process is then the lower envelope of a set of precise
Bernoulli processes. A second approach is to regard a single Bernoulli experi-
ment as inherently imprecise, thereby dropping the assumption an underlying
precise probability distribution. In such cases, using sensitivity analysis can no
longer be justified and their is no known alternative method that is computation-
ally tractable. In this paper, we offer a solution to this problem by introducing
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our notion of an imprecise Bernoulli process, defining it by imposing the be-
havioral assessments of exchangeability and epistemic independence. This is a
generalisation of the precise-probabilistic definition, since applying our defini-
tion to precise distributions, is equivalent with imposing the IID property. We
describe our imprecise Bernoulli processes using the language of coherent sets of
desirable gambles [3,4,7], because these constitute the most general and powerful
imprecise probability models we know of. We give a short introduction to the
relevant theory in Section 2. In Section 3, we look at how the marginal model
for one variable, describing a single Bernoulli experiment, can be represented as
a coherent set of desirable gambles. Section 4 recalls how the assessment of ex-
changeability can be mathematically formulated in the theory of coherent sets of
desirable gambles. In Section 5, we add the assessment of epistemic independence
to that of exchangeability and extend the marginal model for a single variable to
the smallest (most conservative) imprecise Bernoulli process satisfying those two
requirements. We call this the exchangeably independent natural extension of
the marginal model. We end by showing in Section 6 that the resulting imprecise
Bernoulli process is identical to the one obtained by applying the sensitivity anal-
ysis approach mentioned above. This leads us to conclude that an assessment of
exchangeability and epistemic independence serves as a behavioural justification
for the rather strong assumptions associated with sensitivity analysis.

2 Desirability and coherence

Let us begin by giving a short introduction to the theory of coherent sets of
desirable gambles, as it will be an important tool for our analysis. We refer to
Refs. [3,4,7] for more details and further discussion. Consider a finite, non-empty
set 𝛺, called the possibility space, which describes the possible and mutually
exclusive outcomes of some experiment.

Sets of desirable gambles: A gamble 𝑓 is a real-valued map on 𝛺 which is
interpreted as an uncertain reward. If the outcome of the experiment turns out
to be 𝜔, the (possibly negative) reward is 𝑓(𝜔). A non-zero gamble is called
desirable if we accept the transaction in which (i) the actual outcome 𝜔 of the
experiment is determined, and (ii) we receive the reward 𝑓(𝜔). The zero gamble is
not considered to be desirable, mainly because we want desirability to represent
a strict preference to the zero gamble.

We will model a subject’s beliefs regarding the possible outcomes 𝛺 of an
experiment by means of a set 𝒟 of desirable gambles, which will be a subset of
the set 𝒢(𝛺) of all gambles on 𝛺. For any two gambles 𝑓 and 𝑔 in 𝒢(𝛺), we say
that 𝑓 ≥ 𝑔 if 𝑓(𝜔) ≥ 𝑔(𝜔) for all 𝜔 in 𝛺 and 𝑓 > 𝑔 if 𝑓 ≥ 𝑔 and 𝑓 ̸= 𝑔.

Coherence: In order to represent a rational subject’s beliefs regarding the
outcome of an experiment, a set 𝒟 ⊆ 𝒢(𝛺) of desirable gambles should satisfy
some rationality requirements. If these requirements are met, we call the set 𝒟
coherent.
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Definition 1 (Coherence). A set of desirable gambles 𝒟 ⊆ 𝒢(𝛺) is called
coherent if it satisfies the following requirements, for all gambles 𝑓 , 𝑓1, and 𝑓2
in 𝒢(𝛺) and all real 𝜆 > 0:

C1. if 𝑓 = 0 then 𝑓 /∈ 𝒟;
C2. if 𝑓 > 0 then 𝑓 ∈ 𝒟;
C3. if 𝑓 ∈ 𝒟 then 𝜆𝑓 ∈ 𝒟 [scaling];
C4. if 𝑓1, 𝑓2 ∈ 𝒟 then 𝑓1 + 𝑓2 ∈ 𝒟 [combination].

Requirements C3 and C4 make 𝒟 a convex cone: posi(𝒟) = 𝒟, where we have
used the positive hull operator posi which generates the set of finite strictly
positive linear combinations of elements of its argument set:

posi(𝒟) :=
{︂ 𝑛∑︁

𝑘=1
𝜆𝑘𝑓𝑘 : 𝑓𝑘 ∈ 𝒟, 𝜆𝑘 ∈ R+

0 , 𝑛 ∈ N0

}︂
.

Here R+
0 is the set of all positive real numbers, and N0 the set of all natural

numbers (positive integers). The axioms also guarantee that if 𝑓 < 0 then 𝑓 /∈ 𝒟.

Weakly desirable gambles: We now define weak desirability, a concept that
will lie at the basis of our discussion of exchangeability. Loosely speaking, a
gamble is weakly desirable if adding anything desirable to it renders the result
desirable.

Definition 2 (Weak desirability). Consider a coherent set 𝒟 of desirable
gambles. Then a gamble 𝑓 is called weakly desirable if 𝑓 + 𝑓 ′ is desirable for
all desirable 𝑓 ′: 𝑓 + 𝑓 ′ ∈ 𝒟 for all 𝑓 ′ in 𝒟. We use 𝒲𝒟 to denote the set of all
weakly desirable gambles associated with 𝒟.

Coherent lower and upper previsions: With a set of gambles 𝒟, we can
associate a lower prevision 𝑃 𝒟 and an upper prevision 𝑃 𝒟, which can respectively
be interpreted as a lower and upper expectation. For any gambles 𝑓 we define:

𝑃 𝒟(𝑓) := sup{𝜇 ∈ R : 𝑓 − 𝜇 ∈ 𝒟} and 𝑃 𝒟(𝑓) := inf{𝜇 ∈ R : 𝜇 − 𝑓 ∈ 𝒟}. (1)

𝑃 𝒟(𝑓) is the subject’s supremum acceptable price for buying the uncertain re-
ward 𝑓 , and 𝑃 𝒟(𝑓) his infimum acceptable price for selling 𝑓 . Observe that the
so-called conjugacy relation 𝑃 𝒟(−𝑓) = −𝑃 𝒟(𝑓) is always satisfied. We call a
real functional 𝑃 on 𝒢(𝛺) a coherent lower prevision if there is some coherent
set of desirable gambles 𝒟 on 𝒢(𝛺) such that 𝑃 = 𝑃 𝒟.

3 Imprecise Bernoulli experiments

In order for the infinite sequence 𝑋1, . . . , 𝑋𝑛, . . . of variables to represent
an imprecise Bernoulli process, a necessary requirement is that all individual
variables have the same marginal model, describing our subject’s uncertainty
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about a single Bernoulli experiment. In our framework, this is a coherent set of
desirable gambles 𝒟1. Let us take a closer look at what this model looks like.

Consider a binary variable 𝑋 taking values in the set 𝒳 = {𝑎, 𝑏}. A gamble
𝑓 on 𝒳 can be identified with a point (𝑓(𝑎), 𝑓(𝑏)) in two-dimensional Euclidean
space. A coherent set of desirable gambles 𝒟1 is a convex cone in this space (the
grey area in the figure below), which has to include all gambles 𝑓 > 0 (the dark
grey area) but cannot include the zero gamble (the white dot).

𝑓(𝑎)

𝑓(𝑏)

−1

1

1

−1

𝑟𝑏 𝜃

𝑟𝑎

−𝜃

𝒟𝑎
1

𝒟𝑏
1

𝒟int
1

Such a cone can be characterised using its extreme rays 𝒟𝑎
1 and 𝒟𝑏

1 (the thick,
gray lines in the figure above), which in turn are characterised by the gambles
𝑟𝑎 = (1 − 𝜃, −𝜃) and 𝑟𝑏 = (𝜃 − 1, 𝜃) (the black dots):

𝒟𝑎
1 := {𝜆𝑎𝑟𝑎 : 𝜆𝑎 > 0} and 𝒟𝑏

1 := {𝜆𝑏𝑟𝑏 : 𝜆𝑏 > 0}.

It follows from coherence that 0 ≤ 𝜃 ≤ 𝜃 ≤ 1.
Since the cone 𝒟1 need not be closed, each of its extreme rays might be

included or not. We use 𝛿𝑎 (𝛿𝑏) to indicate wether 𝒟𝑎
1 (𝒟𝑏

1) is included in 𝒟1 or
not, by setting it equal to 1 or 0 respectively. Coherence imposes some restrictions
on the possible values of 𝛿𝑎 and 𝛿𝑏. For instance, 𝛿𝑎 must equal 1 if 𝜃 = 0 and
0 if 𝜃 = 1. Similarly, 𝛿𝑏 has to be 1 if 𝜃 = 1 and 0 if 𝜃 = 0. Finally, 𝛿𝑎 and 𝛿𝑏

cannot both equal 1 if 𝜃 = 𝜃.
Define 𝛿𝒟𝑎

1 to be 𝒟𝑎
1 if 𝛿𝑎 = 1 and to be the empty set ∅ if 𝛿𝑎 = 0. Analogous

definitions hold for 𝛿𝒟𝑏
1 and for other sets defined further on. We use 𝒟int

1 to
denote the set of all gambles 𝑓 ∈ 𝒟1 that are not part of one of the extreme rays
𝒟𝑎

1 or 𝒟𝑏
1 and thus lie in the interior of 𝒟1:

𝒟int
1 := {𝜆 + 𝜆𝑎𝑟𝑎 + 𝜆𝑏𝑟𝑏 : 𝜆 > 0, 𝜆𝑎 ≥ 0, 𝜆𝑏 ≥ 0}.

We can now generally define an arbitrary coherent set of desirable gambles de-
scribing our subject’s beliefs about a single binary variable as follows:

𝒟1 := 𝒟int
1 ∪ 𝛿𝒟𝑎

1 ∪ 𝛿𝒟𝑏
1. (2)

All that is needed to uniquely determine a set of desirable gambles described by
this equation, is the values of 𝜃, 𝜃, 𝛿𝑎 and 𝛿𝑏.
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4 Exchangeability
A sequence of variables is called exchangeable if, simply put, the order of the
variables is irrelevant. In classical Bernoulli processes, exchangeability is a direct
consequence of the IID property. In an imprecise-probabilistic context, it turns
out that this is not necessarily the case (see, for instance, [1,2] for an approach
to IID processes without exchangeability), and we therefore impose exchange-
ability explicitly as one of the defining properties. This leads to a generalisation
of the precise-probabilistic definition, since exchangeability implies that the in-
dividual variables have identical marginal models (and are therefore identically
distributed in the precise case).

Defining exchangeability in terms of desirable gambles: Consider a fi-
nite sequence of variables 𝑋1, . . . , 𝑋𝑛 and an associated set 𝒟𝑛 of desirable
gambles on 𝒳 𝑛. This sequence assumes values 𝑥 = (𝑥1, . . . , 𝑥𝑛) in 𝒳 𝑛. We use
𝒫𝑛 to denote the set of all permutations 𝜋 of the index set {1, . . . , 𝑛}. With
any such permutation 𝜋 ∈ 𝒫𝑛, we associate a permutation of 𝒳 𝑛, defined by
𝜋𝑥 = 𝜋(𝑥1, . . . , 𝑥𝑛) := (𝑥𝜋(1), . . . , 𝑥𝜋(𝑛)). Similarly, for any gamble 𝑓 in 𝒢(𝒳 𝑛),
we define the permuted gamble 𝜋𝑡𝑓 = 𝑓 ∘ 𝜋, so (𝜋𝑡𝑓)(𝑥) = 𝑓(𝜋𝑥).

If a subject assessess the sequence 𝑋1, . . . , 𝑋𝑛 to be exchangeable, this means
that for any gamble 𝑓 ∈ 𝒢(𝒳 𝑛) and any permutation 𝜋 ∈ 𝒫𝑛, he is indifferent
between the gambles 𝜋𝑡𝑓 and 𝑓 , which we translate by saying that he regards
exchanging 𝜋𝑡𝑓 for 𝑓 as weakly desirable, see [6, Section 4.1.1] and [3] for more
motivation and extensive discussion. Equivalently, we require that the gamble
𝑓 −𝜋𝑡𝑓 is weakly desirable.1 We define 𝒲𝒫𝑛 :={𝑓 −𝜋𝑡𝑓 : 𝑓 ∈ 𝒢(𝒳 𝑛) and 𝜋 ∈ 𝒫𝑛}.
Definition 3 (Exchangeability). A coherent set 𝒟𝑛 of desirable gambles on 𝒳 𝑛

is called exchangeable if all gambles in 𝒲𝒫𝑛
are weakly desirable: 𝒲𝒫𝑛

⊆ 𝒲𝒟𝑛
.

An infinite sequence of variables 𝑋1, . . . , 𝑋𝑛, . . . is called exchangeable if
each of its finite subsequences is, or equivalently, if for all 𝑛 ∈ N0 the variables
𝑋1, . . . , 𝑋𝑛 are exchangeable. This is modelled as follows: the subject has an
exchangeable coherent set of desirable gambles on 𝒳 𝑛, for all 𝑛 ∈ N0.

For such a family of sets 𝒟𝑛 of desirable gambles to consistently represent
beliefs about an infinite sequence of variables, it should also be time consistent.
This means that, with 𝑛1 ≤ 𝑛2, if we consider a gamble ℎ on 𝒳 𝑛2 that really only
depends on the first 𝑛1 variables, it should not matter, as far as its desirability
is concerned, whether we consider it to be a gamble on 𝒳 𝑛1 or a gamble on 𝒳 𝑛2 :
ℎ ∈ 𝒟𝑛2 ⇔ ℎ ∈ 𝒟𝑛1 . See Ref. [3] for a formal definition of this intuitive property.

As a direct consequence of exchangeability, for any gamble 𝑓 ∈ 𝒢(𝒳 𝑛) and
any permutation 𝜋 ∈ 𝒫𝑛, the gamble 𝜋𝑡𝑓 is desirable if and only if 𝑓 is. Limiting
ourselves to those permutations in which only the indexes 1 and 𝑛 are switched,
and gambles 𝑓 that only depend on 𝑋1 or 𝑋𝑛, we see that exchangeability
implies that the marginal modal describing 𝑋𝑛 is essentially identical to the one
describing 𝑋1, and therefore equal to 𝒟1, for all 𝑛 ∈ N0.
1 We do not require it to be actually desirable, as it can be zero, and the zero gamble

is not regarded as desirable.
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Representation in terms of polynomials: Consider the set 𝒱 of all polyno-
mial functions on [0, 1]. Subscripting this set with an integer 𝑛 ∈ N means that
we limit ourselves to the set of polynomials of degree up to 𝑛. The Bernstein ba-
sis polynomials 𝐵𝑘,𝑛(𝜃) :=

(︀
𝑛
𝑘

)︀
𝜃𝑘(1−𝜃)𝑛−𝑘 form a basis for the linear space 𝒱𝑛 [5]:

for each polynomial 𝑝 whose degree deg(𝑝) does not exceed 𝑛, there is a unique
𝑛-tuple 𝑏𝑛

𝑝 = (𝑏0, 𝑏1, . . . , 𝑏𝑛) such that 𝑝 =
∑︀𝑛

𝑘=0 𝑏𝑘𝐵𝑘,𝑛(𝜃). We call a polyno-
mial 𝑝 Bernstein positive if there is some 𝑛 ≥ deg(𝑝) such that 𝑏𝑛

𝑝 > 0, meaning
that 𝑏𝑖 ≥ 0 for all 𝑖 ∈ {0, . . . , 𝑛} and 𝑏𝑖 > 0 for at least one 𝑖 ∈ {0, . . . , 𝑛}. The
set of all Bernstein positive polynomials is denoted by 𝒱+. We are now ready to
introduce the concept of Bernstein coherence for polynomials:

Definition 4 (Bernstein coherence). We call a set ℋ of polynomials in 𝒱
Bernstein coherent if for all 𝑝, 𝑝1, and 𝑝2 in 𝒱 and all real 𝜆 > 0:

B1. if 𝑝 = 0 then 𝑝 /∈ ℋ;
B2. if 𝑝 ∈ 𝒱+, then 𝑝 ∈ ℋ;
B3. if 𝑝 ∈ ℋ then 𝜆𝑝 ∈ ℋ;
B4. if 𝑝1, 𝑝2 ∈ ℋ then 𝑝1 + 𝑝2 ∈ ℋ.

With any 𝜃 ∈ [0, 1], we can associate a binary probability mass function on
𝒳 = {𝑎, 𝑏} by letting 𝜃𝑎 := 𝜃 and 𝜃𝑏 := 1 − 𝜃. Such a mass function uniquely
determines a binomial distribution on 𝒳 𝑛. For every sequence of observations
𝑥 ∈ 𝒳 𝑛, its probability of occurrence is given by 𝑃𝜃(𝑥) := 𝜃𝐶𝑎(𝑥)(1 − 𝜃)𝐶𝑏(𝑥),
where 𝐶𝑎(𝑥) and 𝐶𝑏(𝑥) respectively denote the number of occurrences of 𝑎 and 𝑏
in the sequence 𝑥. The expectation associated with the binomial distribution
with parameters 𝑛 and 𝜃 is then given by Mn𝑛(𝑓 |𝜃) :=

∑︀
𝑥∈𝒳 𝑛 𝑃𝜃(𝑥)𝑓(𝑥), for all

gambles 𝑓 on 𝒳 𝑛.
We can now define a linear map Mn𝑛 from 𝒢(𝒳 𝑛) to 𝒱, defining it by

Mn𝑛(𝑓) = Mn𝑛(𝑓 |·). In other words, if we let 𝑝 = Mn𝑛(𝑓), then 𝑝(𝜃) = Mn𝑛(𝑓 |𝜃)
for all 𝜃 ∈ [0, 1]. To conclude, we let Mn𝑛(𝒟) := {Mn𝑛(𝑓) : 𝑓 ∈ 𝒟} for all
𝒟 ⊆ 𝒢(𝒳 𝑛) and (Mn𝑛)−1(ℋ) := {𝑓 ∈ 𝒢(𝒳 𝑛) : Mn𝑛(𝑓) ∈ ℋ} for all ℋ ⊆ 𝒱.

Recent work [3] has shown that de Finetti’s famous representation result for
exchangeable events (binary variables) can be significantly generalised as follows:

Theorem 1 (Infinite Representation). A family 𝒟𝑛, 𝑛 ∈ N0 of sets of
desirable gambles on 𝒳 𝑛 is time consistent, coherent and exchangeable if and
only if there is some Bernstein coherent set ℋ∞ of polynomials in 𝒱 such that
𝒟𝑛 = (Mn𝑛)−1(ℋ∞) for all 𝑛 ∈ N0. In that case this ℋ∞ is uniquely given by
ℋ∞ =

⋃︀
𝑛∈N0

Mn𝑛(𝒟𝑛).

We call ℋ∞ the frequency representation of the coherent, exchangeable and time
consistent family of sets of desirable gambles 𝒟𝑛, 𝑛 ∈ N0.

5 Imprecise Bernoulli processes

We now have a way of representing our uncertainty regarding an infinite sequence
of variables 𝑋1, . . . , 𝑋𝑛, . . . that we assess to be exchangeable, by means of a
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frequency representation ℋ∞. The only remaining property we have to impose
in order to arrive at an imprecise Bernoulli process, is epistemic independence.
We call an infinite sequence of variables epistemically independent if learning
the value of any finite number of variables does not change our beliefs about
any finite subset of the remaining, unobserved ones. It is proven in Ref. [3] that
imposing this type of independence on an exchangeable sequence of variables
becomes really easy if we use its frequency representation.

Theorem 2 (Independence). Consider an exchangeable sequence of binary
variables 𝑋1, . . . , 𝑋𝑛, . . . , with frequency representation ℋ∞. These variables
are epistemically independent if and only if

(∀𝑘, 𝑛 ∈ N0 : 𝑘 ≤ 𝑛)(∀𝑝 ∈ 𝒱) (𝑝 ∈ ℋ∞ ⇔ 𝐵𝑘,𝑛𝑝 ∈ ℋ∞). (3)

We shall call such models exchangeably independent.

It follows that an imprecise Bernoulli process, defined by the properties of ex-
changeability and epistemic independence, can be described mathematically us-
ing a Bernstein coherent set ℋ∞ of polynomials that satisfies Eq. (3). By The-
orem 1, ℋ∞ is equivalent with a time consistent and exhangeable family of
coherent sets of desirable gambles 𝒟𝑛 = (Mn𝑛)−1(ℋ∞), 𝑛 ∈ N0. In order for
this imprecise Bernoulli process to marginalise to a given set of desirable gam-
bles 𝒟1, representing the marginal model we want to extend, we should have
that 𝒟1 = (Mn1)−1(ℋ∞), or equivalently that ℋ1 := Mn1(𝒟1) = ℋ∞ ∩ 𝒱1. We
start by investigating what the set of polynomials ℋ1 looks like.

Polynomial representation of the marginal model: For a given marginal
model 𝒟1, the corresponding set of polynomials is given by

ℋ1 := Mn1(𝒟1) = {Mn1(𝑓) : 𝑓 ∈ 𝒟1}, (4)

where Mn1(𝑓) = 𝜃𝑓(𝑎) + (1 − 𝜃)𝑓(𝑏). Due to the linearity of the transformation
Mn1, and considering that Mn1(𝑟𝑎) = 𝜃 − 𝜃 and Mn1(𝑟𝑏) = 𝜃 − 𝜃, it follows from
Eqs. (2) and (4) that

ℋ1 = ℋint
1 ∪ 𝛿ℋ𝑎

1 ∪ 𝛿ℋ𝑏
1, (5)

where we defined

ℋint
1 := {𝜆 + 𝜆𝑎(𝜃 − 𝜃) + 𝜆𝑏(𝜃 − 𝜃) : 𝜆 > 0, 𝜆𝑎 ≥ 0, 𝜆𝑏 ≥ 0};

ℋ𝑎
1 := {𝜆𝑎(𝜃 − 𝜃) : 𝜆𝑎 > 0}; (6)

ℋ𝑏
1 := {𝜆𝑏(𝜃 − 𝜃) : 𝜆𝑏 > 0}. (7)

Proposition 1. ℋint
1 is the set of all linear polynomials ℎ in 𝜃 that are strictly

positive over [𝜃, 𝜃]: ℎ ∈ ℋint
1 ⇔ ℎ ∈ 𝒱1 and ℎ(𝜃) > 0 for all 𝜃 ∈ [𝜃, 𝜃].

The next task is now to find the smallest Bernstein coherent set of polynomi-
als that satisfies Eq. (3) and contains the representation ℋ1 of a given marginal
model 𝒟1. We will call this set the exchangeably independent natural extension
of ℋ1.
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Polynomial representation of the global model: We start by defining the
following set of polynomials:

ℋ∞ := posi{ℎ𝑝 : ℎ ∈ ℋ1 and 𝑝 ∈ 𝒱+}, (8)

which will be closely related to the sets

ℋint
∞ := posi{ℎ𝑝 : ℎ ∈ ℋint

1 and 𝑝 ∈ 𝒱+};
ℋ𝑎

∞ := posi{ℎ𝑝 : ℎ ∈ ℋ𝑎
1 and 𝑝 ∈ 𝒱+} = {(𝜃 − 𝜃)𝑝 : 𝑝 ∈ 𝒱+}; (9)

ℋ𝑏
∞ := posi{ℎ𝑝 : ℎ ∈ ℋ𝑏

1 and 𝑝 ∈ 𝒱+} = {(𝜃 − 𝜃)𝑝 : 𝑝 ∈ 𝒱+}. (10)

For ℋ𝑎
1 and ℋ𝑏

1, the alternative characterisations that are given above are easy
to prove. For ℋint

∞ , finding an alternative characterisation turns out to be more
involved.

Theorem 3. The following statements are equivalent:

(i) ℎ ∈ ℋint
∞ ;

(ii) (∃𝜖 > 0)(∀𝜃 ∈ [𝜃 − 𝜖, 𝜃 + 𝜖] ∩ (0, 1)) ℎ(𝜃) > 0;
(iii) ℎ = 𝑝ℎ′ for some 𝑝 ∈ 𝒱+ and ℎ′ such that (∀𝜃 ∈ [𝜃, 𝜃]) ℎ′(𝜃) > 0.

When both 𝜃 ̸= 1 and 𝜃 ̸= 0, these tree statements are also equivalent with:

(iv) (∀𝜃 ∈ [𝜃, 𝜃] ∖ {0, 1}) ℎ(𝜃) > 0.

It turns out that the set of polynomials ℋ∞ is indeed very closely related to the
sets ℋint

∞ , ℋ𝑎
∞ and ℋ𝑏

∞, since instead of using Eq. (8), ℋ∞ can be equivalently
characterised by

ℋ∞ = ℋint
∞ ∪ 𝛿ℋ𝑎

∞ ∪ 𝛿ℋ𝑏
∞. (11)

We are now ready to formulate the most important result of this paper, which
says that a set ℋ∞, given by Eq. (8), represents an imprecise Bernoulli process.

Theorem 4. ℋ∞ is the smallest Bernstein coherent superset of ℋ1 that satisfies
the epistemic independence condition (3).

This means that the set ℋ∞ given by Eq. (8) is the exchangeably independent
natural extension of ℋ1. It follows from Theorem 1 that ℋ∞ represents an im-
precise Bernoulli proces that marginalises to 𝒟1 if 𝒟1 = (Mn1)−1(ℋ∞). This
is equivalent to demanding that ℋ∞ should contain no other polynomials in 𝒱1
than those in ℋ1. Due to Eq. (11), it suffices to check this property separately
for each of the three subsets of ℋ∞. For ℋ𝑎

∞ and ℋ𝑏
∞ this property follows from

Eqs. (5)–(7) and (9)–(10). For ℋint
∞ , it follows from Proposition 1, Theorem 3 and

Eqs. (5)–(7). We conclude that ℋ∞ is the smallest (most conservative) represen-
tation of an imprecise Bernoulli process that marginalises to a set of desirable
gambles 𝒟1 that is given by Eq. (2).
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6 Justifying a sensitivity analysis approach

It now only remains to explain how the results obtained above relate to our pre-
vious statement that a sensitivity analysis approach to dealing with imprecise
Bernoulli processes can be justified using an assessment of epistemic indepen-
dence and exchangeability.

Consider an arbitrary gamble 𝑓 ∈ 𝒢(𝒳 𝑛), 𝑛 ∈ N0 and a probability 𝜃 ∈ [0, 1]
that characterises a probability mass function on 𝒳 = {𝑎, 𝑏}. As is shown in
Section 4, Mn𝑛(𝑓 |𝜃) is the expectation of 𝑓 , associated with the binomial distri-
bution with parameters 𝑛 and 𝜃. If one defines an imprecise Bernoulli process
using the sensitivity analysis approach, this results in letting 𝜃 vary over an inter-
val [𝜃, 𝜃] and the lower (upper) expectation of 𝑓 associated with such an imprecise
Bernoulli process is then the minimum (maximum) of Mn𝑛(𝑓 |𝜃) as 𝜃 ranges over
this interval.We will now show that this intuitive result is also obtained using
the type of imprecise Bernoulli process we considered in the previous sections.

Theorem 5. Consider the set of polynomials ℋ∞ defined by Eq. (8). Then for
any polynomial function 𝑝 on [0, 1]:

𝑃 ℋ∞
(𝑝) := sup{𝜇 ∈ R : 𝑝 − 𝜇 ∈ ℋ∞} = min{𝑝(𝜃) : 𝜃 ∈ [𝜃, 𝜃]}. (12)

By Theorem 1 and Eq. (1), the lower prevision (or minimum expected value) of
a gamble 𝑓 ∈ 𝒢(𝒳 𝑛), 𝑛 ∈ N0, corresponding with an imprecise Bernoulli process
represented by a Bernstein coherent set ℋ∞ of polynomials, is given by

𝐸(𝑓) := 𝑃 𝒟𝑛
(𝑓) = 𝑃 (Mn𝑛)−1(ℋ∞)(𝑓)

= sup{𝜇 ∈ R : 𝑓 − 𝜇 ∈ (Mn𝑛)−1(ℋ∞)}
= sup{𝜇 ∈ R : Mn𝑛(𝑓) − 𝜇 ∈ ℋ∞} = 𝑃 ℋ∞

(Mn𝑛(𝑓)),

thereby implying the following de Finetti-like representation result for lower
previsions: 𝑃 𝒟𝑛

= 𝑃 ℋ∞
∘ Mn𝑛. Using Theorem 5, we find that

𝐸(𝑓) = min{Mn𝑛(𝑓 |𝜃) : 𝜃 ∈ [𝜃, 𝜃]},

which is exactly what we would get using the sensitivity analysis approach. No-
tice also that 𝐸(𝑓) := 𝑃 (Mn𝑛)−1(ℋ∞)(𝑓) = −𝐸(−𝑓) because of the conjugacy
relation between lower and upper previsions. As a direct consequence, we find
that, similarly:

𝐸(𝑓) = max{Mn𝑛(𝑓 |𝜃) : 𝜃 ∈ [𝜃, 𝜃]}.

7 Conclusions

The existence of a precise probability distribution describing the outcomes of a
single Bernoulli experiment is not crucial to the definition of a Bernoulli pro-
cess. It can be relaxed by replacing it with an assessment of exchangeability,
which means that we consider the order of the different Bernoulli experiments
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to be irrelevant. Taken together with epistemic independence, exchangeability
then becomes a defining property for an imprecise Bernoulli process. Using this
approach, we have derived an expression for the most conservative imprecise
Bernoulli process, corresponding with a given marginal model. The resulting
imprecise Bernoulli process is exactly the same as the one obtained using a
sensitivity analysis approach. An assessment of exchangeability and epistemic
independence can therefore be used as a behavioural justification for the strong
assumptions associated with the latter approach.

Although we have not discussed this here, we have also looked at how to
make multinomial processes imprecise, and we are confident that our results for
binomial processes can be generalised. We will report these results elsewhere,
together with proofs for (generalisations of) the theorems mentioned above.

We have used the very general theory of sets of desirable gambles to develop
our notion of an imprecise Bernoulli process. The important sensitivity analysis
result at the end, however, is stated purely in terms of lower and upper previsions,
which constitute a less general model than sets of desirable gambles. It would
be interesting to see if and how this result can be obtained directly using the
language of previsions, without using sets of desirable gambles.

Given the importance of binomial (and multinomial) processes in practical
statistics, we hope that our results can lead to a better understanding, and
perhaps to much needed practical applications, of imprecise probability theory
in statistics.
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