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What is a multinomial process?

A sequence of random variables

X, Xy, ) X

each assuming values in the same finite set

RUNNING
EXAMPLE

{1,2,3,4,5,6} %%

n’ o060




What is a multinomial process?

A sequence of random variables

X, Xy ) s X ) o

satisfying the IID property

INDEPENDENT
IDENTICALLY DISTRIBUTED



What is an imprecise multinomial process?

A sequence of random variables

Xy, o) X .

satisfying the IID property

INDEPENDENT ?
IDENTICALLY DISTRIBUTED g



Modelling a single variable



How to model a single random variable?

The precise approach: probability mass function / prevision

probability mass function p

B VXeZ p(x)=20
= D px)=1
S Xxeq
prevision P (expectation operator)
P(f) > min f
vE2Z—R P(f +f,) = P(f,) + P(f,)
P(f)= > p(x)f(x) P(M) = AP(f)

Xeg



How to model a single random variable?

The precise approach: probability mass function / prevision

probability mass function p ‘ EXAMPLE: 9 = {H.T) ‘ )
g vxe2 P20 gy =a/10 *
E Y Tp(x) =1 p(T) =6/10
S xey P(f) =4/10 f(H) + 6/10 f(T)
prevision P (expectation operator) |H(H) -1 |H(T) -0
V22— R == P(l,) = 4/10 = p(H)
P(f)= > p(x)f(x) f(H)=-1,f(T) =3
XeQ mm) P(f)=1,4




How to model a single random variable?

An imprecise approach: credal set / coherent lower prevision [1]

credal set M
3 closed and convex
S set of probability
> .
m Mmass functions
=
. COHERENCE:
coherent lower prevision P
P(f) > min f
viEZ—R P(f,+f,) 2 P(f,) + P(f,)
P(f) = min{P(f) : p e M} P(Af) = AP(f)

| | >> (0




How to model a single random variable?

An imprecise approach: credal set / coherent lower prevision [1]

credal set M ‘ EXAMPLE: 2= {H T} ‘ ,f
3 closed and convex _
S set of probability p(H) _ B¢ l1/4,1/2]
> . p(T) =1-6
m Mmass functions
= P (f) = min{Of(H)+(1-0)f(T)}
6 €[1/4, 1/2]
coherent lower prevision P IL(H) =1, 1,(T) =0
H » 'H
Vf:2—R =) P(l,) = 1/4 = p(H)
P(f) = min{P(f) : p e M} = i) =2

m=) P(f) = 1




How to model a single random variable?

An imprecise approach: credal set / coherent lower prevision [1]

credal set M _ coherent upper prevision P
EQUIVALENT

closed and convex Vf: 27— R

set of probability — |
mass functions P(f) = max{P(f) : p € M}

INITVAIND3I

coherent lower prevision P

Vi:2— R
P(f) = min{P(f) : p e M}



How to model a single random variable?

An imprecise approach: credal set / coherent lower prevision [1]

credal set M _ coherent upper prevision P

EQUIVALENT
= closed and convex Vi: 27— R
S set of probability B(f) = B(f)
= mass functions (f) = max{P(f) : p € M}
=
coherent lower prevision P ‘ EXAMPLE: 7 = {H, T} ‘
vE:2—R P(l,) = 1/4, P(l,) = 1/2

P(f) = min{P(f) : p ¢ M} P(f) =1, P(f) = 2




How to model a single random variable?

An imprecise approach: credal set / coherent lower prevision [1]

credal set M _ coherent upper prevision P
EQUIVALENT

closed and convex Vf: 27— R

set of probability — |
mass functions P(f) = max{P(f) : p € M}

= max{-P(-f) : p e M}
= - min{P(-f) : p € M}
- - P(-)

<
\)\Qp&‘& We will focus on
Q,O-

lower previsions!

INITVAIND3I

coherent lower prevision P

Vi:2— R
P(f) = min{P(f) : p e M}




How to model a single random variable?

An imprecise approach: coherent set of desirable gambles [1]

A coherent set of desirable

cambles D ‘ EXAMPLE: % = {H,T} ‘

1f(T)

We model a subject’s beliefs
about a variable by looking at

the gambles he is willing to fO - -3 D
accept on its value

3 f(HL

]
W=t === ===




How to model a single random variable?

An imprecise approach: coherent set of desirable gambles [1]

A coherent set of desirable
EXAMPLE: —
gambles D ‘ 2 =1{H,T} ‘
f(T)

A

We model a subject’s beliefs
about a variable by looking at
the gambles he is willing to fO D
accept on its value

COHERENCE:
f<o = f¢D




How to model a single random variable?

An imprecise approach: coherent set of desirable gambles

A coherent set of desirable
gambles D

We model a subject’s beliefs
about a variable by looking at
the gambles he is willing to
accept on its value

COHERENCE:

f<o => f¢ D
f>0 => feD

‘ EXAMPLE: % = {H,T} ‘

fO

A

f(T)




How to model a single random variable?

An imprecise approach: coherent set of desirable gambles [1]
A coherent set of desirable
EXAMPLE: 9 =
gambles D ‘ 2 =1{H,T} ‘
[£(T)

We model a subject’s beliefs
about a variable by looking at
the gambles he is willing to
accept on its value

COHERENCE:

f<0 > f¢ D
f>0 => fecD
fe D => McD|(N0)




How to model a single random variable?

An imprecise approach: coherent set of desirable gambles [1]

A coherent set of desirable

cambles D ‘ EXAMPLE: % = {H,T} ‘

We model a subject’s beliefs Tf(T)
about a variable by looking at
the gambles he is willing to
accept on its value

COHERENCE:

f<0 = f¢7D

f>0 => feD

feD => McD(A0)
ff,.€D = f+,€D




How to model a single random variable?

An imprecise approach: coherent set of desirable gambles

A coherent set of desirable
gambles D

We model a subject’s beliefs
about a variable by looking at
the gambles he is willing to
accept on its value

‘ EXAMPLE: 2 = {H,T} ‘

A

f(T)




How to model a single random variable?

An imprecise approach: coherent set of desirable gambles [1]

A coherent set of desirable
gambles D

We model a subject’s beliefs
about a variable by looking at
the gambles he is willing to
accept on its value

feD




How to model a single random variable?

An imprecise approach: coherent set of desirable gambles [1]

A coherent set of desirable
gambles D

We model a subject’s beliefs
about a variable by looking at
the gambles he is willing to
accept on its value

buying price B
f—peD




How to model a single random variable?

An imprecise approach: coherent set of desirable gambles [1]

A coherent set of desirable
gambles D

We model a subject’s beliefs
about a variable by looking at
the gambles he is willing to
accept on its value

supremum buying price

sup{n : f—peD}




How to model a single random variable?

An imprecise approach: coherent set of desirable gambles [1]

A coherent set of desirable
gambles D

We model a subject’s beliefs
about a variable by looking at
the gambles he is willing to
accept on its value

coherent lower prevision P

supremum buying price

P(f) = sup{p : f—peD}




How to model a single random variable?

An imprecise approach: coherent set of desirable gambles [1]

A coherent set of desirable
gambles D

We model a subject’s beliefs
about a variable by looking at
the gambles he is willing to
accept on its value

coherent upper prevision P

infimum selling price

P(f)=influ: pn-feD}




Precise multinomial process



The precise multinomial process

A sequence of random variables
Xl, X2’ ooo’Xn’ so e

satisfying the IID property

INDEPENDENT
IDENTICALLY DISTRIBUTED



The precise multinomial process

A sequence of random variables

X, Xy, o) X

n’ o060



The precise multinomial process

A sequence of random variables

X, Xy, o) X

| | TIME CONSISTENCY

X, Xo ) ooy X, o) X

MARGINALISATION

n’ o060

n m, o000



The precise multinomial process

A sequence of random variables

X, Xy, o) X

N



The precise multinomial process

A sequence of random variables

X1, X5, Xg



The precise multinomial process

Xl' X2’ X3

P, * P, - P; = p1,2,3 INDEPENDENT
I 1 I

P P P  IDENTICALLY DISTRIBUTED



The precise multinomial process

X, X, X3

X1, X5, Xg

p1(x1) . pz(xz) . p3(x3) = p1’2’3(X1,X2,X3)
I I 1

p(x;) p(xy)  p(x;)

Vi:23—R

P;23(f) = Z Z Z P15 3(X7, X0, %3)F(X, %0, X3)
X €EZ X,ELX K€L



The precise multinomial process

il ‘ )

H T T ‘ EXAMPLE: % = {H,T} ‘ L

N

p(H) = 4/10, p(T) =6/10

X1, X5, Xg

pi(H) = Po(T) = Ps(T) = Pyp5(H,TT) |=0,144
I 1 Il
pH)  p(M)  p(M | A={(HHH),HTT)} B

Py,3(1a) = Pyos(HHH) +py,5(HT,T)=0,208




Forward irrelevant
multinomial process



The forward irrelevant multinomial process

An interpretation for the precise multinomial process
IDENTICALLY
Xl ) XZ ) X3 DISTRIBUTED

p(X;) p(X,) p(X;) INDEPENDENT
1 ] Il

p1(X1) ’ pz(xz) ¢ p3(X3) = p1,2,3(X1;X2;X3)



The forward irrelevant multinomial process

An interpretation for the precise multinomial process

X1,
p(X,)

1
p.(X;)

p,(X;)

Xy, X,

p(X,) p(X;)
I I

pz(xz) ’ p3(X3)

Po(X,1Xy) + Py(Xs] Xy, X))

IDENTICALLY
DISTRIBUTED

INDEPENDENT

= PypyalXy, X5 X5)

p1’2’3(X1,X2,X3)



The forward irrelevant multinomial process

An interpretation for the precise multinomial process

IDENTICALLY
X, Xy, X5

DISTRIBUTED
p(Xy) p(X;) p(X3)
Il Il Il

p,(X;) p,(X;) P3(X;)
I [ [

p.(X)) o PAX X)) . pa(X3]X,X,) = P4 23(X,X5,Xs)

INDEPENDENT

The value of previous variables is irrelevant for
our beliefs about the current one !



The forward irrelevant multinomial process

An interpretation for the precise multinomial process

IDENTICALLY
X1 , X2 , X3 DISTRIBUTED
|I>I( ) ll’l( ) :( ) INDEPENDENT
P.() P,( ) P3( )

I I I
Pl( ) ? PZ( |X1) ? P3( |X1’X2) ? P1,2,3( )

The value of previous variables is irrelevant for
our beliefs about the current one !



The forward irrelevant multinomial process

An interpretation for the precise multinomial process

IDENTICALLY
X1 , XZ ) X3 DISTRIBUTED
|I>I( ) ll’l( ) :( ) INDEPENDENT
P.() P,() P3( )
1 Il Il
P.() P,( [Xy) Pl [Xy,X,)

P15 s(F(X1,X5X5) ) = PPy ( P( F(X1, X5, X5) [X1,X;5) [ X))
=P (P (P ( f(X1rX21X3) ) ))



The forward irrelevant multinomial process

Described using coherent lower previsions

IDENTICALLY
Xl ) XZ ) X3 DISTRIBUTED
P( ) P()  P() CORWARD

. . . IRRELEVANCE
P,() P,( ) Ps( )

1| I I
El( ) ? Ez( |X1) ? E3( |X1;X2) ? 21,2,3( )

The value of previous variables is irrelevant for
our beliefs about the current one !



The forward irrelevant multinomial process

Described using coherent lower previsions [2]

IDENTICALLY

Xl ) XZ ’ X3 DISTRIBUTED

P)  R() P ORWARD

I I ]|
IRRELEVANCE

P.() P,() Ps( )

I I I

P.() P,( IXy)  Ps( [Xy,X))

E1,2,3( f(Xl,Xz,X3) ) = El( Bz( B3( f(x1;X21X3) | X1;X2) |X1) )
P (P (P (f(X},X5,X;) ) )



The forward irrelevant multinomial process

Described using coherent lower previsions

‘ EXAMPLE: 2 = {H,T} ‘ (¢ ,

P (1,(HH,X;) ) =1/4
P (f) = min{6f(H)+(1-0)f(T)} In(H,H,H) =1

6 €[1/4, 1/2] I,(HHT) =0
A = {(H,H,H),(H,T,T)}

E1,2,3( IA(X11X2;X3) ) =7

E1,2,3( f(Xl,Xz,X3) ) = El( Bz( Eg( f(X11X21X3) | X1;X2) |X1) )
P (P (P (f(X},X),X;) ) )




The forward irrelevant multinomial process

Described using coherent lower previsions

‘ EXAMPLE: 2 = {H,T} ‘ ,

o P ( |A(H1HIX3) ) = 1/4

P (f) = min{Bf(H)+(1-0)f(T)} P (1,(H,T,X,) ) =1/2
A= {(eHe [:4;;2](H 1)) P (LT, HX;) ) =0
o P (1,(T,T,X;) ) =0

E1,2,3( IA(X11X2;X3) ) =7

E1,2,3( f(Xl,Xz,X3) ) = El( Bz( Eg( f(X11X21X3) | X1;X2) |X1) )
P (P (P (f(X},X),X;) ) )



The forward irrelevant multinomial process

Described using coherent lower previsions

‘ EXAMPLE: 2 = {H,T} ‘ ,

E ( IA(H)H;X3) ) - 1/4

P (f) = min{6f(H)+(1-0)f(T)} P (1,(H,T,X,) ) =1/2
0 €[1/4, 1/2] )

A = {(H,H,H),(H,T,T)} P (P (1a(HX;Xs) ) =3/8

E1,2,3( IA(X11X2;X3) ) =7

E1,2,3( f(Xl,Xz,X3) ) = El( Bz( Eg( f(X11X21X3) | X1;X2) |X1) )
P (P (P (f(X},X),X;) ) )




The forward irrelevant multinomial process

Described using coherent lower previsions

‘ EXAMPLE: % = {H,T} ‘ ,

P (f) = min{Of(H)+(1-0)(T)}

0€[1/4,1/2]

A ={(H,H,H),(H,T,T)}

E1,2,3( IA(X11X2;X3) ) =7

P (E ( IA(H1X21X3) ) = 3/8
P (P (1,(T,X,X;3) )=0

E1,2,3( f(Xl,Xz,X3) ) = El( Bz( Eg( f(X11X21X3) | X1;X2) |X1) )
P (P (P (f(X},X),X;) ) )




The forward irrelevant multinomial process

Described using coherent lower previsions

‘ EXAMPLE: % = {H,T} ‘

P (f) = min{Of(H)+(1-0)(T)}

0€[1/4,1/2]

A = {(H,H,H),(H,T,T)} P(P( |A(H,X2,X3) ) =3/8

P (P (1(T,X;,X3) ) =0
Py, 3( 1a(X3,X;,X5) ) =3/32= P (P (P (15(X3,X;,X;) )

E1,2,3( f(Xl,Xz,X3) ) = El( P,
P(P

( P3( (X0, X0, X35) [ X1, X5) [X4) )
=P (P (P{

f(X1,X5,X3) ) )




The forward irrelevant multinomial process

Described using coherent lower previsions

‘ EXAMPLE: % = {H,T} ‘ ,

P (f) = min{Of(H)+(1-0)(T)}

0€[1/4,1/2]

A ={(H,H,H),(H,T,T)}

E1,2,3( IA(X1;X21X3) ) = 3/32
E1,2,3( IA(X, X0, X3) ) = - Py 5 5( - 1a(X1, X5, X5) ) = 11/32




Independent multinomial process



The independent multinomial process

An interpretation for the precise multinomial process
IDENTICALLY
Xl ) X2 ) X3 DISTRIBUTED

p(X,) p(X,) PX3)  |NDEPENDENT
I I Il

p1(X1) ’ pz(xz) ’ p3(X3) = p1,2,3(X1;X2;X3)



The independent multinomial process

An interpretation for the precise multinomial process

IDENTICALLY
Xl ) XZ ) X3 DISTRIBUTED

p(X,) p(Xy) P(X3)  |NDEPENDENT
1| I 1|

pX) P0G py(Xs)

1| I 1|

p,(X;) Po(Xo1Xy)  Pa(X3| Xy, X))

The value of previous variables is irrelevant for
our beliefs about the current one !



The independent multinomial process

An interpretation for the precise multinomial process

IDENTICALLY
Xi, Xy, X,

DISTRIBUTED
p(X;) p(X,) p(X;)
I I I

p,(X;) p,(X;) P3(X;)
I [ I

P, (X1 1X,,X35) Pa(X5 X1, X3) palX3]Xy,X,)

INDEPENDENT

The value of previous and future variables is
irrelevant for our beliefs about the current one !



The independent multinomial process

An interpretation for the precise multinomial process

IDENTICALLY
Xi, Xy, X,

DISTRIBUTED
P(X,) P(X,) P(X,)
I I I
P.(X,) P,(X,) P.(X;)
I I I
P1(X1 | erxg) PZ(XZ | X1'X3) P3(X3 | Xllxz)

INDEPENDENT

The value of previous and future variables is
irrelevant for our beliefs about the current one !



The independent multinomial process

Described using coherent lower previsions [3]
IDENTICALLY
X1 ) X2 ) X3 DISTRIBUTED
P(X,) P(X,) P(X3)  EpISTEMICALLY

I I I
P, (X,) P,(X,) P5(X,)
I I I
Py (X, 1X5,Xs) Po(Xo X, X5) Po(X3|Xy,X,) @ Pyssl )

INDEPENDENT

The value of previous and future variables is
irrelevant for our beliefs about the current one !



The independent multinomial process

Described using coherent sets of desirable gambles [4]
IDENTICALLY
Xl ) X2 ) X3 DISTRIBUTED
D D D EPISTEMICALLY
I I I
INDEPENDENT
D, D, D,

Dl | X, X, D2 | X, Xs D3 X, X, ? D1,2,3

The value of previous and future variables is
irrelevant for our beliefs about the current one !



The independent multinomial process

Described using coherent sets of desirable gambles [4]
IDENTICALLY
Xl ) X2 ) X3 DISTRIBUTED
D D D EPISTEMICALLY
I I I
INDEPENDENT
D, D, D,

1| I 1|
Dl | X,, X, D2 | X, Xs D3 |H,H ? D1,2,3

w & w
)

I{X1=H} I{x2=|-|} S |H,H



The independent multinomial process

Described using coherent sets of desirable gambles [4]
fcDiys IDENTICALLY
_ DISTRIBUTED
< f=) > f1|x2,x3|' I{x2=x2}' I{X3=x3}
X,€EZ %€Z EPISTEMICALLY
+ 2 D bxoey (ol lxxy |NDEPENDENT
X, EZ X €Y -
+ Z Z I{X1=x1}' I{X2=x2}. f3|x1,x2 € D

€L %NEL




The independent multinomial process

Described using coherent sets of desirable gambles [4]
fc D, IDENTICALLY
_ DISTRIBUTED
< f=), > f1|x2,x3|' I{x2=x2}' I{X3=x3}
X,€EZ %€Z EPISTEMICALLY
+ 2 D bxoey (ol lxxy |NDEPENDENT
S SN o
+ Z Z I{X1=x1}' I{X2=x2}. f3|x1,x2 € D
X €L XEL

E1,2,3 (f) = sup{p: f—pe D1,2,3}



The independent multinomial process

Described using coherent sets of desirable gambles

‘ EXAMPLE: % = {H,T}

A ={(H,H,H),(H,T,T)} D

Pi2s(la) =sup{n:l,—neD,,,}=1/10




The independent multinomial process

Described using coherent sets of desirable gambles

‘ EXAMPLE: % = {H,T}

A ={(H,H,H),(H,T,T)} D

P ,s(ly)=influ:l,—pe ID) 568 = 1/3
Pias(la) =supfu:l,—pneD,, }=1/10




Permutability



Permutability

Consider any permutation 1t of the set of indices {1, 2, 3}

Symmetry of the precise multinomial process

Py 23X, X5, X3) = p1,2,3(Xn(1)' X (2)r Xn(3))
P1,2,3( f(X, X, X5) ) = P1,2,3( f(xn(1)r Xn(Z)’ Xn(3)) )



Permutability

Permutability of the imprecise multinomial process
Consider any permutation 1t of the set of indices {1, 2, 3}
Py, s F(X,X0,X5) ) = Py 3 #(X ) Xiayr Xia)) )
(X, X, X3) €D, 55 = F(X 2 Xgap X)) €D 55

Symmetry of the precise multinomial process

Py 23X, X5, X3) = p1,2,3(Xn(1)' X (2)r Xn(3))
P1,2,3( f(X, X, X5) ) = P1,2,3( f(Xn(1)r Xn(Z)’ Xn(3)) )



Permutability

Permutability of the imprecise multinomial process
Consider any permutation m of the set of indices {1, 2, 3}
31,2,3( f(X1, X, X3) ) = 31,2,3( f(xn(l)’ Xn(Z)’ Xn(3)) )
f(X,X,,X;3) € D1,2,3 = 1:(Xrt(l)' Xn(Z)' Xn(3)) < D1,2,3

The forward irrelevant multinomial process becomes
equivalent with the independent multinomial process if we

additionally impose permutability as a required property!




Strong multinomial process



The strong multinomial process

An interpretation for the precise multinomial process

IDENTICALLY DISTRIBUTED

P, P, P; = p1,2,3 INDEPENDENT
| I 1|

p p p



The strong multinomial process

An interpretation for the precise multinomial process

IDENTICALLY DISTRIBUTED

P P> Ps = Pi33 INDEPENDENT
m m m

{p} {p} {p}



The strong multinomial process

Described using credal sets

Y. ¥X. X. IDENTICALLY DISTRIBUTED
17 7%27 773 (STRONGLY)

P; = Pios INDEPENDENT

TAKE CONVEX
1,2,3 CLOSURE!

o P,



The strong multinomial process

Described using credal sets / coherent lower previsions

IDENTICALLY DISTRIBUTED

(STRONGLY)

P P> P; = p1,2,3 INDEPENDENT

m m m M TAKE CONVEX

MM M M, CLOSURE!

Py, 3 F(X1,X5,X3) ) = min{Py , 5( F(X,X5,X3) ) 1 Py 23EM; 53}



The strong multinomial process

Described using credal sets / coherent lower previsions

‘ EXAMPLE: % = {H,T} ‘

M ={p:p(H)=0€[1/4,1/2], p(T) =1-6}
A ={(HHH)(HTT)}
31,2,3( IA(X1'X2'X3) ) =e '[T‘/'n /{]91(9293"'(1'92)(1'93)) = 1/8

6,€[1/4, 1/2]
6,€([1/4, 1/2]

Py, 3 F(X1,X5,X3) ) = min{Py , 5( F(X,X5,X3) ) 1 Py 23EM; 53}




The strong multinomial process

Described using credal sets / coherent lower previsions

‘ EXAMPLE: % = {H,T} ‘

M ={p:p(H)=0€[1/4,1/2], p(T) =1-6}
A ={(HHH)(HTT)}
P, s( 14X, X5, X5) ) = min {6,(6,0,+(1-8,)(1-6,)) = 1/8

0,€[1/4,1/2]
6,€[1/4, 1/2]
6,€([1/4, 1/2]

51,2,3( 1,(X,,X,,X5) ) = max {6,(6,0,+(1-6,)(1-6,)) = 5/16
0,€[1/4, 1/2]

6,<[1/4, 1/2]
6,€[1/4, 1/2]




Exchangeable multinomial process



The exchangeable multinomial process

An interpretation for the precise multinomial process

Xl , X2 , X3 IDENTICALLY DISTRIBUTED

P, P, P; = p1,2,3 INDEPENDENT
| I 1|

p p p



The exchangeable multinomial process

An interpretation for the precise multinomial process

Xl , X2 , X3 IDENTICALLY DISTRIBUTED

P P> Ps = Pi33 INDEPENDENT
1 Il Il

P = p = p
m

{p}



The exchangeable multinomial process

Described using credal sets

Xl , X2 , X3 IDENTICALLY DISTRIBUTED

P, = P, ¢+ P;s = Pio;  INDEPENDENT
1 1 ] m (Sensitivity
p = = p M analysis)

1,2,3

p
m
M TAKE CONVEX CLOSURE!



The exchangeable multinomial process

Described using credal sets / coherent lower previsions

Xl , X2 , X3 IDENTICALLY DISTRIBUTED

P P> Ps = Pi33 INDEPENDENT

1 1 ] m (Sensitivity

P = p = 0p M, analysis)
m

M TAKE CONVEX CLOSURE!

Py, 3 F(X1,X5,X3) ) = min{Py , 5( F(X,X5,X3) ) 1 Py 23EM; 53}



The exchangeable multinomial process

Described using credal sets / coherent lower previsions

‘ EXAMPLE: % = {H,T} ‘

M ={p:p(H)=0€[1/4,1/2], p(T) =1-6}
A ={(HHH)(HTT)}

P, 5(1a(X,X5X5) ) = min {B8(6°+(1-8)%) = 5/32

0c€[1/4,1/2]

Py, 3 F(X1,X5,X3) ) = min{Py , 5( F(X,X5,X3) ) 1 Py 23EM; 53}




The exchangeable multinomial process

Described using credal sets / coherent lower previsions

‘ EXAMPLE: % = {H,T} ‘

M ={p:p(H)=0€[1/4,1/2], p(T) =1-6}
A ={(HHH)(HTT)}

P, 5(1a(X,X5X5) ) = min {B8(6°+(1-8)%) = 5/32

0€([1/4, 1/2]

P.,5(1a(X1X5,X5) ) = max {6(62+(1-6)2) = 1/4

0€([1/4, 1/2]




An overview



An overview of the different approaches

‘ EXAMPLE: 2 = {H, T} A ={(H,H,H),(H,T,T)}

Local models
Precise:  p(H) =4/10, p(T) =6/10
Imprecise: M={p:p(H)=06€[1/4, 1/2], p(T) =1-6}

Multinomial

processes Pi,s(1a(X,X5X35) ) Pyos(1a(Xy, X0 X5)
Precise: 249612000 249612000
Forward irrelevant: 112512000 4125 /12000
Independent: 120012000 400012000
Strong: 150012000 375012000

Excha ngeable: 187512000 300012000




Exchangeability



Exchangeability

Consider any permutation 1t of the set of indices {1, 2, 3}

Symmetry of the precise multinomial process

Py 23X, X5, X3) = p1,2,3(Xn(1)' X (2)r Xn(3))
P1,2,3( (X, X,,X3) ) = P1,2,3( f(xn(1)r Xn(Z)’ Xn(3)) )
P1,2,3( f(X1'X21X3) o f(Xn(l)’ Xn(Z)’ Xn(3)) ) =0



Exchangeability

Exchangeability of the imprecise multinomial process

Consider any permutation 1t of the set of indices {1, 2, 3}

E1,2,3( f(Xl'x2'X3) - f(xn(1)r Xn(z)p Xn(g)) ) 20

Symmetry of the precise multinomial process

Py 23X, X5, X3) = p1,2,3(Xn(1)' X (2)r Xn(3))

P1,2,3( f(X1, X, X5) ) = P1,2,3( f(Xn(1)r X (2) Xn(3)) )
P1,2,3( f(X1'X21X3) o f(Xn(l)’ Xn(Z)’ Xn(3)) ) =0



Exchangeability

Exchangeability of the imprecise multinomial process

Consider any permutation m of the set of indices {1, 2, 3}

E1,2,3( f(Xl,Xz,X3) - f(Xn(1)r Xn(z)p Xn(3)) ) 20

MAIN RESULT:

All four imprecise multinomial processes become equivalent
with the exchangeable multinomial process if we additionally
impose exchangeability (for all finite sequences) and time
consistency as required properties!
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