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Abstract
We present an efficient exact algorithm for estimating state
sequences from outputs (or observations) in imprecise hid-
den Markov models (iHMM), where both the uncertainty
linking one state to the next, and that linking a state to
its output, are represented using coherent lower previsions.
The notion of independence we associate with the credal
network representing the iHMM is that of epistemic irrel-
evance. We consider as best estimates for state sequences
the (Walley–Sen) maximal sequences for the posterior joint
state model (conditioned on the observed output sequence),
associated with a gain function that is the indicator of the
state sequence. This corresponds to (and generalises) find-
ing the state sequence with the highest posterior probability
in HMMs with precise transition and output probabilities
(pHMMs). We argue that the computational complexity is
at worst quadratic in the length of the Markov chain, cu-
bic in the number of states, and essentially linear in the
number of maximal state sequences. For binary iHMMs,
we investigate experimentally how the number of maximal
state sequences depends on the model parameters.

Keywords. Imprecise hidden Markov model, optimal state
sequence, maximality, coherent lower prevision, credal net-
work, epistemic irrelevance.

1 Introduction

In a recent paper on inference in credal networks [5],
De Cooman et al. developed the so-called MePiCTIr1 al-
gorithm for coherently updating beliefs about a single node
in the tree after instantiating any number of other nodes.
The local uncertainty models associated with the nodes of
the network are coherent lower previsions [10, 14], and the
independence notion used to interpret the graphical struc-
ture is that of epistemic irrelevance [2, 14]. This algorithm
is quite efficient—it is essentially linear in the number of
nodes—but it has a number of limitations. First of all, it only
works for very special graphical structures: trees. While this

1MePiCTIr: Message Passing in Credal Trees under Irrelevance.

is a serious limitation, there are, nevertheless quite a num-
ber of models and applications that involve a tree structure.
Amongst these, hidden Markov models (HMMs) are defin-
itely the simplest, and perhaps also the most popular ones.
But this brings us to the second limitation: MePiCTIr only
allows updating of beliefs about a single node. Whereas
one of the most important applications for, say, HMMs,
involves finding the sequence of (hidden) states with the
highest posterior probability after observing a sequence of
outputs [11]. For HMMs with precise local transition and
emission probabilities, there are quite efficient dynamic
programming algorithms, such as Viterbi’s [11, 13], for per-
forming this task. For imprecise-probabilistic local models,
such as coherent lower previsions, we know of no algorithm
in the literature for which the computational complexity
comes even close to that of Viterbi’s.

In this paper, we take the first steps towards remedying this
situation. We describe imprecise hidden Markov models
as special cases of credal trees (a special case of credal
networks) under epistemic irrelevance in Section 2. We
show in particular how we can use the ideas underlying the
MePiCTIr algorithm (independent natural extension and
marginal extension) to construct a most conservative joint
model from imprecise local transition and emission models,
and derive a number of interesting and useful formulas from
that construction. In Section 3 we explain how a sequence
of observations leads to (a collection of) so-called maximal
state sequences. Finding all of them seems a daunting task
at first: it has a search space that grows exponentially in the
length of the Markov chain. However, in Section 4 we use
the basic formulas found in Section 2 to derive an appropri-
ate version of Bellman’s [1] Principle of Optimality, which
allows for an exponential reduction of the search space. By
using a number of additional tricks, we are able in Sec-
tion 5 to devise an algorithm for finding all maximal state
sequences that is essentially linear in the number of such
maximal sequences, quadratic in the length of the chain, and
cubic in the number of states. We perceive this complexity
to be comparable to that of the Viterbi algorithm, especially
after realising that the latter makes the simplifying step of
resolving ties more or less arbitrarily in order to produce



only a single optimal state sequence. This is something we
will not allow our algorithm to do, for reasons that should
become clear further on. In Section 6, we consider the spe-
cial case of binary iHMMs, and investigate experimentally
how the number of maximal state sequences depends on
the model parameters. We comment on the very interesting
structures that emerge, and give an heuristic explanation for
them. We show off the algorithm’s efficiency in Section 7
by calculating the maximal sequences for a specific iHMM
of length 100.

We assume that the reader has a good working knowledge
of the theory of coherent lower previsions; see Ref. [14] for
an in-depth study, and Ref. [10] for a recent survey.

2 Basic notions

A hidden Markov model can be depicted using the follow-
ing probabilistic graphical model:

X1 X2 . . . Xn

O1 O2 . . . Onoutput sequence:

state sequence:

Figure 1: Tree representation of a hidden Markov model

Here n is some natural number. The state variables X1, . . . ,
Xn assume values in the respective finite sets X1, . . . , Xn,
and the output variables O1, . . . , On assume values in the
respective finite sets O1, . . . , On. We denote generic values
of Xk by xk, x̂k or zk, and generic values of Ok by ok.

Local uncertainty models. We assume that we have the
following local uncertainty models for these variables. For
X1, we have a marginal lower prevision Q1, defined on the
set G (X1) of all real-valued maps (or gambles) on X1. For
the subsequent states Xk, with k ∈ {2, . . . ,n}, we have a
conditional lower prevision Qk(·|Xk−1) defined on G (Xk),
called a transition model. In order to maintain uniformity
of notation, we will also denote the marginal lower previ-
sion Q1 as a conditional lower prevision Q1(·|X0), where
X0 denotes a variable that may only assume a single value,
and whose value is therefore certain. For any gamble fk in
G (Xk), Qk( fk|Xk−1) is interpreted as a gamble on Xk−1,
whose value Qk( fk|zk−1) in any zk−1 ∈Xk−1 is the lower
prevision (or lower expectation) of the gamble fk(Xk), con-
ditional on Xk−1 = zk−1.

In addition, for each output Ok, with k∈ {1, . . . ,n}, we have
a conditional lower prevision Sk(·|Xk) defined on G (Ok),
called an emission model. For any gamble gk in G (Ok),
Sk(gk|Xk) is interpreted as a gamble on Xk, whose value
Sk(gk|zk) in any zk ∈Xk is the lower prevision (or lower
expectation) of the gamble gk(Ok), conditional on Xk = zk.

We take all these local (marginal, transition and emission)

uncertainty models to be separately coherent; see for in-
stance Ref. [5] for more details about such local uncertainty
models and their separate coherence.

Interpretation of the graphical structure. We will as-
sume that the tree in Fig. 1 represents the following irrelev-
ance assessments: conditional on its mother variable, the
non-parent non-descendants of any variable in the tree are
epistemically irrelevant to this variable and its descendants.
This is a weaker condition than the one usually associated
with credal networks [3], which imposes strong independ-
ence rather than epistemic irrelevance. Recent work [5] has
shown that using this weaker condition guarantees that an
efficient algorithm exists for updating a credal tree, that is
essentially linear in the number of nodes in the tree.

A joint uncertainty model. By applying the general ana-
lysis in Ref. [5] to the special case considered here, we find
that the local uncertainty models can always be extended
to a point-wise smallest (most conservative or least com-
mittal) coherent family of joint lower previsions Pk(·|Xk−1)
on G (Xk:n×Ok:n), where k ∈ {1, . . . ,n}, Xk:n :=×n

i=kXi
and Ok:n := ×n

i=kOi. Again, for k = 1 the joint lower pre-
vision P1 = P1(·|X0) is effectively an unconditional lower
prevision, defined on G (X1:n×O1:n). These joint lower
previsions are given by the following recursion equations:

Ek(·|Xk) :=

{
Sn(·|Xn) k = n
Sk(·|Xk)⊗Pk+1(·|Xk) k = n−1, . . . ,1

(1)
and

Pk(·|Xk−1) := Qk(Ek(·|Xk)|Xk−1) for k = n, . . . ,1. (2)

Eq. (1) states that, for k = n− 1, . . . ,1, the conditional
lower prevision Ek(·|Xk) on G (Xk+1:n×Ok:n) is the so-
called (conditionally) independent natural extension [14,
Chapter 9] of the conditional lower previsions Sk(·|Xk) and
Pk+1(·|Xk), which was studied in detail in Ref. [6]. For our
present purposes, it will suffice to recall from that study
that such independent natural extensions are factorising,
which implies in particular that

Ek( f g|zk) = Ek(gEk( f |zk)|zk)

=

{
Sk(g|zk)Pk+1( f |zk) if Pk+1( f |zk)≥ 0
Sk(g|zk)Pk+1( f |zk) if Pk+1( f |zk)≤ 0

= Sk(g|zk)�Pk+1( f |zk), (3)

for all zk ∈Xk, all f ∈ G (Xk+1:n×Ok+1:n) and all non-
negative g ∈ G (Ok), where k ∈ {1, . . . ,n− 1} (we call a
gamble non-negative if all its values are). In this expression,
we have used the shorthand notation a�b := amax{0,b}+
amin{0,b}.

Interesting lower and upper probabilities. Without too
much trouble, we can use Eqs. (1)–(3) to derive the follow-



ing expressions for a number of interesting lower and upper
probabilities:

Pk({zk:n}|zk−1) =
n

∏
i=k

Qi({zi}|zi−1)

Pk({zk:n}|zk−1) =
n

∏
i=k

Qi({zi}|zi−1),

and

Pk({zk:n}×{ok:n}|zk−1) =
n

∏
i=k

Si({oi}|zi)Qi({zi}|zi−1)

(4)

Pk({zk:n}×{ok:n}|zk−1) =
n

∏
i=k

Si({oi}|zi)Qi({zi}|zi−1),

(5)

for k = {1, . . . ,n}. We will assume throughout that

P1({z1:n}×{o1:n})> 0 for all z1:n ∈X1:n and o1:n ∈ O1:n

or equivalently, that all local lower previsions are positive
[5], in the sense that

Qk({zk}|zk−1)> 0 and Sk({ok}|zk)> 0

for all zk−1 ∈Xk−1, zk ∈Xk and ok ∈ Ok, k ∈ {1, . . . ,n}.
This implies in particular that Pk({ok:n}|zk−1) > 0 for all
k ∈ {1, . . . ,n}, zk−1 ∈Xk−1 and ok:n ∈ Ok:n.

We have good reason to believe that our results remain
valid, mutatis mutandis, on the weaker condition that all
local upper previsions should be positive, and we intend to
deal with this issue in further work.

3 Estimating states from outputs

In a hidden Markov model, the states are not directly ob-
servable, but the outputs are, and the general aim is to use
the outputs to estimate the states. In the present paper, we
concentrate on the following problem: Suppose we have
observed the output sequence o1:n, estimate the state se-
quence x1:n. We will use an essentially Bayesian approach
to do so, but need to allow for the fact that we are working
with imprecise rather than precise probability models.

Updating the iHMM. The first step in our approach con-
sists in updating (or conditioning) the joint model P1 on the
observed outputs O1:n = o1:n. Given our positivity assump-
tions on the local lower prevision, we see that the lower
probability P1({o1:n}) of the conditioning event {o1:n} is
strictly positive. This implies [5] that there is only one co-
herent way to perform this updating, namely using the Gen-
eralised Bayes Rule [14], which reduces to Bayes’s Rule
when all local models are precise. We are thus led to con-
sider the updated lower prevision P1(·|o1:n) on G (X1:n),
given by

P1( f |o1:n) := max
{

µ ∈ R : P1(I{o1:n}[ f −µ])≥ 0
}
, (6)

for all gambles f on X1:n. Using the coherence of P1,
it is not too hard to prove that when P1({o1:n}) > 0,
P1(I{o1:n}[ f −µ]) constitutes a strictly decreasing and con-
tinuous function of µ , which therefore has a unique zero.
As a consequence, we have for any f ∈ G (X1:n) that

P1( f |o1:n)≤ 0⇔ (∀µ > 0)P1(I{o1:n}[ f −µ])< 0

⇔ P1(I{o1:n} f )≤ 0. (7)

In fact, it is not hard to infer from the strictly decreasing and
continuous character of P1(I{o1:n}[ f − µ]) that P1( f |o1:n)
and P1(I{o1:n} f ) have the same sign. They are either both
negative, both positive or both equal to zero; see also the
illustration below.

µ

P1(I{o1:n}[ f −µ])

P1( f |o1:n)

P1(I{o1:n} f )

Maximal state sequences. The next step consists in us-
ing the posterior model P1(·|o1:n) to find best estimates for
the state sequence x1:n. On the Bayesian approach, this is
usually done by solving a decision-making, or optimisation,
problem: we associate a gain function I{x1:n} with every
candidate state sequence x1:n, and select as best estimates
those state sequences x̂1:n that maximise the expected gain,
resulting in state sequences with maximal posterior probab-
ility.

Here we generalise this decision-making approach towards
working with imprecise probability models. The criterion
we use to decide which estimates are optimal for the given
gain functions is that of (Walley–Sen) maximality [12, 14].
Maximality has a number of very desirable properties that
make sure it works well in optimisation contexts [7, 9], and
it is well-justified from a behavioural point of view, as we
shall see presently.

We can express a strict preference � between two state
sequence estimates x̂1:n and x1:n as follows:

x̂1:n � x1:n⇔ P1(I{x̂1:n}− I{x1:n}|o1:n)> 0.

On a behavioural interpretation, this expresses that a sub-
ject with lower prevision P1(·|o1:n) is disposed to pay some
strictly positive amount of utility to replace the (gain asso-
ciated with the) estimate x1:n with the (gain associated with
the) estimate x̂1:n; see Ref. [14, Section 3.9]. This induces a
strict partial order � [an irreflexive and transitive binary re-
lation] on the set of state sequences X1:n, and we consider
an estimate x̂1:n to be optimal when it is undominated, or
maximal, in this strict partial order:



x̂1:n ∈ opt(X1:n|o1:n)

⇔ (∀x1:n ∈X1:n)x1:n 6� x̂1:n

⇔ (∀x1:n ∈X1:n)P1(I{x1:n}− I{x̂1:n}|o1:n)≤ 0

⇔ (∀x1:n ∈X1:n)P1(I{o1:n}[I{x1:n}− I{x̂1:n}])≤ 0,

(8)

where the last equivalence follows from Eq. (7). In sum-
mary then, the aim of this paper is to develop an effi-
cient algorithm for finding the set of maximal estimates
opt(X1:n|o1:n).

Another approach, which we will not consider here, could
consist in trying to find the so-called maximin state se-
quences x1:n, which maximise the posterior lower probabil-
ity:

x1:n ∈ argmaxx1:n∈X1:n
P1({x1:n}|o1:n)

While it is well known that any such maximin sequence
is in particular guaranteed to also be a maximal sequence,
finding such maximin sequences seems to be a much more
complicated affair.2

More general optimality operators. We shall see below
that in order to find the set of maximal estimates, it is useful
to consider a more general collection of ‘optimality oper-
ators’: for any k ∈ {1, . . . ,n} and zk−1 ∈Xk−1, we define
the optimality operator

opt(·|zk−1,ok:n) : P(Xk:n)→P(Xk:n)

such that for all S ∈P(Xk:n), or in other words S⊆Xk:n,
and all x̂k:n ∈ S:

x̂k:n ∈ opt(S|zk−1,ok:n)

⇔ (∀xk:n ∈ S)Pk(I{ok:n}[I{xk:n}− I{x̂k:n}]|zk−1)≤ 0. (9)

The interpretation of these operators is immediate: consider
the following part of the original iHMM:

Xk Xk+1 . . . Xn

Ok Ok+1 . . . Onoutput sequence:

state sequence:

where we take Qk(·|zk−1) as the marginal model for the
first state Xk. Then the corresponding joint lower prevision
on G (Xk:n×Ok:n) is precisely Pk(·|zk−1), and if we have
a sequence of outputs ok:n, then opt(·|zk−1,ok:n) selects
from a set S⊆Xk:n those state sequence estimates that are
undominated by any other estimate in S. It should be clear
that the set opt(X1:n|o1:n) we are eventually looking for,
can also be written as opt(X1:n|z0,o1:n).

2Private communication from Cassio de Campos. Of course, once we
know all maximal solutions, we could determine which of them are the
maximin solutions by comparing their posterior lower probabilities. As
far as we can see now, calculating these does not seem a trivial task.

Useful recursion equations. Fix any k in {1, . . . ,n}. If
we look at Eq. (9), we see that it will be useful to derive
a manageable expression for Pk(∆[xk:n, x̂k:n]|zk−1), where
∆[xk:n, x̂k:n] is the gamble on Xk:n×Ok:n given by:

∆[xk:n, x̂k:n] := I{ok:n}[I{xk:n}− I{x̂k:n}].

Using Eqs. (1)–(5) together with a few algebraic ma-
nipulations, we can derive the following equations for
Pk(∆[xk:n, x̂k:n]|zk−1):

If k ∈ {1, . . . ,n− 1} and x̂k = xk then, with some fairly
obvious abuse of notation:

Pk(∆[xk:n, x̂k:n]|zk−1) = Qk({xk}|zk−1)Sk({ok}|xk)

�Pk+1(∆[xk+1:n, x̂k+1:n]|xk).

(10)

If x̂n = xn then

Pn(∆[xn, x̂n]|zn−1) = 0. (11)

If k ∈ {1, . . . ,n} and x̂k 6= xk then

Pk(∆[xk:n, x̂k:n]|zk−1)

= Qk(I{xk}β (xk:n)− I{x̂k}α(x̂k:n)|zk−1), (12)

where we define, for any zk:n ∈Xk:n:

β (zk:n) := Sk({ok}|zk)
n

∏
i=k+1

Si({oi}|zi)Qi({zi}|zi−1)

α(zk:n) := Sk({ok}|zk)
n

∏
i=k+1

Si({oi}|zi)Qi({zi}|zi−1).

For any given sequence of states zk:n ∈Xk:n, the α(zk:n)
and β (zk:n) can be found by simple backward recursion:

α(zk:n) = α(zk+1:n)Sk({ok}|zk)Qk+1({zk+1}|zk) (13)
β (zk:n) = β (zk+1:n)Sk({ok}|zk)Qk+1({zk+1}|zk), (14)

for k ∈ {1, . . . ,n−1}, and starting from:

α(zn:n) = α(zn) = Sn({on}|zn)

β (zn:n) = β (zn) = Sn({on}|zn).

4 The Principle of Optimality

Determining the state sequences in opt(X1:n|o1:n) directly
using Eq. (8) clearly has exponential complexity (in the
length of the chain). We are now going to take a dynamic
programming approach [1] to reducing this complexity by
deriving a recursion equation for the optimality operators
opt(·|zk−1,ok:n).

Theorem (Principle of Optimality). For k ∈ {1, . . . ,n−1},
all zk−1 ∈Xk−1 and all x̂k:n ∈Xk:n:

x̂k:n ∈ opt(Xk:n|zk−1,ok:n)

⇒ x̂k+1:n ∈ opt(Xk+1:n|x̂k,ok+1:n) .



Proof. Fix k ∈ {1, . . . ,n− 1}, zk−1 ∈ Xk−1 and x̂k:n ∈
Xk:n. Assume that x̂k+1:n /∈ opt(Xk+1:n|x̂k,ok+1:n), then
we show that x̂k:n /∈ opt(Xk:n|zk−1,ok:n). It follows from
the assumption that there is some xk+1:n ∈ Xk+1 such
that Pk+1(∆[xk+1:n, x̂k+1:n]|x̂k) > 0. Now prefix the state
sequence xk+1:n with the state x̂k to form the state sequence
xk:n, implying that x̂k = xk. We then infer from Eq. (10) that

Pk(∆[xk:n, x̂k:n]|zk−1)

= Qk({x̂k}|zk−1)Sk({ok}|x̂k)Pk+1(∆[xk+1:n, x̂k+1:n]|x̂k)

> 0,

which tells us that indeed x̂k:n /∈ opt(Xk:n|zk−1,ok:n).

As an immediate consequence, we find that

opt(Xk:n|zk−1,ok:n)⊆
⋃

zk∈Xk

zk⊕opt(Xk+1:n|zk,ok+1:n) ,

(15)
where ⊕ denotes concatenation of state sequences. From
this we can infer that

opt(Xk:n|zk−1,ok:n)

= opt
( ⋃

zk∈Xk

zk⊕opt(Xk+1:n|zk,ok+1:n)

∣∣∣∣zk−1,ok:n

)
,

(16)

since the optimality operator selecting the maximal ele-
ments in a strict partial order is insensitive to the omission
of non-optimal elements; see Ref. [7] for a detailed dis-
cussion. While Eq. (16) clearly exhibits the reduction in
computational complexity that the Principle of Optimality
allows for, it is perhaps useful to point out here that we will
not use this specific form for it in our algorithm.

5 An algorithm for finding maximal state
sequences

Instead, we use Eq. (15) to devise an algorithm for con-
structing the set opt(X1:n|o1:n) of maximal state sequences
in a recursive manner.

Initial set-up using backward recursion. We begin by
defining a few auxiliary notions. First of all, we consider
the thresholds:

θk(x̂k,xk|zk−1)

:= min
{

a ∈ R : Qk(I{xk}−aI{x̂k}|zk−1)≤ 0
}

(17)

for all k ∈ {1, . . . ,n}, zk−1 ∈ Xk−1 and xk, x̂k ∈ Xk. Ob-
serve that it follows from the positivity assumptions on the
Qk(·|Xk−1) that θk(x̂k,xk|zk−1)> 0.

Next, we define

α
max
k (xk) := max

zk:n∈Xk:nzk=xk

α(zk:n) (18)

and
β

max
k (xk) := max

zk:n∈Xk:nzk=xk

β (zk:n) (19)

for all k ∈ {1, . . . ,n} and xk ∈Xk. Using Eq. (13)–(14),
these can be calculated efficiently using the following back-
ward recursive (dynamic programming) procedure:

α
max
k (xk)

= max
zk+1∈Xk+1

α
max
k+1 (zk+1)Sk({ok}|xk)Qk+1({zk+1}|xk)

= Sk({ok}|xk) max
zk+1∈Xk+1

α
max
k+1 (zk+1)Qk+1({zk+1}|xk),

(20)

and

β
max
k (xk)

= max
zk+1∈Xk+1

β
max
k+1 (zk+1)Sk({ok}|xk)Qk+1({zk+1}|xk)

= Sk({ok}|xk) max
zk+1∈Xk+1

β
max
k+1 (zk+1)Qk+1({zk+1}|xk),

(21)

for k ∈ {1, . . . ,n−1}, starting from

α
max
n (xn) = α(xn) = Sn({on}|xn) (22)

and
β

max
n (xn) = β (xn) = Sn({on}|xn). (23)

Finally, we let

α
opt
k (x̂k|zk−1) := max

xk∈Xk
xk 6=x̂k

β
max
k (xk)θk(x̂k,xk|zk−1), (24)

for all k ∈ {1, . . . ,n}, zk−1 ∈Xk−1 and x̂k ∈Xk.

Reformulation of the optimality condition. First, we
consider k = n. For every zn−1 ∈ Xn−1, we determine
opt(Xn|zn−1,on) as the set of those elements x̂n of Xn
for which

(∀xn ∈Xn \{x̂n})Qn(I{xn}β (xn)− I{x̂n}α(x̂n)|zn−1)≤ 0,

as this condition is equivalent to condition (9) for k = n,
considering Eqs. (11) and (12). But this condition is also
equivalent to

(∀xn ∈Xn \{x̂n})
α(x̂n)

β max
n (xn)

≥ θn(x̂n,xn|zn−1),

considering Eqs. (23) and (17). Eq. (24) now tells us that
this is equivalent to α(x̂n)≥ α

opt
n (x̂n|zn−1). In summary,

opt(Xn|zn−1,on) =
{

x̂n ∈Xn : α(x̂n)≥ α
opt
n (x̂n|zn−1)

}
.

(25)



Next, we consider any k ∈ {1, . . . ,n−1}. Fix zk−1 ∈Xk−1,
then we must determine opt(Xk:n|zk−1,ok:n). We know
from the Principle of Optimality (15) that we can limit
the candidate optimal sequences x̂k:n to the set⋃

zk∈Xk

zk⊕opt(Xk+1:n|zk,ok+1:n) . (26)

Consider any such x̂k:n, then we must check for any
xk:n ∈Xk:n whether Pk(∆[xk:n, x̂k:n]|zk−1)≤ 0; see Eq. (9).
But if xk:n is such that xk = x̂k, then it follows from
Eq. (10) that Pk(∆[xk:n, x̂k:n]|zk−1) ≤ 0, because the fact
that x̂k+1:n ∈ opt(Xk+1:n|x̂k,ok+1:n) also guarantees that
Pk+1(∆[xk+1:n, x̂k+1:n]|x̂k) ≤ 0. So we can limit ourselves
to checking the inequality for xk:n for which xk 6= x̂k.

So fix any xk 6= x̂k, then we must check whether

(∀xk+1:n ∈Xk+1:n)

Qk(I{xk}β (xk:n)− I{x̂k}α(x̂k:n)|zk−1)≤ 0;

see Eq. (12). Considering Eq. (19), this is equivalent to

Qk(I{xk}β
max
k (xk)− I{x̂k}α(x̂k:n)|zk−1)≤ 0,

and therefore also equivalent to

α(x̂k:n)

β max
k (xk)

≥ θk(x̂k,xk|zk−1),

considering Eq. (17). Since this inequality must hold for
every xk 6= x̂k, we infer from Eq. (24) that we must have
that

α(x̂k:n)≥ α
opt
k (x̂k|zk−1). (27)

So we must check this condition for all the candidate se-
quences x̂k:n in the set (26). We can do this efficiently by
using the following backward-forward recursion approach.

Backward-forward recursion. We start by letting k run
backward from n to 1.

For k = n, it is a straightforward matter to determine
opt(Xn|zn−1,on) for every zn−1 ∈Xn−1 using Eq. (25).

For each k < n, we now show how we can determine
opt(Xk|zk−1,ok:n) by executing the following forward run-
ning procedure for every zk−1 ∈Xk−1.

If we combine Eqs. (27) and (18), we see that a necessary
condition for x̂k to be the state at time k in some optimal
state sequence in opt(Xk|zk−1,ok:n) is that

α
max
k (x̂k)≥ α

opt
k (x̂k|zk−1), (28)

meaning we can eliminate from our search those sequences
for which the first state x̂k does not satisfy this condition. On
the other hand, for any x̂k that satisfies the condition (28),
we know from Eq. (18) that there is at least one state se-
quence with first state x̂k that satisfies the condition (27).

So now we consider any x̂k that satisfies the condition (28),
and any x̂k+1 that is a first state in some optimal sequence
in opt(Xk+1|x̂k,ok+1:n). Observe that we can determine
whether x̂k+1 satisfies this condition, because we have de-
termined opt(Xk+1|x̂k,ok+1:n) in the forward run for k+1.

Taking into account the recursion equation (13), we see that
the condition (27) is equivalent to

α(x̂k+1:n)≥ α
opt(x̂k:k+1|zk−1), (29)

where

α
opt(x̂k:k+1|zk−1) :=

α
opt
k (x̂k|zk−1)

Sk({ok}|x̂k)Qk+1({x̂k+1}|x̂k)
.

So if we combine Eqs. (29) and (18), we see that a necessary
condition for x̂k+1 to be a state at time k+1 in some optimal
sequence starting with x̂k is that

α
max
k+1 (x̂k+1)≥ α

opt(x̂k:k+1|zk−1), (30)

meaning we can eliminate from our search those sequences
in opt(Xk+1|x̂k,ok+1:n) for which the first state x̂k+1 does
not satisfy this condition. On the other hand, for any x̂k+1
that satisfies the condition (30), we know from Eq. (18)
[for k + 1] that there is at least one state sequence in
opt(Xk+1|x̂k,ok+1:n) with first state x̂k+1 that satisfies the
condition (29).

Next, we consider any x̂k and x̂k+1 that satisfy the
condition (30) and any x̂k+2 for which x̂k+1 and x̂k+2
are the first two states in some optimal sequence in
opt(Xk+1|x̂k,ok+1:n). Taking into account the recursion
equation (13), we see that the condition (27) is equivalent
to

α(x̂k+2:n)≥ α
opt(x̂k:k+2|zk−1), (31)

where

α
opt(x̂k:k+2|zk−1)

:=
αopt(x̂k:k+1|zk−1)

Sk+1({ok+1}|x̂k+1)Qk+2({x̂k+2}|x̂k+1)
.

So if we combine Eqs. (31) and (18), we see that a necessary
condition for x̂k+2 to be a state at time k+2 in some optimal
sequence starting with x̂k:k+1 is that

α
max
k+2 (x̂k+2)≥ α

opt(x̂k:k+2|zk−1), (32)

meaning we can eliminate from our search those sequences
in opt(Xk+1|x̂k,ok+1:n) for which the second state x̂k+2
does not satisfy this condition. On the other hand, for any
x̂k+2 that satisfies the condition (32), there is at least one
state sequence in opt(Xk+1|x̂k,ok+1:n) with a second state
x̂k+2 that satisfies the condition (31).

It should be clear that we can go forward in this way until
we reach time n, and that in doing so we construct all the
sequences x̂k:n in opt(Xk|zk−1,ok:n).



A brief discussion of the algorithm’s complexity. We
begin with the preparatory calculations of the quantities
in Eqs. (17)–(24). For the thresholds θk(x̂k,xk|zk−1) in
Eq. (17), the computational complexity is clearly cubic in
the number of states, and linear in the number of nodes. Cal-
culating the αmax

k (xk) and β max
k (xk) in Eqs. (20) and (21) is

linear in the number of nodes, and quadratic in the number
of states. The complexity of finding the α

opt
k (x̂k|zk−1) in

Eq. (24) is linear in the number of nodes, and cubic in the
number of states.

On the other hand, the computational complexity of the
backward-forward loop is clearly quadratic in the number
of nodes, quadratic in the number of states, and roughly
speaking linear in the number of maximal sequences.3

For precise HMMs, the state sequence estimation prob-
lem can be solved very efficiently by the Viterbi algorithm
[11, 13], whose complexity is linear in the number of nodes,
and quadratic in the number of states. However, this al-
gorithm only emits a single optimal (most probable) state
sequence, even in cases where there are multiple (equally
probable) optimal solutions: this of course simplifies the
problem. If we would content ourselves with giving only
a single maximal solution, the ensuing algorithm would
have a complexity that is similar to Viterbi’s. So, to al-
low for a fair comparison between Viterbi’s algorithm and
ours, we would need to alter Viterbi’s algorithm in such
a way that it no longer resolves ties arbitrarily, and emits
all (equally probable) optimal state sequences. This new
version will remain linear in the number of nodes, and
quadratic in the number of states, but emitting the optimal
sequences will be linear in the number of them. For the com-
plexity for the most time-consuming part of our algorithm
(the backward-forward loop), the only difference is this:
Viterbi’s approach is linear and ours quadratic in the num-
ber of nodes. Where does this difference come from? In
iHMMs we have mutually incomparable solutions, whereas
in pHMMs the optimal solutions are indifferent, or equally
probable. This makes sure that the algorithm for pHMMs
requires no forward loops. We believe that this added com-
plexity is a reasonable price to pay for the robustness that
working with imprecise-probabilistic models offers.

Additional comments. All that is needed in order to pro-
duce the α- and β -functions are assessments for the lower
and upper transition and emission mass functions:

Qk({zk}|zk−1),Qk({zk}|zk−1),Sk({ok}|zk),Sk({ok}|zk)

for all k ∈ {1, . . . ,n}, zk−1 ∈Xk−1, zk ∈Xk and ok ∈ Ok.
The most conservative coherent models Qk(·|Xk−1) that
correspond to such assessments are 2-monotone [4, 8]. Due
to their comonotone additivity, this implies that:

Qk(I{xk}−aI{x̂k}|zk−1) = Qk({xk}|zk−1)−aQk({x̂k}|zk−1)

3Each backward step in the backward-forward loop has a linear com-
plexity in the number of maximal elements at that stage.

for all a≥ 0, and therefore Eq. (17) leads to

θk(x̂k,xk|zk−1) =
Qk({xk}|zk−1)

Qk({x̂k}|zk−1)
. (33)

The right-hand side is the smallest possible value of the
threshold θk(x̂k,xk|zk−1) corresponding to the assessments
Qk({xk}|zk−1) and Qk({x̂k}|zk−1), leading to the most con-
servative inferences, and therefore the largest possible sets
of maximal sequences, that correspond to these assess-
ments.

6 Some experiments

While a linear complexity in the number of maximal se-
quences is probably the best we can hope for, we also see
that we will only be able to find all maximal sequences effi-
ciently provided their number is reasonably small. Should
it, say, tend to increase exponentially with the length of the
chain, then no algorithm, however cleverly designed, could
overcome this hurdle. Because this number of maximal
sequences is so important, we study its behaviour in more
detail. In order to do so, we take a closer look at how this
number of maximal sequences depends on the transition
probabilities of the model, and how it evolves when we
let the imprecision of the local models grow. We shall see
that this number displays very interesting behaviour that
can be explained, and even predicted to some extent. To
allow for easy visualisation, we limit this discussion to bin-
ary iHMMs, where both the state and output variables can
assume only two possible values, say 0 and 1.

Describing a binary stationary iHMM. We first con-
sider a binary stationary HMM. The (precise) transition
probabilities for going from one state to the next are com-
pletely determined by numbers in the unit interval: the
probability p to go from state 0 to state 0, and the probabil-
ity q to go from state 1 to state 0. To further pin down the
HMM we also need to specify the (marginal) probability m
for the first state to be 0, and the two emission probabilities:
the probability r of emitting output 0 from state 0 and the
probability s of emitting output 0 from state 1.

In this binary case, all imprecise models can be found by
contamination: taking convex mixtures of precise models,
with mixture coefficient 1−ε , and the vacuous model, with
mixture coefficient ε , leading to a so-called linear-vacuous
model. To simplify the analysis, we let the emission model
remain precise, and use the same mixture coefficient ε for
the marginal and the transition models. As ε ranges from
zero to one, we then evolve from a precise HMM towards
an iHMM with vacuous marginal and transition models
(and precise emission models).

Explaining the basic ideas using a chain of length two.
We now examine the behaviour of an iHMM of length two,



with the following (precise) probabilities fixed:4

m = 0.1, r = 0.8 and s = 0.3.

Fixing an output sequence and a value for ε , we can use
our algorithm to calculate the corresponding numbers of
maximal state sequences as p and q range over the unit
interval. The results can be represented conveniently in
the form of a heat plot. The plots below correspond to the
output sequence o1:2 = 01.

0 1p
0

1

q

ε = 2%

0 1p
0

1

q

ε = 5%

0 1p
0

1

q

ε = 10%

0 1p
0

1

q

ε = 15%

The number of maximal state sequences clearly depends
on the transition probabilities p and q. In the rather large
parts of ‘probability space’ that are coloured white, we get a
single maximal sequence—as we would for HMMs—, but
there are contiguous regions where we see a higher number
appear. In the present example (binary chain of length two),
the highest possible number of maximal sequences is of
course four. In the dark grey area, there are three maximal
sequences, and two in the light grey regions. The plots
show what happens when we let ε increase: the grey areas
expand and the number of maximal sequences increases.
For ε = 15%, we even find a small area (coloured black)
where all four possible state sequences are maximal: locally,
due to the relatively high imprecision of our local models,
we cannot give any useful robust estimates of the state
sequence producing the output sequence o1:2 = 01.

For small ε , the areas with more than one maximal state
sequence are quite small and seem to resemble strips that
narrow down to lines as ε tends to zero. This suggests that
we should be able to explain at least qualitatively where
these areas come from by looking at compatible precise
models: the regions where an iHMM produces different

4This choice is of course arbitrary. Different values would yield com-
parable results.

maximal (mutually incomparable) sequences, are widened
versions of loci of indifference for precise HMMs.

By a locus of indifference, we mean the set of (p,q) that
correspond to two given state sequences x1:2 and x̂1:2 having
equal posterior probability:

p(x1:2|o1:2) = p(x̂1:2|o1:2),

or, provided that p(o1:2)> 0,

p(x1:2,o1:2) = p(x̂1:2,o1:2).

In our example where o1:2 = 01, we find the following
expressions for each of the four possible state sequences:

p(00,01) = mr(1− r)p

p(01,01) = mr(1− s)(1− p)

p(10,01) = (1−m)s(1− r)q

p(11,01) = (1−m)s(1− s)(1−q)

By equating any two of these expressions, we express that
the corresponding two state sequences have an equal pos-
terior probability. Since the resulting equations are a func-
tion of p and q only, each of these six possible combinations
defines a locus of indifference. All of them are depicted as
lines in the following figure:

0 1
p

0

1

q

00−
01

00−10

00−11

01−
10

01−11

10−11

11

1001

Parts of these loci, depicted in blue (darker and bolder in
monochrome versions of this paper) demarcate the three
regions where the state sequences 01, 10 and 11 are optimal
(have the highest posterior probability).

What happens when the transition models become impre-
cise? Roughly speaking, nearby values of the original p
and q enter the picture, effectively turning the loci (lines) of
indifference into bands of incomparability: the emergence
of regions with two and more maximal sequences can be
seen to originate from the loci of indifference; compare the
figure for these loci with the heat plots given above.



Extending the argument to a chain of length three.
For a chain of length three, we can determine the loci of
indifference for precise models in a completely analogous
manner. If we use the same marginal model and emission
model as in the previous example, the resulting lines of
indifference for the output sequence 000 look as follows:

0 1p
0

1

q

If we compare this with the visualisation below of the num-
ber of maximal elements for the same sequence, the resemb-
lance is again quite striking.
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0
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7 Showing off the algorithm’s power

In order to demonstrate that our algorithm is indeed quite
efficient, we let it determine the maximal sequences for a

1110000011010000100010000111111111101111010000101101101100001101001001100110101100011011000010111001
1110000011010000100010000111111111101111010000101101101100001101001001100110101100011011000010111001
1100000011010000100010000111111111101111010000101101101100001101001001100110101100011011000010111001
1110000001010000100010000111111111101111010000101101101100001101001001100110101100011011000010111001
1110000011000000100010000111111111101111010000101101101100001101001001100110101100011011000010111001
1110000011010000000010000111111111101111010000101101101100001101001001100110101100011011000010111001

random output sequence of length 100.

We consider the same binary station-
ary HMM as we presented above, but
with the following precise marginal
and emission probabilities:

m = 0.1, r = 0.98 and s = 0.01.

In practical applications, the probabil-
ity for an output variable to have the
same value as the corresponding hid-
den state variable is usually quite high,
which explains why we have chosen r
and s to be close to 1 and to 0, respect-
ively. In contrast with the previous ex-
periments, we do not let the transition
probabilities vary, but fix them to the
following values:

p = 0.6 and q = 0.5.

The iHMM we use to determine the
maximal sequences is then generated
by mixing these precise local models
with a vacuous one, using the same
mixture coefficient ε for the marginal,
transition and emission models. On
the right, we display the five maximal
sequences corresponding to the high-
lighted output sequence, and ε = 2%.
Since the emission probabilities were
chosen to be quite accurate, it is no sur-
prise that the output sequence itself is
one of the maximal sequences. In ad-
dition, we have indicated in bold face
the state values that differ from the out-
puts in the output sequence. We see
that the model represents more inde-
cision about the values of the state vari-
ables as we move further away from
the end of the sequence. This is a res-
ult of a phenomenon called dilation,
which—as has been noted in another
paper [5]—tends to occur when infer-
ences in a credal tree proceed from the
leaves towards the root.

As for the efficiency of our algorithm:
it took about 0.2 seconds to calculate
these 5 maximal sequences. The reason
why this could be done so fast is that
the algorithm is linear in the number of
solutions, which in this case is only 5. If we let ε grow to
for example 5%, the number of maximal sequences for the
same output sequence is 764 and these can be determined
in about 32 seconds. This demonstrates that the complexity
is indeed linear in the number of solutions and that the



algorithm can efficiently calculate the maximal sequences
even for long output sequences.

8 Conclusions

Interpreting the graphical structure of an imprecise hid-
den Markov model as a credal network under epistemic
irrelevance, leads to an efficient algorithm for finding the
maximal state sequences for a given output sequence. Pre-
liminary simulations show that, even for transition models
with non-negligible imprecision, the number of maximal
elements seems to be reasonably low in fairly large regions
of parameter space, with high numbers of maximal ele-
ments concentrated in fairly small regions. It remains to
be seen whether this observation can be corroborated by a
theoretical analysis, and whether increasing the imprecision
of the emission models changes this picture appreciably.

It is not clear to us, at this point, whether ideas similar to the
ones we discussed above could be used to derive similarly
efficient algorithms for imprecise hidden Markov models
whose graphical structure is interpreted as a credal network
under strong independence [3]. This could be interesting
and relevant, as the more stringent independence condition
leads to joint models that are less imprecise, and therefore
produce fewer maximal state sequences (although they will
be contained in our solutions).
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