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Abstract
We use the martingale-theoretic approach of game-theoretic probability to incorporate imprecision
into the study of randomness. In particular, we define a notion of computable randomness asso-
ciated with interval, rather than precise, forecasting systems, and study its properties. The richer
mathematical structure that thus arises lets us better understand and place existing results for the
precise limit. When we focus on constant interval forecasts, we find that every infinite sequence of
zeroes and ones has an associated filter of intervals with respect to which it is computably random.
It may happen that none of these intervals is precise, which justifies the title of this paper. We
illustrate this by showing that computable randomness associated with non-stationary precise fore-
casting systems can be captured by a stationary interval forecast, which must then be less precise:
a gain in model simplicity is thus paid for by a loss in precision.
Keywords: computable randomness; imprecise probabilities; game-theoretic probability; interval
forecast; supermartingale; computability.

1. Introduction

This paper documents the first steps in our attempt to incorporate indecision and imprecision into
the study of randomness. Consider a infinite sequence ω = (z1, . . . ,zn, . . .) of zeroes and ones; when
do we call it random? There are many notions of randomness, and many of them have a number of
equivalent definitions (Ambos-Spies and Kucera, 2000; Bienvenu et al., 2009). We focus here on
computable randomness, mainly because its focus on computability—rather than, say, the weaker
lower semicomputability—has allowed us in this first attempt to keep the mathematical nitpicking
at arm’s length. Randomness of a sequence ω is typically associated with a probability measure
on the sample space of all infinite sequences, or—what is equivalent—with a forecasting system
γ that associates with each finite sequence of outcomes (x1, . . . ,xn) the (conditional) expectation
γ(x1, . . . ,xn) for the next (as yet unknown) outcome Xn+1. The sequence ω is then called comput-
ably random when it passes a (countable) number of computable tests of randomness, where the
collection of randomness tests depends of the forecasting system γ . An alternative but equivalent
definition, going back to Ville (1939), sees each forecast γ(x1, . . . ,xn) as a fair price for—and there-
fore a commitment to bet on—the as yet unknown next outcome Xn+1. The sequence ω is then
computably random when there is no computable strategy for getting infinitely rich by exploiting
the bets made available by the forecasting system γ along the sequence, without borrowing. Tech-
nically speaking, all computable non-negative supermartingales should remain bounded on ω , and
the forecasting system γ determines what a supermartingale is.

It is this last, martingale-theoretic approach which seems to lend itself most easily to allowing
for imprecision in the forecasts, and therefore in the definition of randomness. As we explain in Sec-
tions 2 and 3, an ‘imprecise’ forecasting system γ associates with each finite sequence of outcomes
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(x1, . . . ,xn) a (conditional) expectation interval γ(x1, . . . ,xn) for the next (as yet unknown) outcome
Xn+1, whose lower bound represents a supremum acceptable buying price, and whose upper bound
a infimum acceptable selling price for Xn+1. This idea rests firmly on the common ground between
Walley’s (1991) theory of coherent lower previsions and Shafer and Vovk’s (2001) game-theoretic
approach to probability that we have established in recent years, through our research on impre-
cise stochastic processes (De Cooman and Hermans, 2008; De Cooman et al., 2016). This allows
us to associate supermartingales with an imprecise forecasting system, and therefore in Section 5
to extend the existing notion of computable randomness to allow for interval, rather than precise,
forecasts—we discuss computability in Section 4. We show in Section 6 that our approach allows
us to extend some of Dawid’s (1982) well-known work on calibration, as well as an interesting
‘limiting frequencies’ or computable stochasticity result.

We believe the discussion becomes really interesting in Section 7, where we look at stationary
interval forecasts to extend the classical account of randomness. That classical account typically
considers a forecasting system with stationary expectation forecast 1/2—corresponding to flipping
a fair coin. As we have by now come to expect from our experience with imprecise probability
models, a much more interesting mathematical picture appears when allowing for interval forecasts
than the rather simple case of precise forecasts would lead us to suspect. In the precise case, a given
sequence may not be (computably) random for any stationary forecast, but in the imprecise case
there is always a set filter of intervals that a given sequence is computably random for. Furthermore,
as we show in Section 8, this filter may not have a smallest element, and even when it does, this
smallest element may be a non-vanishing interval: randomness may be inherently imprecise.

In order to comply with the page limit, proofs are omitted; we refer the reader to the appendix
of (De Cooman and De Bock, 2017), an extended version of this paper that is available on arXiv.

2. A single interval forecast

The dynamics of making a single forecast can be made very clear by considering a simple game,
with three players, namely Forecaster, Sceptic and Reality.

Game: single forecast of an outcome X
In a first step, Forecaster specifies an interval bound I = [p, p] for the expectation of an as yet
unknown outcome X in {0,1}—or equivalently, for the probability that X = 1. We interpret this
interval forecast I as a commitment, on the part of Forecaster, to adopt p as a supremum buying
price and p as a infimum selling price for the gamble (with reward function) X. This is taken to mean
that the second player, Sceptic, can now in a second step take Forecaster up on any (combination)
of the following commitments:

(i) for any p∈ [0,1] such that p≤ p, and any α ≥ 0 Forecaster must accept the gamble α[X− p],
leading to an uncertain reward −α[X− p] for Sceptic;1

(ii) for any q ∈ [0,1] such that q ≥ p, and any β ≥ 0 Forecaster accepts the gamble β [q−X],
leading to an uncertain reward −β [q−X] for Sceptic.

Finally, in a third step, the third player, Reality, determines the value x of X in {0,1}. �

Elements x of {0,1} are called outcomes, and elements p of the real unit interval [0,1] are
called (precise) forecasts. We denote by C the set of non-empty closed subintervals of the real unit

1. Because we allow p ≤ p rather than p < p, we actually see p as a maximum buying price, rather than a supremum
one. We do this because it does not affect the conclusions, but simplifies the mathematics. Similarly for q≥ p.
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Figure 1: Gambles f available to Sceptic when (a) Forecaster announces I ∈ C with p < p; and
when (b) Forecaster announces I ∈ C with p = p =: r.

interval [0,1]. Any element I of C is called an interval forecast. It has a smallest element min I
and a greatest element max I, so I = [min I,max I]. We will use the generic notation I for such an
interval, and p := min I and p := max I for its lower and upper bounds, respectively.

After Forecaster announces a forecast interval I, what Sceptic can do is essentially to try and
increase his capital by taking a gamble on the outcome X. Any such gamble can be considered as a
map f : {0,1}→R, and can therefore be represented as a vector ( f (1), f (0)) in the two-dimensional
vector space R2; see also Figure 1. f (X) is then the increase in Sceptic’s capital after the game has
been played, as a function of the outcome variable X. Of course, not every gamble f (X) on the
outcome X will be available to Sceptic: which gambles he can take is determined by Forecaster’s
interval forecast I. In their most general form, they are given by f (X) = −α[X− p]− β [q−X],
where α and β are non-negative real numbers, p≤ p and q≥ p. If we consider the so-called lower
expectation (functional) E I associated with an interval forecast I, defined by

EI( f ) = min
p∈I

Ep( f ) = min
p∈I

[
p f (1)+(1− p) f (0)

]
=

{
Ep( f ) if f (1)≥ f (0)

Ep( f ) if f (1)≤ f (0)
(1)

for any gamble f : {0,1}→ R, and similarly, the upper expectation (functional) E I , defined by

E I( f ) = max
p∈I

Ep( f ) =

{
Ep( f ) if f (1)≥ f (0)
Ep( f ) if f (1)≤ f (0)

=−E I(− f ), (2)

then it is not difficult to see that the cone of gambles f (X) that are available to Sceptic after Fore-
caster announces an interval forecast I is completely determined by the condition EI( f ) ≤ 0, as
depicted by the blue regions in Figure 1. The functionals E I and E I are easily shown to have the
following properties, typical for the more general lower and upper expectation operators defined on
more general gamble spaces (Walley, 1991; Troffaes and De Cooman, 2014):
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Proposition 1 Consider any forecast interval I ∈ C . Then for all gambles f ,g on {0,1}, µ ∈ R
and non-negative λ ∈ R:

C1. min f ≤ E I( f )≤ E I( f )≤max f ; [bounds]
C2. EI(λ f ) = λE I( f ) and E I(λ f ) = λE I( f ); [non-negative homogeneity]
C3. EI( f +g)≥ E I( f )+E I(g) and E I( f +g)≤ E I( f )+E I(g); [super/subadditivity]
C4. EI( f +µ) = E I( f )+µ and E I( f +µ) = EI( f )+µ . [constant additivity]

3. Interval forecasting systems and imprecise probability trees

We now consider a sequence of repeated versions of the forecast game in the previous section, where
at each stage k ∈ N, Forecaster presents an interval forecast Ik = [p

k
, pk] for the unknown outcome

variable Xk. This effectively allows Sceptic to choose any gamble fk(Xk) such that E Ik( fk) ≤ 0.
Reality then chooses a value xk for Xk, resulting in a gain, or increase in capital, fk(xk) for Sceptic.

We call (x1,x2, . . . ,xn, . . .) an outcome sequence, and collect all possible outcome sequences in
the set Ω := {0,1}N. We collect the finite outcome sequences (x1, . . . ,xn) in the set Ω♦ := {0,1}∗ =⋃

n∈N0
{0,1}n. Finite sequences s in Ω♦ and infinite sequences ω in Ω are the nodes—called situ-

ations—and paths in an event tree with unbounded horizon, part of which is depicted below.
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In this repeated game, Forecaster will only provide interval forecasts Ik after observing the actual
sequence (x1, . . . ,xk−1) that Reality has chosen. This is the essence of so-called prequential fore-
casting (Dawid, 1982, 1984; Dawid and Vovk, 1999). But for technical reasons, it will be useful to
consider the more involved setting where a forecast Is is specified in each of the possible situations
s ∈Ω♦; see the figure below.

0

00

000 001

01

010 011

1

10

100 101

11

110 111

I�

I0 I1

I00 I11I10I01

Indeed, we can use this idea to generalise the notion of a forecasting system (Vovk and Shen, 2010).

Definition 2 (Forecasting system) A forecasting system is a map γ : Ω♦→C , that associates with
any situation s in the event tree a forecast γ(s) ∈ C . With any forecasting system γ we can associate
two real-valued maps γ and γ on Ω♦, defined by γ(s) :=minγ(s) and γ(s) :=maxγ(s) for all s∈Ω♦.
A forecasting system γ is called precise if γ = γ . Γ denotes the set C Ω♦

of all forecasting systems.
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Specifying such a forecasting system requires imagining in advance all moves that Reality could
make, and devising in advance what forecasts to give in each imaginable situation s. In the precise
case, that is typically what one does when specifying a probability measure on the so-called sample
space Ω—the set Ω of all paths.

Since in each situation s the interval forecast Is = γ(s) corresponds to a local lower expect-
ation E Is

, we can use the argumentation in our earlier papers (De Cooman and Hermans, 2008;
De Cooman et al., 2016) on stochastic processes to let the forecasting system γ turn the event tree
into a so-called imprecise probability tree, with an associated global lower expectation, and a cor-
responding notion of ‘(strictly) almost surely’. In what follows, we briefly recall how to do this; for
more context, we also refer to the seminal work by Shafer and Vovk (2001).

For any path ω ∈ Ω, the initial sequence that consists of its first n elements is a situation in
{0,1}n that is denoted by ωn. Its n-th element belongs to {0,1} and is denoted by ωn. As a
convention, we let its 0-th element be the initial situation ω0 = ω0 =�. We write that sv t, and say
that the situation s precedes the situation t, when every path that goes through t also goes through
s—so s is a precursor of t.

A process F is a map defined on Ω♦. A real process is a real-valued process: it associates a real
number F(s) ∈ R with every situation s ∈ Ω♦. With any real process F , we can always associate a
process ∆F , called the process difference. For every situation (x1, . . . ,xn) with n∈N0, ∆F(x1, . . . ,xn)
is a gamble on {0,1} defined by ∆F(x1, . . . ,xn)(xn+1) := F(x1, . . . ,xn+1)− F(x1, . . . ,xn) for all
xn+1 ∈ {0,1}. In the imprecise probability tree associated with a given forecasting system γ , a
submartingale M for γ is a real process such that Eγ(x1,...,xn)(∆M(x1, . . . ,xn)) ≥ 0 for all n ∈ N0
and (x1, . . . ,xn) ∈ {0,1}n. A real process M is a supermartingale for γ if −M is a submartingale,
meaning that Eγ(x1,...,xn)(∆M(x1, . . . ,xn)) ≤ 0 for all n ∈ N0 and (x1, . . . ,xn) ∈ {0,1}n: all super-
martingale differences have non-positive upper expectation, so supermartingales are real processes
that Forecaster expects to decrease. We denote the set of all submartingales for a given forecasting
system γ by Mγ—whether a real process is a submartingale depends of course on the forecasts in
the situations. Similarly, the set Mγ :=−Mγ is the set of all supermartingales for γ .

It is clear from the discussion in Section 2 that the supermartingales are effectively all the
possible capital processes K for a Sceptic who starts with an initial capital K (�), and in each
possible subsequent situation s selects a gamble fs = ∆K (s) that is available there because Fore-
caster specifies the interval forecast Is = γ(s) and because E Is( fs) = Eγ(s)(∆K (s)) ≤ 0. If Reality
chooses outcomes s = (x1, . . . ,xn), then Sceptic ends up with capital K (x1, . . . ,xn) = K (�) +

∑
n−1
k=0 ∆K (x1, . . . ,xk)(xk+1). A non-negative supermartingale M is non-negative in all situations,

which corresponds to Sceptic never borrowing any money. We call test supermartingale any non-
negative supermartingale M that starts with unit capital M(�) = 1. We collect all test supermartin-
gales for γ in the set Tγ

.
In the context of probability trees, we call variable any function defined on the sample space Ω.

When this variable is real-valued and bounded, we call it a gamble on Ω. An event A in this context
is a subset of Ω, and its indicator IA is a gamble on Ω assuming the value 1 on A and 0 elsewhere.
The following expressions define lower and upper expectations on such gambles g on Ω:

Eγ(g) :=sup
{

M(�) : M ∈Mγ and limsup
n→+∞

M(ωn)≤ g(ω) for all ω ∈Ω

}
(3)

Eγ
(g) := inf

{
M(�) : M ∈Mγ

and liminf
n→+∞

M(ωn)≥ g(ω) for all ω ∈Ω

}
=−Eγ(g). (4)
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They satisfy coherence properties similar to those in Proposition 1. We refer to extensive discus-
sions elsewhere (De Cooman et al., 2016; Shafer and Vovk, 2001) about why these expressions are
interesting and useful. For our present purposes, it may suffice to mention that for precise fore-
casts, they lead to models that coincide with the ones found in measure-theoretic probability theory
(Shafer and Vovk, 2001, Chapter 8). In particular, when all Is = {1/2}, they coincide with the usual
uniform (Lebesgue) expectations on measurable gambles.

We call an event A ⊆ Ω null if Pγ
(A) := Eγ

(IA) = 0, or equivalently Pγ(Ac) := Eγ(IAc) = 1,
and strictly null if there is some test supermartingale T ∈ Tγ

that converges to +∞ on A, meaning
that limn→+∞ T (ωn) = +∞ for all ω ∈ A. Any strictly null event is null, but null events need not
be strictly null (Vovk and Shafer, 2014; De Cooman et al., 2016). Because it is easily checked that
Pγ

( /0) = Pγ( /0) = 0 , the complement Ac of a (strictly) null event A is never empty. As usual, any
property that holds, except perhaps on a (strictly) null event, is said to hold (strictly) almost surely.

4. Basic computability notions

We recall a few notions and results from computability theory that are relevant to the discussion.
For a much more extensive treatment, we refer for instance to the books by Pour-El and Richards
(1989) and Li and Vitányi (1993).

A computable function φ : N0 → N0 is a function that can be computed by a Turing machine.
All further notions of computability that we will need, build on this basic notion. It is clear that it
in this definition, we can replace any of the N0 with any other countable set.

We start with the definition of a computable real number. We call a sequence of rational numbers
rn computable if there are three computable functions a,b,σ from N0 to N0 such that b(n)> 0 and
rn = (−1)σ(n) a(n)

b(n) for all n ∈ N0, and we say that it converges effectively to a real number x if there
is some computable function e : N0 → N0 such that n ≥ e(N)⇒ |rn− x| ≤ 2−N for all n,N ∈ N0.
A real number is then called computable if there is a computable sequence of rational numbers that
converges effectively to it. Of course, every rational number is a computable real.

We also need a notion of computable real processes, or in other words, computable real-valued
maps F : Ω♦ → R defined on the set Ω♦ of all situations. Because there is an obvious comput-
able bijection between N0 and Ω♦, whose inverse is also computable, we can in fact identify real
processes and real sequences, and simply import, mutatis mutandis, the definitions for computable
real sequences common in the literature (Li and Vitányi, 1993, Chapter 0). Indeed, we call a net
of rational numbers rs,n computable if there are three computable functions a,b,s from Ω♦×N0 to
N0 such that b(s,n) > 0 and rs,n = (−1)σ(s,n) a(s,n)

b(s,n) for all s ∈ Ω♦ and n ∈ N0. We call a real pro-
cess F : Ω♦→R computable if there is a computable net of rational numbers rs,n and a computable
function e : Ω♦×N0→N0 such that n≥ e(s,N)⇒ |rs,n−F(s)| ≤ 2−N for all s∈Ω♦ and n,N ∈N0.
Obviously, it follows from this definition that in particular F(t) is a computable real number for any
t ∈Ω♦: fix s = t and consider the sequence rt,n that converges to F(s) as n→+∞. Also, a constant
real process is computable if and only if its constant value is.

The following definitions are now obvious. A gamble f on {0,1} is called computable if both
its values f (0) and f (1) are computable real numbers. An interval forecast I = [p, p] ∈ C is called
computable if both its lower bound p and upper bound p are computable real numbers. A forecasting
system γ is called computable if the associated real processes γ and γ are.
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5. Random sequences in an imprecise probability tree

We will now associate a notion of randomness with a forecasting system γ—or in other words, with
an imprecise probability tree. In what follows, we will often consider computable test supermartin-
gales. These computable test supermartingales for a forecasting system are countable in number,
because the computable processes are (Li and Vitányi, 1993; Vovk and Shen, 2010).

Definition 3 (Computable randomness) Consider any forecasting system γ : Ω♦→C . We call an
outcome sequence ω computably random for γ if all computable test supermartingales T remain
bounded above on ω , meaning that there is some B ∈ R such that T (ωn) ≤ B for all n ∈ N, or
equivalently, that supn∈N T (ωn) < +∞. We then also say that the forecasting system γ makes ω

computably random. We denote by ΓC(ω) := {γ ∈ Γ : ω is computably random for γ} the set of all
forecasting systems for which the outcome sequence ω is computably random.

Computable randomness of an outcome sequence means that there is no computable strategy that
starts with capital 1 and avoids borrowing, and allows Sceptic to increase his capital without bounds
by exploiting the bets on these outcomes that are made available to him by Forecaster’s specification
of the forecasting system γ . When the forecasting system γ is precise and computable, our notion of
computable randomness reduces to the classical notion of computable randomness (Ambos-Spies
and Kucera, 2000; Bienvenu et al., 2009).

The (computable) vacuous forecasting system γv assigns the vacuous forecast γv(s) := [0,1] to
all situations s ∈Ω♦. The following proposition implies that no ΓC(ω) is empty.

Proposition 4 All paths are computably random for the vacuous forecasting system: γv ∈ ΓC(ω)
for all ω ∈Ω.

More conservative (or imprecise) forecasting systems have more computably random sequences.

Proposition 5 Let ω be computably random for a forecasting system γ . Then ω is also computably
random for any forecasting system γ∗ such that γ ⊆ γ∗, meaning that γ(s)⊆ γ∗(s) for all s ∈Ω♦.

6. Consistency results

We first show that any Forecaster who specifies a forecasting system is consistent in the sense that
he believes himself to be well calibrated: in the imprecise probability tree generated by his own
forecasts, (strictly) almost all paths will be computably random, so he is sure that Sceptic will not
be able to become infinitely rich at his expense, by exploiting his—Forecaster’s—forecasts. This
also generalises the arguments and conclusions in a paper by Dawid (1982).

Theorem 6 Consider any forecasting system γ : Ω♦ → C . Then (strictly) almost all outcome se-
quences are computably random for γ in the imprecise probability tree that corresponds to γ .

This result is quite powerful, and it guarantees in particular that:

Corollary 7 For any sequence of interval forecasts (I1, . . . , In, . . .) there is a forecasting system
given by γ(x1, . . . ,xn) := In+1 for all (x1, . . . ,xn) ∈ {0,1}n and all n ∈ N0, and associated impre-
cise probability tree such that (strictly) almost all—and therefore definitely at least one—outcome
sequences are computably random for γ in the associated imprecise probability tree.

139



DE COOMAN AND DE BOCK

The following weaker consistency result deals with limits (inferior and superior) of relative fre-
quencies, taken with respect to a so-called selection process S : Ω♦→ {0,1}. It is a counterpart in
our more general context of the notions of computable stochasticity or Church randomness in the
precise case with I = {1/2} (Ambos-Spies and Kucera, 2000).

Theorem 8 (Church randomness) Let γ : Ω♦→C be any computable forecasting system, let ω =
(x1, . . . ,xn, . . .) ∈ Ω be any outcome sequence that is computably random for γ , and let f be any
computable gamble on {0,1}. If S : Ω♦ → {0,1} is any computable selection process such that
∑

n
k=0 S(x1, . . . ,xk)→+∞, then also

liminf
n→+∞

∑
n−1
k=0 S(x1, . . . ,xk)

[
f (xk+1)−Eγ(x1,...,xk)( f )

]
∑

n−1
k=0 S(x1, . . . ,xk)

≥ 0.

7. Constant interval forecasts

We now introduce a significant simplification. For any interval I ∈C , we let γ I be the corresponding
stationary forecasting system that assigns the same interval forecast I to all nodes: γ I(s) := I for all
s ∈ Ω♦. In this way, with any outcome sequence ω , we can associate the collection of all interval
forecasts for which the corresponding stationary forecasting system makes ω computably random:

CC(ω) := {I ∈ C : γ I ∈ ΓC(ω)}= {I ∈ C : γ I makes ω computably random}.

As an immediate consequence of Propositions 4 and 5, we find that this set of intervals is non-empty
and increasing.

Proposition 9 (Non-emptiness) For all ω ∈Ω, [0,1]∈CC(ω), so any sequence of outcomes ω has
at least one stationary forecast that makes it computably random: CC(ω) 6= /0.

Proposition 10 (Increasingness) Consider any ω ∈ Ω and any I,J ∈ C . If I ∈ CC(ω) and I ⊆ J,
then also J ∈ CC(ω).

Theorem 8 implies the following property. However, quite remarkably, and seemingly in contrast
with Theorem 8, it does not require any computability assumptions on the (stationary) forecasts.

Corollary 11 (Church randomness) Consider any outcome sequence ω = (x1, . . . ,xn, . . .) in Ω

and any stationary interval forecast I = [p, p]∈CC(ω) that makes ω computably random. Then for
any computable selection process S : Ω♦→{0,1} such that ∑

n
k=0 S(x1, . . . ,xk)→+∞:

p ≤ liminf
n→+∞

∑
n−1
k=0 S(x1, . . . ,xk)xk+1

∑
n−1
k=0 S(x1, . . . ,xk)

≤ limsup
n→+∞

∑
n−1
k=0 S(x1, . . . ,xk)xk+1

∑
n−1
k=0 S(x1, . . . ,xk)

≤ p.

The following proposition can of course be straightforwardly extended to any finite number of
interval forecasts, and guarantees, together with Proposition 10, that CC(ω) is a set filter.

Proposition 12 For any ω ∈Ω and any two interval forecasts I and J: if I ∈CC(ω) and J ∈CC(ω)
then I∩ J 6= /0, and I∩ J ∈ CC(ω).
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This result also tells us that the collection CC(ω) of closed subsets of the compact set [0,1] has the
finite intersection property, and its intersection is therefore a non-empty closed interval:

⋂
CC(ω) =

[p
C
(ω), pC(ω)]. Propositions 10 and 12 guarantee that all intervals [p

C
(ω)− ε1, pC(ω)+ ε2] in C

with ε1,ε2 > 0 belong to CC(ω). But we will see in the next section that this does not generally
hold for ε1 = 0 and/or ε2 = 0. For this reason, we now define the following two subsets of [0,1]:

LC(ω) := {min I : I ∈ CC(ω)} and UC(ω) := {max I : I ∈ CC(ω)}.

Then Proposition 10 guarantees that LC(ω) is a decreasing set, and that UC(ω) is increasing. They
are therefore both subintervals of [0,1]. Obviously, p

C
(ω) = supLC(ω) and pC(ω) = infUC(ω). On

the one hand clearly LC(ω) = [0, p
C
(ω)) or LC(ω) = [0, p

C
(ω)], and on the other hand UC(ω) =

(pC(ω),1] or UC(ω) = [pC(ω),1]. Proposition 12 easily allows us to give the following simple
description of the set CC(ω) in terms of LC(ω) and UC(ω):

I ∈ CC(ω)⇔
(

min I ∈ LC(ω) and max I ∈UC(ω)
)
.

A trivial example is given by:

Proposition 13 If the sequence ω is computable with infinitely many zeroes and ones, then CC(ω)=
{[0,1]}, and therefore LC(ω) = {0}, UC(ω) = {1}, p

C
(ω) = 0 and pC(ω) = 1.

At the other extreme, there are the sequences ω that are computably random for some precise
stationary forecasting system γ{p}, with p∈ [0,1]. They are amongst the random sequences that have
received most attention in the literature, thus far. For any such sequence, CC(ω) = {I ∈ C : p ∈ I},
LC(ω) = [0, p] and UC(ω) = [p,0], and therefore also p

C
(ω) = pC(ω) = p.

We show in the next section that, in between these extremes of total imprecision and maximal
precision, there lies a—to the best of our knowledge—previously uncharted realm of sequences,
with similar (and even in some sense ‘larger’) unpredictability than the ones traditionally called
‘computably random’, for which LC(ω) and UC(ω) need not always be closed, and more import-
antly, for which 0 < p

C
(ω) < pC(ω) < 1. This is what we mean when we claim that ‘computable

randomness is inherently imprecise’.

8. Randomness is inherently imprecise

Our work on imprecise Markov chains (De Cooman et al., 2016) has taught us that in some cases, we
can very efficiently compute tight bounds on expectations in non-stationary precise Markov chains,
by replacing them with their stationary imprecise versions. Similarly, in statistical modelling, when
learning from data sampled from a distribution with a varying (non-stationary) parameter, it seems
hard to estimate the exact time sequence of its values. But we may be more successful in learning
about its (stationary) interval range. This idea was also considered earlier by Fierens et al. (2009),
when they argued for a frequentist interpretation of imprecise probability models based on non-
stationarity.

In this section, we exploit this idea, by showing that randomness associated with non-stationary
precise forecasting systems can be captured by a stationary forecasting system, which must then be
less precise: we gain simplicity of representation, but pay for it by losing precision.

We begin with a simple example. Consider any p and q in [0,1] with p ≤ q, and any outcome
sequence ω = (x1, . . . ,xn, . . .) that is computably random for the forecasting system γp,q that is
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defined by

γp,q(z1, . . . ,zn) :=

{
p if n is odd
q if n is even

for all (z1, . . . ,zn) ∈Ω
♦.

We know from Corollary 7 that there is at least one such outcome sequence. It turns out that the
stationary forecasting systems that make such ω computably random have a simple characterisation:

Proposition 14 Consider any ω that is computably random for the forecasting system γp,q. Then
for all I ∈ C , I ∈ CC(ω)⇔ [p,q]⊆ I.

Its proof relies on a very simple argument involving Corollary 11. This result implies in particular
also that LC(ω) = [0, p], UC(ω) = [q,1], p

C
(ω) = p and pC(ω) = q.

Next, we turn to a more complicated example, where we look at sequences that are ‘nearly’
computably random for the stationary precise forecast 1/2, but not quite. This example was inspired
by the ideas involving Hellinger-like divergences in a beautiful paper by Vovk (2009).

Consider the following sequence {pn}n∈N of precise forecasts:

pn :=
1
2
+(−1)n

δn, with δn := e−
1

n+1

√
e

1
n+1 −1 for all n ∈ N,

converging to 1/2. Observe that the sequence δn is decreasing towards its limit 0 and that δn ∈ (0, 1/2)
and pn ∈ (0,1), for all n ∈ N. Now consider any outcome sequence ω = (x1, . . . ,xn, . . .) that is
computably random for the precise forecasting system γ∼1/2 that is defined by

γ∼1/2(z1, . . . ,zn−1) := pn for all n ∈ N and (z1, . . . ,zn−1) ∈Ω
♦.

We know from Corollary 7 that there is at least one such outcome sequence. It turns out that the
stationary forecasting systems that make such ω computably random have a simple characterisation:

Proposition 15 Consider any ω that is computably random for the forecasting system γ∼1/2. Then
for all I ∈ C , I ∈ CC(ω) if and only if min I < 1/2 and max I > 1/2.

This result implies in particular that LC(ω) = [0, 1/2), UC(ω) = (1/2,1] and p
C
(ω) = pC(ω) = 1/2.

9. Conclusion

Even with the limited number of examples we have been able to examine in this paper, it becomes
apparent that incorporating imprecision in the study of randomness allows for much more math-
ematical structure to arise, which we would argue lets us better understand and place the existing
results in the precise limit.

In our argumentation that ‘randomness is inherently imprecise’, we are well aware that we are
restricting ourselves to stationary forecasts. Our examples in Section 8 all involve sequences that
are computably random for a precise non-stationary forecasting system, but no longer computably
random for any stationary precise variant. To make our claim irrefutable, we would have to show
that there are sequences that are computably random for forecasting systems more precise than
the vacuous one, but not for any (computable) precise forecasting system. Or in other words, that
there is ‘randomness’ or ‘unpredictability’ that cannot be ‘explained’ by any non-stationary (com-
putable) precise forecasting system. We will of course keep this challenge foremost in our minds.
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Nevertheless, the examples in Section 8 do indicate that it is in some ways possible to replace an
‘explanation’ by a complex non-stationary precise forecasting model by a(n infinite filter of) more
imprecise stationary one(s).

This work may seem promising, but we are well aware that it is only a humble beginning. We
see many extensions in many directions. First of all, we want to find out if our approach can also
be used to find interval versions of Martin-Löf and Schnorr randomness (Ambos-Spies and Kucera,
2000; Bienvenu et al., 2009) with similarly interesting properties and conclusions. Secondly, our
preliminary exploration suggests that it will be possible to formulate equivalent randomness defin-
itions in terms of randomness tests, rather than supermartingales, but this needs to be checked in
much more detail. Thirdly, the approach we follow here is not prequential: we assume that our
Forecaster specifies an entire forecasting system γ , or in other words an interval forecast in all pos-
sible situations (x1, . . . ,xn), rather than only interval forecasts in those situations z1, . . . ,zn of the
sequence ω = (z1, . . . ,zn, . . .) whose potential randomness we are considering. The prequential ap-
proach, which we eventually will want to come to, looks at the randomness of a sequence of interval
forecasts and outcomes (I1,z1, I2,z2, . . . , In,zn, . . .), where each Ik is an interval forecast for the as
yet unknown Xk, which is afterwards revealed to be zk, without the need of specifying forecasts in
situations that are never reached; see the paper by Vovk and Shen (2010) for an account of how
this works for precise forecasts. Fourthly, we need to connect our work with earlier approaches
to associating imprecision with randomness (Walley and Fine, 1982; Fierens et al., 2009; Fierens,
2009; Gorban, 2016). And finally, and perhaps most importantly, we believe this research could be
a very early starting point for an approach to statistics that takes imprecise or set-valued parameters
more seriously, when learning from finite amounts of data.
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