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We justify and discuss expressions for joint lower and upper expectations in imprecise 
probability trees, in terms of the sub- and supermartingales that can be associated with 
such trees. These imprecise probability trees can be seen as discrete-time stochastic 
processes with finite state sets and transition probabilities that are imprecise, in the sense 
that they are only known to belong to some convex closed set of probability measures. We 
derive various properties for their joint lower and upper expectations, and in particular a 
law of iterated expectations. We then focus on the special case of imprecise Markov chains, 
investigate their Markov and stationarity properties, and use these, by way of an example, 
to derive a system of non-linear equations for lower and upper expected transition and 
return times. Most importantly, we prove a game-theoretic version of the strong law of 
large numbers for submartingale differences in imprecise probability trees, and use this to 
derive point-wise ergodic theorems for imprecise Markov chains.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In Ref. [3], De Cooman and Hermans made a first attempt at laying the foundations for a theory of discrete-event (and 
discrete-time) stochastic processes that are governed by sets of, rather than single, probability measures. They showed 
how this can be done by connecting Walley’s [23] theory of coherent lower previsions with ideas and results from Shafer 
and Vovk’s [17] game-theoretic approach to probability theory. In later papers, De Cooman et al. [7] applied these ideas 
to finite-state discrete-time Markov chains, inspired by the work of Hartfiel [11]. They showed how to perform efficient 
inferences in, and proved a Perron–Frobenius-like theorem for, so-called imprecise Markov chains, which are finite-state 
discrete-time Markov chains whose transition probabilities are imprecise, in the sense that they are only known to belong 
to a convex closed set of probability measures—typically due to partial assessments involving probabilistic inequalities. This 
work was later refined and extended by Hermans and De Cooman [12] and Škulj and Hable [22].

The Perron–Frobenius-like theorems in these papers give equivalent necessary and sufficient conditions for the un-
certainty model—a set of probabilities—about the state Xn to converge, for n → +∞, to an uncertainty model that is 
independent of the uncertainty model for the initial state X1.

In Markov chains with ‘precise’ transition probabilities, this convergence behaviour is sufficient for a point-wise ergodic 
theorem to hold, namely that:
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lim
n→+∞

1

n

n∑
k=1

f (Xk) = E∞( f ) almost surely (1)

for all real functions f on the finite state set X , where E∞ is the limit expectation operator that the expectation opera-
tors En for the state Xn at time n converge to point-wise, independently of the initial model E1 for X1, according to the 
classical Perron–Frobenius Theorem.1

One of the aims of the present paper is to extend this result to a version for imprecise Markov chains; see Theorem 32
further on. In contradistinction with the so-called Markov set-chains more commonly encountered in the literature [10,9,11], 
our imprecise Markov chains are not merely collections of (precise) Markov chains—incidentally, for such Markov set-chains, 
proving an ergodic theorem would be a fairly trivial affair, as it would amount to applying the classical point-wise ergodic 
theorem to each of the Markov chains in the collection. Rather, as we will explain in Section 6, our imprecise Markov chains 
correspond to a collection of stochastic processes that need not satisfy the Markov property. They are only ‘superficially 
Markov’, in the sense that their sets of transition probabilities satisfy a Markov condition, whereas the individual members 
of those sets need not. In other words, imprecise Markov chains are not simply collections of precise Markov chains, but 
rather correspond to collections of general stochastic processes whose transition models belong to sets that satisfy a Markov 
condition.

We are aware of one other ergodicity result for imprecise probability models, which is the subject of a very recent paper 
by Cerreia-Vioglio et al. [8]. It is at once more general and more restricted than our result: the context is not restricted to 
shift invariance in Markov chains, but extends to invariance under arbitrary transformations on arbitrary sample spaces. But, 
on the other hand, the (continuity) conditions imposed on the imprecise probability models are much more stringent than 
what we will require here. In summary, then, our results cannot be obtained as a special case of theirs.

How do we mean to go about proving our ergodicity result? In Section 2, we explain what we mean by imprecise 
probability models: we extend the notion of an expectation operator to so-called lower (and upper) expectation operators, 
and explain how these can be associated with (convex and closed) sets of expectation operators.

In Section 3, we explain how these generalised uncertainty models can be combined with event trees to form so-called 
imprecise probability trees, to produce a simple theory of discrete-time stochastic processes. We show in particular how to 
combine local uncertainty models associated with the nodes in the tree into global uncertainty models (global conditional 
lower expectations) about the paths in the tree, and how this procedure is related to sub- and supermartingales. We also 
indicate how it extends and subsumes the (precise-)probabilistic approach.

In Section 4 we prove a very general strong law of large numbers for submartingale differences in our imprecise proba-
bility trees. Our point-wise ergodic theorem will turn out to be a consequence of this in the particular context of imprecise 
Markov chains. Section 5 is more technical, and is devoted to extending the joint lower and upper expectations to extended 
real variables, and to proving a number of important properties for them, such as generalisations of well-known coherence 
properties, and a version of the law of iterated (lower) expectations.

We explain what imprecise Markov chains are in Section 6: how they are special cases of imprecise probability trees, 
how to do efficient inference for them, and how to define Perron–Frobenius-like behaviour. We generalise existing re-
sults [7] about global lower expectations in such imprecise Markov trees from a finite to an infinite time horizon, and from 
bounded real argument functions to extended real-valued ones. We also explore the influence of time shifts on the global 
(conditional) lower expectations, investigate their Markov properties, prove various corollaries of the law of iterated lower 
expectations, and discuss stationarity and its relation with Perron–Frobenius-like behaviour. As an illustration of the power 
of our approach, we derive in Section 7 a system of non-linear equations for lower and upper expected transition and return 
times, and solve it in special case.

In Section 8 we show that there is an interesting identity between the time averages that appear in our strong law of 
large numbers, and the ones that appear in the point-wise ergodic theorem. The discussion in Section 9 first focusses on a 
number of terms in this identity, and investigates their convergence for Perron–Frobenius-like imprecise Markov chains. This 
allows us to use the identity to prove two versions of the point-wise ergodic theorem: one for functions of a single state 
(Theorem 32) and its extension (Corollary 34) to functions of a finite number of states. We briefly discuss their significance 
in Section 10.

Some of the results in this paper have already been discussed—without proofs—in an earlier conference version [6]. This 
paper significantly extends the earlier version.

2. Basic notions from imprecise probabilities

Let us begin with a brief sketch of a few basic definitions and results about imprecise probabilities. For more details, we 
refer to Walley’s [23] seminal book, as well as more recent textbooks [1,20].

Suppose a subject is uncertain about the value that a variable Y assumes in a non-empty set of possible values Y . He 
is therefore also uncertain about the value f (Y ) a so-called gamble—a bounded real-valued function— f : Y →R on the set 

1 Actually, much more general results can be proved, for functions f that do not depend on a single state only, but on the entire sequence of states; see 
for instance Ref. [13, Chapter 20]. In this paper, we will focus on the simpler version, but we will show that it can be extended to functions on a finite 
number of states.
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Y assumes in R. We will also call such an f a gamble on Y when we want to make explicit what variable Y the gamble f
is intended to depend on. The subject’s uncertainty is modelled by a lower expectation2 E , which is a real functional defined 
on the set G (Y ) of all gambles on the set Y , satisfying the following basic so-called coherence axioms:

LE1. E( f ) ≥ inf f for all f ∈ G (Y ); [bounds]
LE2. E( f + g) ≥ E( f ) + E(g) for all f , g ∈ G (Y ); [superadditivity]
LE3. E(λ f ) = λE( f ) for all f ∈ G (Y ) and real λ ≥ 0. [non-negative homogeneity]

One—but by no means the only3—way to interpret E( f ) is as a lower bound on the expectation E( f ) of the gamble f (Y ). 
The corresponding upper bounds are given by the conjugate upper expectation E , defined by E( f ) := −E(− f ) for all f ∈
G (Y ). It follows from the coherence axioms LE1–LE3 that

LE4. E( f ) ≤ E(g) and E( f ) ≤ E(g) for all f , g ∈ G (Y ) with f ≤ g;
LE5. inf f ≤ E( f ) ≤ E( f ) ≤ sup f for all f ∈ G (Y );
LE6. E( f + g) ≤ E( f ) + E(g) for all f , g ∈ G (Y ); [subadditivity]
LE7. E(λ f ) = λE( f ) for all f ∈ G (Y ) and real λ ≥ 0. [non-negative homogeneity]
LE8. E( f + μ) = E( f ) + μ and E( f + μ) = E( f ) + μ for all f ∈ G (Y ) and real μ.

Lower and upper expectations will be the basic uncertainty models we consider in this paper.
The indicator IA of an event A—a subset of Y —is the gamble on Y that assumes the value 1 on A and 0 outside A. It 

allows us to introduce the lower and upper probabilities of the event A as P (A) := E(IA) and P (A) := E(IA), respectively. They 
can be seen as lower and upper bounds on the probability P (A) of A, and satisfy the conjugacy relation P (A) = 1 − P (Y \ A).

When the lower bound E coincides with the upper bound E , the resulting functional E := E = E satisfies the defining 
axioms of an expectation:

E1. E( f ) ≥ inf f for all f ∈ G (Y ); [bounds]
E2. E( f + g) = E( f ) + E(g) for all f , g ∈ G (Y ); [additivity]
E3. E(λ f ) = λE( f ) for all f ∈ G (Y ) and real λ. [homogeneity]

When Y is finite, E is trivially the expectation associated with a (probability) mass function p defined by p(y) := P ({y}) =
P ({y}) for all y ∈ Y , because it follows from the expectation axioms that then E( f ) = ∑

y∈Y f (y)p(y); see for instance 
also the detailed discussion in Ref. [20].

With any lower expectation E , we can always associate the following convex and closed4 set of compatible expectations:

M(E) := {E expectation : (∀ f ∈ G (Y ))E( f ) ≤ E( f ) ≤ E( f )}, (2)

and the properties LE1–LE3 then guarantee that

E( f ) = min {E( f ) : E ∈M(E)} and E( f ) = max {E( f ) : E ∈ M(E)} for all f ∈ G (Y ). (3)

In this sense, an imprecise probability model E can always be identified with a closed convex set M(E) of compatible 
‘precise’ probability models E .

3. Discrete-time finite-state imprecise stochastic processes

We consider a discrete-time process as a sequence of variables, henceforth called states, X1, X2, . . . , Xn , . . . , where the 
state Xk at time k is assumed to take values in a non-empty finite set Xk .

3.1. Event trees, situations, paths and cuts

We will use, for any natural k ≤ �, the notation Xk:� for the tuple (Xk, . . . , X�), which can be seen as a variable assumed 
to take values in the Cartesian product set Xk:� := ×�

r=kXr . We denote the set of all natural numbers (without 0) by N, and 
let N0 := N ∪ {0}.

We call any x1:n ∈ X1:n for n ∈ N0 a situation and we denote the set of all situations by �♦ . So any situation is a finite 
string of possible values for the consecutive states, and if we denote the empty string by �, then in particular, X1:0 = {�}. 
� is called the initial situation. We also use the generic notations s, t or u for situations.

2 In the literature [23,1,20], other names, such as coherent lower expectation, or coherent lower prevision, have also been given to this concept.
3 See Refs. [23,16,20] for other interpretations.
4 The ‘closedness’ is associated with the weak* topology of point-wise convergence [23, Section 3.6].
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Fig. 1. The (initial part of the) event tree for a process whose states can assume two values, a and b, and can change at time instants n = 1, 2, 3, . . . . Each 
node in the tree corresponds to a situation. Also depicted are the respective sets of situations (cuts) X1:1, X1:2 and X1:3 where the states at times 1, 2
and 3 are revealed.

An infinite sequence of state values is called a path, and we denote the set of all paths—also called the sample 
space—by �. Hence

�♦ :=
⋃

n∈N0

X1:n and � := ×∞
r=1Xr .

We will denote generic paths by ω. For any path ω ∈ �, the initial sequence that consists of its first n elements is a 
situation in X1:n that is denoted by ωn . Its n-th element belongs to Xn and is denoted by ωn . As a convention, we let its 
0-th element be the initial situation ω0 = ω0 = �. The possible realisations ω of a process can be represented graphically 
as paths in a so-called event tree, where each node is a situation; see Fig. 1.

We write that s 
 t , and say that s precedes t or that t follows s, when every path that goes through t also goes through s. 
The binary relation 
 is a partial order, and we write s � t whenever s 
 t but not s = t . We say that s and t are incompa-
rable when neither s 
 t nor t 
 s.

A (partial) cut U is a collection of mutually incomparable situations, and represents a stopping time. For any two cuts U
and V , we define the following sets of situations:

[U , V ] :={s ∈ �♦ : (∃u ∈ U )(∃v ∈ V )u 
 s 
 v}, [U , V ) := {s ∈ �♦ : (∃u ∈ U )(∃v ∈ V )u 
 s � v},
(U , V ] :={s ∈ �♦ : (∃u ∈ U )(∃v ∈ V )u � s 
 v}, (U , V ) := {s ∈ �♦ : (∃u ∈ U )(∃v ∈ V )u � s � v}.

When a cut U consists of a single element u, then we will identify U = {u} and u. This slight abuse of notation will for 
instance allow us to write [u, v] = {s ∈ �♦ : u 
 s 
 v} and also (U , v) = {s ∈ �♦ : (∃u ∈ U )u � s � v}. We also write U � V
if (∀v ∈ V )(∃u ∈ U )u � v . Observe that in that case U ∩ V = ∅. In particular, s � U when there is some u ∈ U such that 
s � u, or in other words if [U , s) �= ∅.

3.2. Processes

A process F is a map defined on �♦ . A real process is a real-valued process: it associates a real number F (x1:n) ∈ R

with any situation x1:n . It is called bounded below if there is some real B such that F (s) ≥ B for all situations s ∈ �♦ , and 
bounded above if −F is bounded below.

A gamble process D is a process that associates with any situation x1:n a gamble D(x1:n) ∈ G (Xn+1) on Xn+1. It is called 
uniformly bounded if there is some real B such that |D(s)| ≤ B for all situations s ∈ �♦ . With any real process F , we 
can always associate a gamble process �F , called the process difference. For every situation x1:n , the gamble �F (x1:n) ∈
G (Xn+1) is defined by5

�F (x1:n)(xn+1) := F (x1:n+1) − F (x1:n) for all xn+1 ∈ Xn+1.

We will denote this more succinctly by �F (x1:n) = F (x1:n ·) − F (x1:n), where the ‘·’ represents the generic value of the 
next state Xn+1.

Conversely, with a gamble process D , we can associate a real process I D , defined by

I D (x1:n) :=
n−1∑
k=0

D(x1:k)(xk+1) for all n ∈N0 and x1:n ∈ X1:n.

Clearly, �I D = D and F = F (�) + I �F .

5 Our assumption that Xn+1 is finite is crucial here because it guarantees that �F (x1:n) is bounded, which in turn implies that it is indeed a gamble.
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Fig. 2. The (initial part of the) imprecise probability tree for a process whose states can assume two values, a and b, and can change at time instants 
n = 1, 2, 3, . . . .

Also, with any real process F we can associate the path-averaged process �F �, which is the real process defined by:

�F �(x1:n) :=
⎧⎨
⎩

0 if n = 0∑n−1
k=0 �F (x1:k)(xk+1)

n
if n > 0

for all n ∈N0 and x1:n ∈ X1:n.

We can generalise this notion of path-averaging even further as follows. Consider any real process S that only assumes 
values in {0, 1}. Then the S -averaged process �F �S is the real process defined by:

�F �S (x1:n) :=

⎧⎪⎨
⎪⎩

0 if
∑n−1

k=0 S (x1:k) = 0∑n−1
k=0 S (x1:k)�F (x1:k)(xk+1)∑n−1

k=0 S (x1:k)
if

∑n−1
k=0 S (x1:k) > 0

for all n ∈N0 and x1:n ∈ X1:n.

Of course, if S is identically equal to 1 in all situations, then �F �S = �F �. In order to unburden our formulas somewhat, 
we will permit ourselves the slight abuse of notation I S (x1:n) := ∑n−1

k=0 S (x1:k) for all n ∈N0 and x1:n ∈ X1:n .

3.3. Imprecise probability trees, submartingales and supermartingales

The standard way to turn an event tree into a probability tree is to attach to each of its nodes, or situations x1:n , a local
probability model Q (·|x1:n) for what will happen immediately afterwards, i.e. for the value that the next state Xn+1 will 
assume in Xn+1. This local model Q (·|x1:n) is then an expectation operator on the set G (Xn+1) of all gambles g(Xn+1)

on the next state Xn+1, conditional on observing X1:n = x1:n . For fixed x1:n , it has all the usual properties of an expectation 
operator.

In a completely similar way, we can turn an event tree into an imprecise probability tree by attaching to each of its 
situations x1:n a local imprecise probability model Q (·|x1:n) for what will happen immediately afterwards, i.e. for the value 
that the next state Xn+1 will assume in Xn+1. This local model Q (·|x1:n) is then a lower expectation operator on the set 
G (Xn+1) of all gambles g(Xn+1) on the next state Xn+1, conditional on observing X1:n = x1:n . For fixed x1:n , it has all the 
usual properties of a lower expectation operator. This is represented graphically in Fig. 2.

In a given imprecise probability tree, a submartingale M is a real process for which it holds that Q (�M (x1:n)|x1:n) ≥ 0
for all n ∈ N0 and x1:n ∈ X1:n: all submartingale differences have non-negative lower expectation. A real process M is a 
supermartingale if −M is a submartingale, meaning that Q (�M (x1:n)|x1:n) ≤ 0 for all n ∈ N0 and x1:n ∈ X1:n: all super-
martingale differences have non-positive upper expectation. We denote the set of all submartingales for a given imprecise 
probability tree by M—whether a real process is a submartingale depends of course on the local uncertainty models. The set 
of all submartingales that are bounded above is denoted by M b. Similarly, the set M := −M is the set of all supermartin-
gales, and Mb := −M b the set of all supermartingales that are bounded below.

In the present context of probability trees, we will also call variable any function defined on the so-called sample 
space—the set � of all paths. When this variable is real-valued and bounded, we will also call it a gamble on �. When 
it is extended real-valued, meaning that it assumes values in the set R∗ := R ∪ {−∞,+∞}, we call in an extended real 
variable. An event A in this context is a subset of �, and its indicator IA is a gamble on � assuming the value 1 on A and 
0 elsewhere. With any situation x1:n , we can associate the so-called exact event �(x1:n) that X1:n = x1:n , which is the set of 
all paths ω ∈ � that go through x1:n:

�(x1:n) := {ω ∈ � : ωn = x1:n}.
We will also use the generic notation ‘x1:n •’ for all such paths in �(x1:n). For a given n ∈ N0, we call a variable ξ

n-measurable if it is constant on the exact events �(x1:n) for all x1:n ∈ X1:n , or in other words, if it only depends on 
the values of the first n states X1:n . We then use the obvious notation ξ(x1:n) for its constant value ξ(ω) on all paths ω in 
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�(x1:n). In particular, this means that we can—and will—identify an n-measurable gamble g on � with a gamble on X1:n , 
and write that g ∈ G (X1:n).

We will also use a convenient notational device often encountered in texts on stochastic processes: when we want 
to indicate which states a process or variable depends on, we indicate them explicitly in the notation. Thus, we use for 
instance the notation F (X1:n) to indicate the ‘uncertain’ value of the process F after the first n time steps, write f (Xn)

for a variable that only depends on the value of the n-th state, and similarly g(X1:n) for a variable that only depends on the 
values of the first n states.

With a real process F , we can associate in particular the following extended real variables lim inf F and lim sup F , 
defined for all ω ∈ � by:

lim inf F (ω) := lim inf
n→∞ F (ωn) and lim sup F (ω) := lim sup

n→∞
F (ωn).

If lim inf F (ω) = lim sup F (ω) on some path ω, then we also denote the common value there by limF (ω) =
limn→∞ F (ωn).

The following useful result is a variation on a result proved in Ref. [18, Lemma 1], and is similar in spirit to a result 
proved earlier in Ref. [3, Lemma 2].

Lemma 1. Consider any submartingale M and any situation s ∈ �♦ , then:

M (s) ≤ sup
ω∈�(s)

lim inf M (ω) ≤ sup
ω∈�(s)

lim sup M (ω).

Proof. Consider any real α, and assume that M (s) > α. Assume that s = x1:n with n ∈ N0. Since M is a submartingale, we 
know that Q (M (x1:n ·) − M (x1:n)|x1:n) ≥ 0, and therefore, by coherence [LE5 and LE8] and the assumption, that

max M (x1:n ·) ≥ Q (M (x1:n ·)|x1:n) ≥ M (x1:n) > α,

implying that there is some xn+1 ∈ Xn+1 such that M (x1:n+1) > α. Repeating the same argument over and over again, this 
leads to the conclusion that there is some ω ∈ �(x1:n) such that M (ωn+k) > α for all k ∈ N0, whence lim inf M (ω) ≥ α, 
and therefore also supω∈�(x1:n) lim inf M (ω) ≥ α. The rest of the proof is now immediate. �
3.4. Going from local to global belief models

So far, we have associated local uncertainty models with an imprecise probability tree. These represent, in any situa-
tion x1:n , beliefs about what will happen immediately afterwards, or in other words about the step from x1:n to x1:n Xn+1.

We now want to turn these local models into global ones: uncertainty models about which entire path ω is taken in the 
event tree, rather than which local steps are taken from one situation to the next. We will use the following expression for 
the global lower expectation conditional on the situation s:

E(g|s) := sup {M (s) : M ∈M and lim sup M (ω) ≤ g(ω) for all ω ∈ �(s)}, (4)

and for the conjugate global upper expectation conditional on the situation s:

E(g|s) := inf {M (s) : M ∈ M and lim inf M (ω) ≥ g(ω) for all ω ∈ �(s)} (5)

= − E(−g|s),
where g is any gamble on �, and s ∈ �♦ any situation. We use the simplified notations E = E(·|�) and E = E(·|�) for the 
(unconditional) global models, associated with the initial situation �.

Our reasons for using these so-called Shafer–Vovk–Ville formulae6 are fourfold.
First of all, they are formally very closely related to the expressions for lower and upper prices in Shafer and Vovk’s 

game-theoretic approach to probabilities, see for instance Refs. [17, Chapter 8.3] and [21, Section 6.3]. This allows us to 
import and adapt, with the necessary care, quite a number of powerful convergence results from that theory, as we will see 
in Section 4. Moreover, Shafer and Vovk (see for instance Refs. [17, Proposition 8.8] and [21, Section 6.3]) have shown that 
they satisfy our defining properties for lower and upper expectations in Section 2, which is why we are calling them lower 
and upper expectations; see also Proposition 14 further on.

Secondly, as we gather from the following proposition and corollary, the expressions (4) and (5) coincide for 
n-measurable gambles on � with the formulae derived in Ref. [3] as the most conservative7 global lower and upper expec-
tations that extend the local models.8

6 We give this name to these formulae because Glenn Shafer and Vladimir Vovk first suggested them, based on the ideas of Jean Ville; see the discussion 
of Ville’s Theorem in Ref. [17, Appendix 8.5].

7 By more conservative, we mean associated with a larger set of precise models, so point-wise smaller for lower expectations, and point-wise larger for 
upper expectations.

8 We have also shown in recent, still unpublished work that in a more general context—where Xk takes values in a possibly infinite set Xk—for arbitrary 
gambles on � they are the most conservative global models that extend the local ones and satisfy additional conglomerability and continuity properties.
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Proposition 2. For any situation x1:m ∈ �♦ and any n-measurable gamble g on �, with n, m ∈N0 such that n ≥ m:

E(g|x1:m) = sup {M (x1:m) : M ∈M and (∀xm+1:n ∈ Xm+1:n)M (x1:n) ≤ g(x1:n)}
E(g|x1:m) = inf {M (x1:m) : M ∈M and (∀xm+1:n ∈ Xm+1:n)M (x1:n) ≥ g(x1:n)}.

Proof. This is an immediate consequence of Proposition 11 in Section 5. �
Corollary 3. Consider any n ∈N0 , any situation x1:n ∈ �♦ , and any (n + 1)-measurable gamble g on �. Then

E(g|x1:n) = Q (g(x1:n ·)|x1:n) and E(g|x1:n) = Q (g(x1:n ·)|x1:n).

Proof. We give the proof for the lower expectation; the proof for the upper expectation is completely similar.
First, consider any M ∈ M such that M (x1:n ·) ≤ g(x1:n ·), then it follows from coherence [LE4 and LE8] and the sub-

martingale character of M that

Q (g(x1:n ·)|x1:n) ≥ Q (M (x1:n ·)|x1:n) ≥ M (x1:n),

so Proposition 2 guarantees that E(g|x1:n) ≤ Q (g(x1:n ·)|x1:n).
To show that the inequality is actually an equality, consider any submartingale M such that M (x1:n) = Q (g(x1:n ·)|x1:n)

and M (x1:n ·) = g(x1:n ·). �
Thirdly, it is (essentially) the expressions in Proposition 2 that we have used in Ref. [7,12,22] for our studies of imprecise 

Markov chains, which we report in Section 6. The main result of the present paper, Theorem 32 in Section 9, will build on 
the Perron–Frobenius-like results proved in those papers.

Fourthly, it was also shown in Ref. [3] that the expressions in Proposition 2 have an interesting interpretation in terms 
of (precise) probability trees. Indeed, we can associate with an imprecise probability tree a (usually infinite) collection 
of (so-called compatible) precise probability trees with the same event tree, by associating with each situation s in the 
event tree some arbitrarily chosen precise local expectation Q (·|s) that belongs to the convex closed set M(Q (·|s)) of 
expectations that are compatible with the local lower expectation Q (·|s). For any n-measurable gamble f on �, the global 
precise expectations in the compatible precise probability trees will then range over a closed interval whose lower and 
upper bounds are given by the expressions in Proposition 2.

And finally, Shafer and Vovk have shown [17, Chapter 8] that when the local models are precise probability models, 
these formulae (4) and (5) lead to global models that coincide with the ones found in measure-theoretic probability theory. 
This implies that the results we will prove below, subsume, as special cases, the classical results of measure-theoretic probability theory.

4. A strong law of large numbers for submartingale differences

We now discuss and prove two powerful convergence results for the processes we have defined in the previous section.
We call an event A null if P (A) = E (IA) = 0, and strictly null if there is some test supermartingale T that converges to 

+∞ on A, meaning that:

lim T (ω) = +∞ for all ω ∈ A.

Here, a test supermartingale is a supermartingale with T (�) = 1 that is moreover non-negative in the sense that T (s) ≥ 0
for all situations s ∈ �♦ . Any strictly null event is null, but null events need not be strictly null [21].

Proposition 4. Any strictly null event is null, but not vice versa.9

Proof. Consider any event A. Recall the following expression for P (A):

P (A) = E(IA) = inf {M (�) : M ∈M and lim inf M ≥ IA}. (6)

Also, consider any supermartingale M such that lim inf M ≥ IA , then it follows from Lemma 1 and the fact that −M is a 
submartingale that

M (�) ≥ inf
ω∈�

lim inf M (ω) ≥ inf
ω∈�

IA(ω) ≥ 0. (7)

Combined with Equation (6), this implies that P (A) ≥ 0.10

9 We infer from the proof that for the null and strictly null events to be the same, it is necessary to consider supermartingales that may assume extended 
real values, as is done in Refs. [21,18]. We see no need for doing so in the context of the present paper.
10 This will also follow from LE∗5 further on.
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We are now ready for the proof. Assume that A is strictly null, so there is some test supermartingale T that converges 
to +∞ on A. Then for any α > 0, αT is a supermartingale such that lim inf(αT ) ≥ IA , and therefore we infer that 
0 ≤ P (A) ≤ αT (�) = α, where the second inequality follows from Equation (6). Since this holds for all α > 0, we find that 
P (A) = 0.

To show that not every null event is strictly null, we show that while an exact event may be null, it can never be strictly 
null.

First, we show that exact events may be null. Consider any situation x1:n+1, with n ∈ N0, such that Q (I{xn+1}|x1:n) = 0, 
then we show that P (�(x1:n+1)) = 0. Indeed, consider the real process M that assumes the value 1 in all situations that 
follow (or coincide with) x1:n+1, and 0 elsewhere. Then clearly M (�) = 0, lim infM = I�(x1:n+1) and M is a supermartingale 
because Q (M (x1:n ·)|x1:n) = Q (I{xn+1}|x1:n) = 0 = M (x1:n). Equation (6) now implies that P (�(x1:n+1)) ≤ 0 and therefore—
since we already know that P (�(x1:n+1)) ≥ 0—that P (�(x1:n+1)) = 0.

Next, if �(s) were strictly null, there would be a test supermartingale M that converges to +∞ on �(s), and there-
fore Lemma 1 and the fact that −M is a submartingale would imply that M (s) ≥ infω∈�(s) lim inf M (ω) = +∞, which is 
impossible for the real process M . �

In this paper, we will use the ‘strict’ approach, and prove that events are strictly null—and therefore also null—by actually 
showing that there is a test supermartingale that converges to +∞ there.

As usual, an inequality or equality between two variables is said to hold (strictly) almost surely when the event that it does 
not hold is (strictly) null. Shafer and Vovk [17,21] have proved the following interesting result, which we will have occasion 
to use a few times further on. It can be seen as a generalisation of Doob’s supermartingale convergence theorem [26, 
Sections 11.5–7] to imprecise probability trees. We provide its proof, adapted from Ref. [18] to our specific definitions and 
assumptions, with corrections for a few tiny glitches, for the sake of completeness.

Theorem 5 ([21, Section 6.5], Supermartingale convergence theorem). Let M be a supermartingale that is bounded below. Then M
converges strictly almost surely to a real variable.

Proof. Because M is bounded below, we may assume without loss of generality that M is non-negative and that 
M (�) = 1, as adding real constants to M , or multiplying it with positive real constants, does not affect its convergence 
properties nor—by coherence [LE3 and LE8] of the local models—the fact that it is a supermartingale. Hence, M is a test 
supermartingale. Also, because M is bounded below, it cannot converge to −∞ on any path. Let A be the event where 
M converges to +∞, and let B be the event where it diverges. We have to show that there is a test supermartingale that 
converges to +∞ on A ∪ B .

Associate with any couple of rational numbers 0 < a < b the following recursively defined sequences of cuts U a,b
k and 

V a,b
k . Let V a,b

0 := {�}, and for k ∈ N:

U a,b
k :={s � V a,b

k−1 : M (s) > b and (∀t ∈ (V a,b
k−1, s))M (t) ≤ b} (8)

V a,b
k :={s � U a,b

k : M (s) < a and (∀t ∈ (U a,b
k , s))M (t) ≥ a}. (9)

Consider the real process T a,b with the following recursive definition:

T a,b(�) := 1 and T a,b(s ·) :=
{

T a,b(s) + �M (s) if s ∈ ⋃
k∈N [V a,b

k−1, U a,b
k )

T a,b(s) otherwise.
(10)

We now show that T a,b is a test supermartingale that converges to +∞ on any path ω for which lim inf M (ω) < a < b <
lim sup M (ω).

In what follows, for any situation s and for any k ∈ N, when s � U a,b
k , we denote by us

k the (necessarily unique) situation 
in U a,b

k such that us
k � s. Similarly, for any k ∈N0, when s � V a,b

k , we denote by vs
k the (necessarily unique) situation in V a,b

k
such that vs

k � s; observe that vs
0 = �. Recall from Equations (8) and (9) that, for all k ∈ N, M (us

k) > b and M (vs
k) < a.

Since it follows from Equation (10) that �T a,b(s) is zero or equal to �M (s), it follows from coherence [LE5] and 
Q (�M (s)|s) ≤ 0 that Q (�T a,b(s)|s) ≤ 0 for all situations s, so T a,b is indeed a supermartingale.

To prove that T a,b is non-negative, we recall from Equation (10) that T a,b can only change in situations s ∈ [V a,b
k−1, U a,b

k ), 
with k ∈ N. Since T a,b(�) = 1, taking into account Lemma 6, this means that we only have to prove that T a,b(c) ≥ 0 for 
the children c of the situations s ∈ [V a,b

k−1, U a,b
k ), with k ∈ N. There are two possible cases to consider: The first case (a) is 

that s ∈ [�, U a,b
1 ). Since T a,b(�) = M (�) = 1, we gather from Equation (10) for k = 1 that then T a,b(c) = M (c) ≥ 0 for all 

children c of s. The second case (b) is that s ∈ [V a,b
k , U a,b

k+1) for some k ∈ N. We then gather from Equation (10) and Lemma 6
that for all children c of s
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T a,b(c) = T a,b(�) + [M (us
1) − M (�)] +

k∑
�=2

[M (us
�) − M (vs

�−1)] + [M (c) − M (vs
k)]

≥ b + (k − 1)(b − a) + M (c) − M (vs
k) ≥ k(b − a) + M (c) ≥ k(b − a) ≥ 0.

We conclude that T a,b is indeed non-negative.
It remains to prove that T a,b converges to +∞ on all paths ω where lim infM (ω) < a < b < lim sup M (ω). By Lemma 6, 

any such path ω goes through the entire chain of cuts V a,b
0 � U a,b

1 � V a,b
1 � · · · � U a,b

n � V a,b
n � · · · , meaning that for any 

situation s on this path ω, one of the following cases obtains. The first case is that s ∈ [�, U a,b
1 ]. We gather from the 

discussion of case (a) above that then T a,b(s) = M (s). The second case is that s ∈ (U a,b
k , V a,b

k ] for some k ∈ N. Then we 
gather from Equation (10) and Lemma 6 that

T a,b(s) = T a,b(�) + [M (us
1) − M (�)] +

k∑
�=2

[M (us
�) − M (vs

�−1)] ≥ b + (k − 1)(b − a).

And the third possible case is that s ∈ (V a,b
k , U a,b

k+1] for some k ∈ N. Then we gather from the discussion of case (b) above 
that T a,b(s) ≥ k(b − a). Since b > a, we conclude that indeed lim M (ω) = +∞.

To finish, use the countable set of rational couples K := {(a,b) ∈Q2 : 0 < a < b} to define the process T by letting 
T (�) := 1 and, for all s ∈ �♦ , �T (s) := ∑

(a,b)∈K wa,b�T a,b(s), a countable convex combination of the real numbers 
�T a,b(s), with coefficients wa,b > 0 that sum to 1. Observe that

�T (s) =
∑

(a,b)∈K

wa,b�T a,b(s) = γ (s)�M (s) ∈R,

where γ (s) ∈ [0, 1], because it follows from Equation (10) that for any (a, b) ∈ K , �T a,b(s) is equal to �M (s) or zero. As 
an immediate consequence, T is a real process and T = ∑

(a,b)∈K wa,bT a,b . Clearly, T has T (�) = 1, is non-negative 
and converges to +∞ on B . Moreover, since �T (s) = γ (s)�M (s), it follows from coherence [LE7] that Q (�T (s)|s) =
γ (s)Q (�M (s)|s) ≤ 0 for all s ∈ �♦ , so T is a test supermartingale.

Since coherence [LE6 and LE7] implies that a convex combination of two test supermartingales is again a test super-
martingale, we conclude from all these considerations that the process 1

2 (M + T ) is a test supermartingale that converges 
to +∞ on A ∪ B . �
Lemma 6. V a,b

k−1 � U a,b
k � V a,b

k for all k ∈N;

Proof. The statement follows immediately from Equations (8) and (9). The case V a,b
k−1 = ∅ presents no problem, because 

Equation (8) tells us that then U a,b
k = ∅ as well. Neither does the case U a,b

k = ∅, because Equation (9) tells us that then 
V a,b

k = ∅ as well. �
We now turn to a very general version of the strong law of large numbers. Weak (as well as less general) versions of 

this law were proved by one of us in Refs. [4,3]. It is this law that will, in Section 9, be used to derive our version of 
the point-wise ergodic theorem. Its proof is based on a tried-and-tested method for constructing test supermartingales that 
goes back to an idea in Ref. [17, Lemma 3.3].

Theorem 7. Let M be a submartingale such that �M is uniformly bounded and let S be a real process that only assumes values in 
{0, 1}. Then strictly almost surely:

lim I S = +∞ ⇒ lim inf �M �S ≥ 0.

If S is equal to 1 in all situations, then lim I S = +∞ on all paths, so the following special case is immediate.

Corollary 8 (Strong law of large numbers for submartingale differences). Let M be a submartingale such that �M is uniformly 
bounded. Then lim inf �M � ≥ 0 strictly almost surely.

Proof of Theorem 7. Consider the events A := {ω ∈ � : lim inf �M �S (ω) < 0} and D := {ω ∈ � : limI S (ω) = +∞}. We 
have to show that there is some test supermartingale T that converges to +∞ on the set D ∩ A. Let B > 0 be any uniform 
real bound on �M , meaning that |�M (s)| ≤ B for all situations s ∈ �♦ . We can always assume that B > 1.
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For any r ∈ N, let Ar := {ω ∈ � : lim inf �M �S (ω) < − 1
2r }, then A = ⋃

r∈N Ar . So fix any r ∈ N and consider any ω ∈
D ∩ Ar , then

lim inf
n→+∞ �M �S (ωn) < − 1

2r

and therefore

(∀m ∈ N)(∃nm ≥ m)�M �S (ωnm ) < − 1

2r
= −ε,

with ε := 1
2r > 0. Consider now the positive supermartingale of Lemma 9, with in particular ξ := ε

2B2 = 1
2r+1 B2 .11 Denote 

this test supermartingale by F (r)
M . It follows from Lemma 9 that

F
(r)
M (ωnm ) ≥ exp

(
I S (ωnm )

ε2

4B2

)
= exp

(
I S (ωnm )

1

22r+2 B2

)
for all m ∈N. (11)

Consider any real R > 0 and m ∈N. Since ω ∈ D , we know that limn→+∞ I S (ωn) = +∞, so there is some natural number 
m′ ≥ m such that exp

(
I S (ωm′

) 1
22r+2 B2

)
> R . Hence it follows from the statement in (11) that there is some nm′ ≥ m′ ≥

m—whence I S (ωnm′ ) ≥ I S (ωm′
)—such that

F
(r)
M (ωnm′ ) ≥ exp

(
I S (ωnm′ )

1

22r+2 B2

)
≥ exp

(
I S (ωm′

)
1

22r+2 B2

)
> R,

which implies that lim sup F (r)
M (ω) = +∞. Observe that for this test supermartingale, F (r)

M (x1:n) ≤ ( 3
2 )n for all n ∈ N0 and 

x1:n ∈ X1:n .
Now define the process FM := ∑

r∈N w(r)F (r)
M as a countable convex combination of the F (r)

M constructed above, with 
positive weights w(r) > 0 that sum to one. This is a real process, because each term in the series FM (x1:n) is non-negative, 
and moreover

FM (x1:n) ≤
∑
r∈N

w(r)F
(r)
M ≤

∑
r∈N

w(r)
(3

2

)n =
(3

2

)n
for all n ∈ N0 and x1:n ∈ X1:n.

This process is also positive, has FM (�) = 1, and, for any ω ∈ D ∩ A, it follows from the argumentation above that there 
is some r ∈ N such that ω ∈ D ∩ Ar and therefore

lim sup FM (ω) ≥ w(r) lim sup F
(r)
M (ω) = +∞,

so lim sup FM (ω) = +∞.
We now prove that FM is a supermartingale. Consider any n ∈ N0 and any x1:n ∈ X1:n , then we have to prove that 

Q (−�FM (x1:n)|x1:n) ≥ 0. Since it follows from the argumentation in the proof of Lemma 9 that

−�F
(r)
M (x1:n) = 1

2r+1 B2
F

(r)
M (x1:n)�M (x1:n) for all r ∈N,

we see that

−�FM (x1:n) = −
∑
r∈N

w(r)�F
(r)
M = �M (x1:n)

∑
r∈N

w(r)

2r+1 B2
F

(r)
M (x1:n)

︸ ︷︷ ︸
=:c(x1:n)

,

where c(x1:n) ≥ 0 must be a real number, because, using a similar argument as before

c(x1:n) =
∑
r∈N

w(r)

2r+1 B2
F

(r)
M (x1:n) ≤ L

∑
r∈N

w(r)F
(r)
M (x1:n) ≤ L

(3

2

)n

for some real L > 0. Therefore indeed, using the non-negative homogeneity of lower expectations [LE3]:

Q (−�FM (x1:n)|x1:n) = Q (c(x1:n)�M (x1:n)|x1:n) = c(x1:n)Q (�M (x1:n)|x1:n) ≥ 0,

because M is a submartingale.
Since we now know that FM is a supermartingale that is furthermore bounded below (by 0) it follows from the 

supermartingale convergence theorem (Theorem 5) that there is some test supermartingale TM that converges to +∞ on 
all paths where FM does not converge to a real number, and therefore in particular on all paths in D ∩ A. Hence D ∩ A is 
indeed strictly null. �
11 One of the requirements in Lemma 9 is that 0 < ε < B , and this is satisfied because we made sure that B > 1.
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Lemma 9. Consider any real B > 0 and any 0 < ξ < 1
B . Let M be any submartingale such that |�M | ≤ B. Let S be any real process 

that only assumes values in {0, 1}. Then the process FM defined by:

FM (x1:n) :=
n−1∏
k=0

[
1 − ξS (x1:k)�M (x1:k)(xk+1)

]
for all n ∈N0 and x1:n ∈ X1:n

is a positive supermartingale with FM (�) = 1, and therefore in particular a test supermartingale. Moreover, for ξ := ε
2B2 , with 

0 < ε < B, we have that

�M �S (x1:n) ≤ −ε ⇒ FM (x1:n) ≥ exp

(
I S (x1:n)

ε2

4B2

)
for all n ∈N0 and x1:n ∈ X1:n.

Proof. FM (�) = 1 trivially. To prove that FM is positive, consider any n ∈ N and any x1:n ∈ X1:n . Since it follows from 
0 < ξ B < 1, |�M | ≤ B and S ∈ {0, 1} that 1 − ξS (x1:k)�M (x1:k)(xk+1) ≥ 1 − ξ B > 0 for all 0 ≤ k ≤ n − 1, we see that 
indeed:

FM (x1:n) =
n−1∏
k=0

[
1 − ξS (x1:k)�M (x1:k)(xk+1)

]
> 0.

Consider any n ∈N0 and any x1:n ∈ X1:n . For any xn+1 ∈ Xn+1:

−�FM (x1:n)(xn+1) = FM (x1:n) − FM (x1:n+1) = ξS (x1:n)�M (x1:n)(xn+1)

n−1∏
k=0

[
1 − ξS (x1:k)�M (x1:k)(xk+1)

]
= ξFM (x1:n)S (x1:n)�M (x1:n)(xn+1),

implying that −�FM (x1:n) = ξS (x1:n)FM (x1:n)�M (x1:n). Since FM (x1:n) > 0, ξ > 0 and I S (x1:n) ∈ {0, 1}, it fol-
lows directly from Q (�M (x1:n)|x1:n) ≥ 0 and the non-negative homogeneity property [LE3] of a lower expectation that 
Q (−�FM (x1:n)|x1:n) ≥ 0—implying that FM is a supermartingale.

For the second statement, consider any 0 < ε < B and let ξ := ε
2B2 . Then for any n ∈ N0 and x1:n ∈ X1:n such that 

�M �S (x1:n) ≤ −ε, we have for all real K :

FM (x1:n) ≥ exp(K ) ⇔
n−1∏
k=0

[
1 − ξS (x1:k)�M (x1:k)(xk+1)

] ≥ exp(K )

⇔
n−1∑
k=0

ln
[
1 − ξS (x1:k)�M (x1:k)(xk+1)

] ≥ K . (12)

Since |�M | ≤ B , S ∈ {0, 1} and 0 < ε < B , we know that

−ξS (x1:k)�M (x1:k) ≥ −ξ B = − ε

2B
> −1

2
for 0 ≤ k ≤ n − 1.

As ln(1 + x) ≥ x − x2 for x > − 1
2 , this allows us to infer that

n−1∑
k=0

ln
[
1 − ξS (x1:k)�M (x1:k)(xk+1)

]

≥
n−1∑
k=0

[−ξS (x1:k)�M (x1:k)(xk+1) − ξ2S (x1:k)2(�M (x1:k)(xk+1))
2]

= −ξI S (x1:n)�M �S (x1:n) − ξ2
n−1∑
k=0

S (x1:k)(�M (x1:k)(xk+1))
2

≥ ξI S (x1:n)ε − ξ2I S (x1:n)B2 = I S (x1:n)ξ(ε − ξ B2) = I S (x1:n)
ε2

4B2
,

where the first equality holds because S 2 = S . Now choose K := I S (x1:n) ε2

4B2 in Equation (12). �
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5. Properties of the global models

In this section, we first consider the extension to extended real variables of the global lower and upper expectations 
introduced in Section 3.4, and then prove a number of very general and useful results for these extensions. Indeed, for a 
number of results and applications, it will be useful to extend the global models, introduced in formulae (4) and (5), from 
bounded real variables (gambles on �) to extended ones; see for example the discussion in Section 7, where we discuss 
transition and return times, which are unbounded and may even become infinite.

Nevertheless, it should be stressed here that most of the discussion in this paper deals only with bounded real variables. 
In particular, our results on ergodic theorems in Sections 8 and 9 do not rely on this extension.

We begin by proving alternative expressions for the global models for gambles.

Proposition 10. For any gamble g on �, and any situation s ∈ �♦:

E(g|s) = sup {M (s) : M ∈M b and lim sup M (ω) ≤ g(ω) for all ω ∈ �(s)} (13)

E(g|s) = inf {M (s) : M ∈ Mb and lim inf M (ω) ≥ g(ω) for all ω ∈ �(s)}. (14)

Proof. We only give the proof for the lower expectations, as the proof for the upper expectations is completely similar. If 
we denote the right-hand side in Equation (13) by F (g|s), then it follows trivially from M b ⊆ M that E(g|s) ≥ F (g|s), so we 
concentrate on proving the converse inequality E(g|s) ≤ F (g|s).

If E(g|s) = −∞ then this inequality is trivially satisfied,12 so we may assume without loss of generality that there is 
some M ∈ M such that lim sup M (s •) ≤ g(s •). Consider any such submartingale M for which also M (t) = M (s) in any 
situation t that does not follow s [to see that such a submartingale exists, simply consider that if we change the values 
M ′(t) of any submartingale M ′ to M ′(s) in such situations t , the result is still a submartingale]. It then follows from 
Lemma 1 that

M (v) ≤ sup
ω∈�(s)

lim sup M (ω) ≤ sup
ω∈�(s)

g(ω) ≤ sup g

for all situations v that follow s, and, in particular, that M (s) ≤ sup g . For any situation that does not follow s, this implies 
that M (v) = M (s) ≤ sup g . Hence, M (v) ≤ sup g for all v ∈ �♦ . Since sup g ∈ R because g is a gamble and therefore 
bounded, this implies that M ∈ M b, and the proof is complete. �

If we now simply replace the gambles ‘g ’ in Equations (4) and (13) by extended real variables ‘ f ’, we get two obvious 
candidate definitions for the conditional lower expectation E( f |s) of such f . The following example shows that the first 
candidate, which seems to be the one suggested by Shafer and Vovk in their earlier work [17, Chapter 8.3], may have a 
rather undesirable property.

Example 1. Consider the precise probability tree that corresponds to repeatedly flipping a fair coin, where all coin flips are 
independent. That is, let Xk := {0, 1} for all k ∈ N and let

Q (h|x1:n) = Q (h|x1:n) := 1

2
h(0) + 1

2
h(1) for all n ∈N0, h ∈ G (Xn+1) and x1:n ∈ X1:n. (15)

For any real α > 0, we consider a corresponding real process Mα , defined by Mα(�) := α, �Mα(�) := 2α(I{0} − I{1}) and, 
for all n ∈N and x1:n ∈ X1:n:

�Mα(x1:n) :=

⎧⎪⎨
⎪⎩

3α2n−1(I{0} − I{1}) if xk = 0 for all k ∈ {1, . . . ,n}
α2n−1(I{0} − I{1}) if xk = 1 for all k ∈ {1, . . . ,n}
0 otherwise.

It follows trivially from Equation (15) that this real process is both a sub- and a supermartingale, and therefore also a 
martingale. For any given natural n ≥ 2 and x1:n ∈ X1:n , we now set out to find a closed-form expression for Mα(x1:n). We 
consider two cases: x1 = 0 and x1 = 1. If x1 = 0, then there is at least one i ∈ {1, . . . , n} such that xk = 0 for all k ∈ {1, . . . , i}. 
Let imax be the largest such i ∈ {1, . . . , n}, and let i∗ := min{imax, n − 1}. Then

Mα(x1:n) = Mα(�) +
n−1∑
k=0

�Mα(x1:k)(xk+1)

= Mα(�) + �Mα(�)(0) +
i∗−1∑
k=1

�Mα(x1:k)(xk+1) + �Mα(x1:i∗)(xi∗+1)

12 Note, by the way, that it will follow from LE∗1 in Proposition 14 that this cannot actually happen.



30 G. de Cooman et al. / International Journal of Approximate Reasoning 76 (2016) 18–46
= α + 2α +
i∗−1∑
k=1

3α2k−1 + 3α2i∗−1(I{0}(xi∗+1) − I{1}(xi∗+1)
)

= 3α2i∗−1 + 3α2i∗−1(I{0}(xi∗+1) − I{1}(xi∗+1)
) = 3α2i∗I{0}(xi∗+1).

If x1 = 1, then there is at least one j ∈ {1, . . . , n} such that xk = 1 for all k ∈ {1, . . . , j}. Let jmax be the largest such 
j ∈ {1, . . . , n}, and let j∗ := min{ jmax, n − 1}. Then, using an argument similar to the one for the case x1 = 0, we find that

Mα(x1:n) = α − 2α −
j∗−1∑
k=1

α2k−1 + α2 j∗−1(I{0}(x j∗+1) − I{1}(x j∗+1)
)

= −α2 j∗−1 + α2 j∗−1(I{0}(x j∗+1) − I{1}(x j∗+1)
) = −α2 j∗I{1}(x j∗+1).

Since xi∗+1 = 0 if and only if imax = n, and similarly, x j∗+1 = 1 if and only if jmax = n, we can combine the two cases above 
to find that, for all natural n ≥ 2 and x1:n ∈ X1:n:

Mα(x1:n) =

⎧⎪⎨
⎪⎩

3α2n−1 if xk = 0 for all k ∈ {1, . . . ,n}
−α2n−1 if xk = 1 for all k ∈ {1, . . . ,n}
0 otherwise.

Now let f be the extended real variable that is defined by

f (ω) :=

⎧⎪⎨
⎪⎩

+∞ if ω = 000000 . . .

−∞ if ω = 111111 . . .

0 otherwise

for all ω ∈ �.

Then clearly lim inf Mα = lim sup Mα = limMα = f .
We conclude from all of the above that, for any α > 0, we can construct a submartingale Mα ∈ M such that Mα(�) = α

and lim sup Mα ≤ f . Therefore, if we were to apply Equations (4) and (5) to f , with s = �, we would find that

E ( f ) = sup {M (�) : M ∈M and lim sup M ≤ f } = +∞
and that E ( f ) = −E (− f ) = −E ( f ) = −∞, where the first equality follows from conjugacy and the second equality follows 
from a symmetry argument: E (− f ) is equal to E ( f ) because exchanging zeroes and ones in the tree (a) turns f into − f , 
and (b) leaves the probability tree unchanged. We conclude that if we were to apply Equations (4) and (5) to the extended 
real variable f , we would find that +∞ = E ( f ) > E ( f ) = −∞. We consider this to be undesirable: any reasonable def-
inition of lower and upper expectation should at the very least guarantee that a lower expectation can never exceed the 
corresponding upper expectation. �

This leaves us with the second candidate formula for extension, which is the one we will use in this paper, and which is 
related to the one used in more recent work by Shafer and Vovk [18, Section 2]:

E( f |s) := sup {M (s) : M ∈M b and lim sup M (ω) ≤ f (ω) for all ω ∈ �(s)} (16)

E( f |s) := inf {M (s) : M ∈Mb and lim inf M (ω) ≥ f (ω) for all ω ∈ �(s)} (17)

= − E(− f |s),
where f is any extended real variable, and s ∈ �♦ any situation. We will see further on in Proposition 14 [in particular LE∗5] 
that this definition does not lead to the undesirable behaviour that Example 1 warns us about.

To investigate the properties of these extended global models, we first look at their behaviour on n-measurable extended 
real variables.

Proposition 11. For any situation x1:m ∈ �♦ and any n-measurable extended real variable f , with n, m ∈N0 such that n ≥ m13:

E( f |x1:m) = sup {M (x1:m) : M ∈M and (∀xm+1:n ∈ Xm+1:n)M (x1:n) ≤ f (x1:n)}
E( f |x1:m) = inf {M (x1:m) : M ∈M and (∀xm+1:n ∈ Xm+1:n)M (x1:n) ≥ f (x1:n)}.

13 In these expressions, M may be replaced by M b, and M by Mb, the proof remains essentially the same.
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Proof. We sketch the idea of the proof of the equality for the lower expectations; the proof for the upper expectations is 
completely similar. Denote, for simplicity of notation, the right-hand side of the first equality by R .

First, consider any submartingale M such that M (x1:n) ≤ f (x1:n) for all xm+1:n ∈ Xm+1:n . Consider the submartingale 
M ′ derived from M by keeping it constant as soon as any situation in {x1:m}×Xm+1:n is reached and letting M ′(t) = M (s)
for any situation t that does not follow s, then clearly M ′ is bounded above, lim sup M ′(ω) ≤ f (ω) for all ω ∈ �(x1:m), and 
M (x1:m) = M ′(x1:m). Hence it follows from Equation (16) that M (x1:m) ≤ E( f |x1:m), whence also R ≤ E( f |x1:m).

For the converse inequality, consider any bounded above submartingale M for which it holds that lim sup M (ω) ≤ f (ω)

for all ω ∈ �(x1:m). Fix any xm+1:n , then it follows from the n-measurability of f that lim sup M (ω) ≤ f (x1:n) for all ω ∈
�(x1:n), whence

M (x1:n) ≤ sup
ω∈�(x1:n)

lim sup M (ω) ≤ f (x1:n),

where the first inequality follows from Lemma 1 with s := x1:n . This implies that M (x1:m) ≤ R , and therefore also 
E( f |x1:m) ≤ R . �
Corollary 12. For any situation x1:m ∈ �♦ and any n-measurable extended real variable f , with n, m ∈N0 such that n ≥ m:

E( f |x1:m) = sup {E(g|x1:m) : g ∈ G (X1:n) and (∀xm+1:n ∈ Xm+1:n)g(x1:n) ≤ f (x1:n)}
E( f |x1:m) = inf {E(g|x1:m) : g ∈ G (X1:n) and (∀xm+1:n ∈ Xm+1:n)g(x1:n) ≥ f (x1:n)}.

Proof. We give the proof for the lower expectations; the proof for the upper expectations is completely similar. De-
note the right-hand side of the first equality by R , for notational simplicity. It follows at once from Proposition 11 that 
E(g|x1:m) ≤ E( f |x1:m) for all g ∈ G (X1:n) such that g(x1:m, xm+1:n) ≤ f (x1:m, xm+1:n) for all xm+1:n ∈ Xm+1:n , and there-
fore also R ≤ E( f |x1:m). Conversely, consider any submartingale M such that M (x1:m, xm+1:n) ≤ f (x1:m, xm+1:n) for all 
xm+1:n ∈ Xm+1:n . If we define the n-measurable gamble g on � by letting g(x1:n) := M (x1:n) for all x1:n ∈ X1:n , then it 
follows from Proposition 11 that M (x1:m) ≤ E(g|x1:m), and since by assumption g(x1:m, xm+1:n) ≤ f (x1:m, xm+1:n) for all 
xm+1:n ∈ Xm+1:n , that E(g|x1:m) ≤ R . Hence M (x1:m) ≤ R , and therefore, by Proposition 11, E( f |x1:m) ≤ R . �

The following result extends Corollary 3.

Corollary 13. Consider any n ∈N0 , any situation x1:n ∈ �♦ and any (n + 1)-measurable extended real variable f . Then

E( f |x1:n) = sup {Q (h|x1:n) : h ∈ G (X ) and h ≤ f (x1:n ·)}
E( f |x1:n) = inf {Q (h|x1:n) : h ∈ G (X ) and h ≥ f (x1:n ·)}.

Proof. We give the proof for the lower expectation; the proof for the upper expectation is completely similar. We infer from 
Proposition 11, the argumentation above and the definition of a submartingale that, indeed,

E( f |x1:n) = sup {α ∈R : α + h ≤ f (x1:n ·) for some h ∈ G (X ) such that Q (h|x1:n) ≥ 0}
= sup {α ∈R : h ≤ f (x1:n ·) for some h ∈ G (X ) such that α ≤ Q (h|x1:n)}
= sup {Q (h|x1:n) : h ∈ G (X ) and h ≤ f (x1:n ·)},

where the second equality follows from coherence [LE8]. �
We end this section by proving three interesting and very useful results about the global models. The first summarises 

and extends properties first proved by Shafer and Vovk (see for instance Refs. [17, Chapter 8.3], [18, Section 2] and [21, 
Section 6.3]), in showing that these global models satisfy properties that extend the basic coherence axioms/properties 
LE1–LE8 for lower and upper expectations from gambles to extended real maps. We provide, for the sake of completeness, 
proofs that are very close to the ones given by Shafer and Vovk [18, Section 2].14

Proposition 14. Consider any situation s, any extended real variables f and g, and any real numbers λ ≥ 0 and μ. Then

LE∗1. E( f |s) ≥ inf { f (ω) : ω ∈ �(s)};
LE∗2. E( f + g|s) ≥ E( f |s) + E(g|s);
LE∗3. E(λ f |s) = λE( f |s);

14 Our proof of LE∗5 corrects a small glitch in theirs. Our monotonicity property LE∗4 is stronger, because it only requires strictly almost sure, rather than 
point-wise, dominance.
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LE∗4. if f ≤ g on �(s) strictly almost surely, then E( f |s) ≤ E(g|s) and E( f |s) ≤ E(g|s); as a consequence, if f = g on �(s) strictly 
almost surely, then E( f |s) = E(g|s) and E( f |s) = E(g|s);

LE∗5. inf { f (ω) : ω ∈ �(s)} ≤ E( f |s) ≤ E( f |s) ≤ sup { f (ω) : ω ∈ �(s)};
LE∗6. E( f + μ|s) = E( f |s) + μ and E( f + μ|s) = E( f |s) + μ.

In these expressions, as well as further on, we use the convention that ∞ + ∞ = ∞, −∞ + (−∞) = −∞, −∞ + ∞ =
∞ + (−∞) = −∞, a + ∞ = ∞ + a = ∞, a + (−∞) = −∞ + a = −∞ for all real a, and 0 · ±∞ = ±∞ · 0 = 0.15

Proof. LE∗1. If inf { f (ω) : ω ∈ �(s)} = −∞, then the inequality is trivially satisfied. Consider therefore any real L ≤
inf { f (ω) : ω ∈ �(s)}, and the submartingale M that assumes the constant value L everywhere. Then surely M is bounded 
above, lim sup M (s •) = L ≤ f (s •) and M (s) = L, so Equation (16) guarantees that indeed L ≤ E( f |s).

LE∗2. When E( f |s) or E(g|s) are equal to −∞, so is their sum, and the inequality holds trivially. Assume there-
fore that both E( f |s) > −∞ and E(g|s) > −∞. This implies that there are bounded above submartingales M1 and M2
such that lim sup M1(s •) ≤ f (s •) and lim sup M2(s •) ≤ g(s •). Consider any such submartingales M1 and M2, then 
it follows from the coherence [LE2] of the local models that M := M1 + M2 is a bounded above submartingale as 
well. Since lim sup M (s •) ≤ lim sup M1(s •) + lim sup M2(s •) ≤ f (s •) + g(s •),16 we infer from Equation (16) that indeed 
E( f + g|s) ≥ E( f |s) + E(g|s).

LE∗3. For λ > 0, it suffices to observe that if M is a bounded above submartingale such that lim sup M (s •) ≤ f (s •), 
then the process λM is also a bounded above submartingale such that lim sup[λM (s •)] ≤ λ f (s •), and vice versa. For λ = 0, 
we infer on the one hand from LE∗1 and Lemma 1 that E(λ f |s) = E(0|s) = 0, and on the other hand we also know that 
0 · E( f |s) = 0.

LE∗4. Due to conjugacy, it suffices to prove the first inequality. It is trivially satisfied if E( f |s) = −∞. Assume therefore 
that E( f |s) > −∞, meaning that there is some bounded above submartingale M such that lim sup M (s •) ≤ f (s •). Consider 
any such submartingale M and any real ε > 0. It follows from the assumption and Theorem 5 that there is some test 
supermartingale T ≥ 0 with T (�) = 1 that converges to +∞ on all paths ω ∈ �(s) for which f (ω) > g(ω). If we let 
M ′ := M −εT , then M ′ is a bounded above submartingale, M ′ ≤ M and M ′(s) = M (s) −εT (s). Moreover, for any ω ∈
�(s), lim supM ′(ω) = −∞ ≤ g(ω) if g(ω) < f (ω), and lim sup M ′(ω) ≤ lim sup M (ω) ≤ f (ω) ≤ g(ω) otherwise. Hence 
lim sup M ′(s •) ≤ g(s •), so we infer from Equation (16) that M (s) − εT (s) ≤ E(g|s), and therefore also E( f |s) − εT (s) ≤
E(g|s). Since this inequality holds for all ε > 0, we find that indeed E( f |s) ≤ E(g|s).

LE∗5. Suppose ex absurdo that E( f |s) > E( f |s) = −E(− f |s). This implies that also E( f |s) + E(− f |s) > 0, but then LE∗2 
tells us that also E( f + (− f )|s) > 0. Now the extended real map f +(− f ) assumes only the values 0 and −∞, and therefore 
f + (− f ) ≤ 0, so we infer from LE∗4 that E( f + (− f )|s) ≤ E(0|s) = 0, where the last equality follows from LE∗3. This is a 
contradiction. The remaining inequalities are now trivial.

LE∗6. Due to conjugacy, it suffices to prove the first equality. If M is a bounded above submartingale such that 
lim sup M (s •) ≤ f (s •) + μ, then M − μ is a bounded above submartingale such that lim sup[M (s •) − μ] ≤ f (s •), and 
vice versa. �

Our second result follows immediately from the definition of the global lower expectations in Equation (16).

Proposition 15. Consider any extended real variable f and any n ∈N0 . Then

E( f (X1 X2 . . . )|x1:n) = E( f (x1:n Xn+1 Xn+2 . . . )|x1:n).

Our third result can be seen as a generalisation of the law of iterated expectations—or the law of total probability in ex-
pectation form—in classical probability theory. Our formulation generalises a result by Shafer and Vovk [17, Proposition 8.7], 
whose proof can only be guaranteed to work for bounded real variables; we provide a proof that is better suited for deal-
ing with extended real variables. In accordance with the notational convention introduced in Section 3.3, we denote by 
E( f |X1:n) the extended real variable that assumes the same value E( f |x1:n) on all paths ω = x1:n • that go through x1:n . It 
is clearly n-measurable, and therefore only depends on the values of the first n states X1:n .

Theorem 16 (Law of iterated lower expectations). Consider any extended real variable f and any n, m ∈N0 such that n ≥ m. Then

E( f |X1:m) = E(E( f |X1:n)|X1:m).

Proof. Fix any z1:m ∈ X1:m . We prove that E( f |z1:m) = E(E( f |X1:n)|z1:m), or equivalently, by Proposition 15, that E( f |z1:m) =
E(E( f |z1:m Xm+1:n)|z1:m).

15 This is the extended addition that is convenient for working with lower expectations; for the dual upper expectations, we need to introduce a dual 
operator, defined by a +∗ b := −[(−a) + (−b)] for all extended real a and b.
16 The first inequality holds for bounded above submartingales, but may fail for more general ones. Indeed, assume that on some path ω, M1(ω

n) = 2n
and M2(ωn) = −n. Then lim sup M1(ω) = +∞, lim supM2(ω) = −∞, and lim sup[M1(ω) + M2(ω)] = +∞, so the inequality is violated.
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Fig. 3. The (initial part of the) imprecise probability tree for an imprecise Markov process whose states can assume two values, a and b, and can change at 
time instants n = 1, 2, 3, . . . .

First, consider any bounded above submartingale M such that lim sup M (z1:m •) ≤ f (z1:m •). Then also, for any 
xm+1:n ∈ Xm+1:n , lim sup M (z1:mxm+1:n •) ≤ g(z1:mxm+1:n •), which implies that, by Equation (16) for s := z1:mxm+1:n , 
M (z1:mxm+1:n) ≤ E( f |z1:mxm+1:n). Hence M (z1:m Xm+1:n) ≤ E( f |z1:m Xm+1:n), and therefore we can now infer from Propo-
sition 14 [LE∗4 for s := z1:m] that E(M (z1:m Xm+1:n)|z1:m) ≤ E(E( f |z1:m Xm+1:n)|z1:m). Since it follows almost trivially from 
Proposition 11 that M (z1:m) ≤ E(M (z1:m Xm+1:n)|z1:m), this also allows us to infer that M (z1:m) ≤ E(E( f |z1:m Xm+1:n)|z1:m). 
If we now use Equation (16) for s := z1:m , we find that E( f |z1:m) ≤ E(E( f |z1:m Xm+1:n)|z1:m).

For the converse inequality, consider any h ∈ G (X1:n) such that h(z1:mxm+1:n) ≤ E( f |z1:mxm+1:n) for all xm+1:n ∈ Xm+1:n . 
Fix any ε > 0. It then follows from Equation (16) [with s := z1:mxm+1:n] that, for any xm+1:n ∈ Xm+1:n , there is some bounded 
above submartingale Mxm+1:n such that

Mxm+1:n(z1:mxm+1:n) ≥ h(z1:nxm+1:n) − ε

2
and lim sup Mxm+1:n(z1:mxm+1:n •) ≤ f (z1:mxm+1:n •).

Now consider any n-measurable real variable g such that

g(z1:mxm+1:n) = Mxm+1:n(z1:mxm+1:n) ≥ h(z1:mxm+1:n) − ε

2
for all xm+1:n ∈ Xm+1:n,

then it follows from Proposition 11 that there is a submartingale M ′ such that M ′(z1:m) > E(g|z1:m) − ε
2 and 

M ′(z1:mxm+1:n) ≤ g(z1:mxm+1:n) for all xm+1:n ∈ Xm+1:n . Now consider a submartingale M that assumes the constant value 
M ′(z1:m) in all situations t that do not strictly follow z1:m—so M (t) = M ′(z1:m) for all t ∈ �♦ such that z1:m �� t and, in 
particular, M (z1:m) = M ′(z1:m)—and such that moreover

�M (z1:mxm+1:k) =
{

�M ′(z1:mxm+1:k) if k < n

�Mxm+1:n(z1:mxm+1:k) if k ≥ n
for all k ≥ m and xm+1:k ∈ Xm+1:k .

It then follows that M (z1:mxm+1:k) ≤ Mxm+1:n (z1:mxm+1:k) for all k ≥ n and xm+1:k ∈ Xm+1:k and, therefore, we find that 
M is bounded above and that lim sup M (z1:mxm+1:n •) ≤ f (z1:mxm+1:n •) for all xm+1:n ∈ Xm+1:n , which implies that 
lim sup M (z1:m •) ≤ f (z1:m •), and therefore also that E( f |z1:m) ≥ M (z1:m), by applying Equation (16) for s = z1:m . Since 
also M (z1:m) = M ′(z1:m) > E(g|z1:m) − ε

2 , we find that E( f |z1:m) > E(g|z1:m) − ε
2 . Furthermore, because g(z1:m Xm+1:n) ≥

h(z1:m Xm+1:n) − ε
2 , Proposition 15 and LE∗4 imply that E(g|z1:m) = E(g(z1:m Xm+1:n)|z1:m) ≥ E(h(z1:m Xm+1:n) − ε

2 |z1:m) =
E(h − ε

2 |z1:m), which, due to LE∗6, in turn implies that E(g|z1:m) ≥ E(h|z1:m) − ε
2 . Hence, we find that E( f |z1:m) >

E(h|z1:m) − ε. Since this holds for any ε > 0, we find that E( f |z1:m) ≥ E(h|z1:m). Since this holds for any h ∈ G (X1:n)

such that h(z1:mxm+1:n) ≤ E( f |z1:mxm+1:n) for all xm+1:n ∈ Xm+1:n , we can now infer from Corollary 12 that E( f |z1:m) ≥
E(E( f |z1:m Xm+1:n)|z1:m). �
6. Imprecise Markov chains

We are now ready to apply what we have learned in the previous sections to the special case of (time-homogeneous) 
imprecise Markov chains. These are imprecise probability trees where (i) all states Xk assume values in the same finite
set Xk = X , called the state space, and (ii) all local uncertainty models satisfy the so-called (time-homogeneous) Markov 
condition:

Q (·|x1:n) = Q (·|xn) for all situations x1:n ∈ �♦ \ {�}, (18)

meaning that these local models only depend on the last observed state; see Fig. 3.
We refer to Refs. [7,12,22] for detailed studies of the behaviour of these processes. We restrict ourselves here in Sec-

tion 6.1 to a summary of the existing material in the literature that is relevant for the discussion of ergodicity in later 
sections. As far as we can tell, all of the current discussions and results about imprecise Markov chains deal with a finite 
time horizon, and consider only bounded real variables (gambles). For this reason, we devote some effort in Section 6.2
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to broadening the discussion to an infinite time horizon, using the expressions for the global conditional lower expecta-
tions that we introduced in Section 3.4 and extended to extended real variables in Section 5. In Section 6.3, we discuss 
the relationship between time shifts and lower expectation operators in imprecise Markov chains and use these results to 
characterise their potential stationarity.

We believe it is important to explain at this point how our imprecise Markov chains are related to their precise counter-
parts. Recall from the discussion in Section 3.4 that the expressions for the lower and upper expectations in Proposition 2
have an interesting interpretation in terms of (precise) probability trees [3]: (i) the imprecise probability tree for an impre-
cise Markov chain corresponds to a collection of compatible precise probability trees with the same event tree, by associating 
with each situation x1:n in the event tree some arbitrarily chosen precise local expectation Q (·|x1:n) in the convex closed 
set M(Q (·|xn)) of expectations that are compatible with the local lower expectation Q (·|xn); and (ii) for any n-measurable 
gamble f on �, the global precise expectations in the compatible precise probability trees will then range over a closed 
interval whose lower and upper bounds are given by the expressions in Proposition 11. It should be clear that the local precise 
models Q (·|x1:n) need not satisfy the Markov condition,17 in contradistinction with the collections M(Q (·|xn)) of precise models they 
are chosen from. In other words, imprecise Markov chains are not simply collections of precise Markov chains, but rather cor-
respond to collections of general stochastic processes whose local models belong to sets whose lower and upper envelopes 
satisfy a Markov condition.

6.1. Lower transition operators and Perron–Frobenius-like behaviour

We can use the local uncertainty models to introduce a (generally non-linear) transformation T of the set G (X ) of all 
gambles on the state space X . The so-called lower transition operator of the imprecise Markov chain is given by:

T : G (X ) → G (X ) : f �→ T f ,

where T f is the gamble on X defined by

T f (x) := Q ( f |x) for all x ∈ X .

The conjugate upper transition operator T is defined by T f := −T (− f ) for all f ∈ G (X ). In particular, T I{y}(x) is the lower 
probability to go from state value x to state value y in one time step, and T I{y}(x) the conjugate upper probability. This 
seems to suggest that the lower/upper transition operators T are generalisations of the concept of a Markov transition 
matrix for ordinary Markov chains. This is confirmed by the following result, proved in Ref. [7, Corollary 3.3] as a special 
case of the law of iterated (lower) expectations [3,17]; see also Corollary 22 further on for a more general formulation. If, 
for any n ∈ N and any f ∈ G (X ), we denote by E n( f ) the value of the (global) lower expectation E ( f (Xn)) of the real 
variable f (Xn) that only depends on the state Xn at time n, then

E n( f ) = E 1(T n−1 f ), with T n−1 f := T T · · · T︸ ︷︷ ︸
n − 1 times

f ,

and where, of course, E 1 = Q (·|�) is the marginal local model for the state X1 at time 1. In a similar vein, for any n ∈ N0, 
T nI{y}(x) is the lower probability to go from state value x to state value y in n time steps, and T nI{y}(x) the conjugate 
upper probability.

We can formally call lower transition operator any transformation T of G (X ) such that for any x ∈ X , the real functional 
T x on G (X ), defined by T x( f ) := T f (x) for all f ∈ G (X ), is a lower expectation—satisfies the coherence axioms LE1–LE3. 
The composition of any two lower transition operators is again a lower transition operator. See Ref. [7] for more details on 
the definition and properties of such lower transition operators, and Ref. [5] for a mathematical discussion of the general 
role of these operators in imprecise probabilities.

We call a lower transition operator T Perron–Frobenius-like if for all f ∈ G (X ), the sequence of gambles T n f converges 
point-wise to a real constant, which we will then denote by E PF( f ). An imprecise Markov chain is said to be Perron–
Frobenius-like if its lower transition operator is.

The following result was proved in Ref. [7, Theorem 5.1], together with a simple sufficient (and quite weak) condition 
on T for a Markov chain to be Perron–Frobenius-like: there is some n ∈ N such that min T nI{y} > 0 for all y ∈ X , or in 
other words, all state values can be reached from any state value with positive upper probability in (precisely) n time steps. 
More involved necessary and sufficient conditions were given later in Refs. [12,22]; see also Theorem 29(iv) further on.

Proposition 17 ([7]). A lower transition operator T is Perron–Frobenius-like if and only if there is some real functional E ∞ on G (X )

such that for any initial model E 1 and any f ∈ G (X ), it holds that E 1(T n−1 f ) → E ∞( f ). Moreover, in that case the functional E ∞
is a lower expectation on G (X ), called the stationary lower expectation, it coincides with E PF , and it is the only lower expectation 
that is T -invariant in the sense that E ∞ ◦ T = E ∞ .

17 . . . in either its time-homogeneous or time-inhomogeneous form.
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For any imprecise Markov chain with a Perron–Frobenius-like lower transition operator T , we will henceforth call the 
functional E ∞ = E PF its stationary lower expectation.

6.2. Properties of the global lower expectations

The global lower and upper expectations introduced in Section 3.4 and extended in Section 5 have special properties 
when we restrict ourselves to imprecise Markov chains. We explore them in this section.

We begin with a few preliminary remarks. In this context, we can identify � with X N and paths ω with elements 
of X N . We will do so freely from now on. Similarly, any situation s �= � can be identified with some sequence of states 
x1:n ∈ X1:n for some n ∈N.

Recalling that X1:n = X n allows us to concatenate situations s with other situations t into new situations st; the initial 
situation � works as the neutral element for this operation.

We can also concatenate situations s and paths ω into new paths sω. This allows us to use a situation s to construct a 
new variable g := f (s •) from a variable f by letting

g(ω) := f (sω) for all ω ∈ �

We say that a variable g does not depend on the first n states X1:n—with n ∈N0 if

g(s •) = g(t •) for all s, t ∈ X1:n,
which of course implies that there is some variable f such that g(s •) = f for all s ∈ X1:n .

We assume that we have an imprecise Markov chain with marginal model Q (·|�) and transition models Q (·|x), x ∈ X , 
or equivalently, a lower transition operator T .

We first extend these local transition models from bounded to extended real maps. In accordance with what we have 
found in Corollary 13, we extend the local models Q (·|x) and the corresponding lower transition operator T to extended 
real maps g : X → R∗ on X by letting

T g(x) := Q (g|x) := sup {Q (h|x) : h ∈ G (X ) and h ≤ g} for all x ∈ X . (19)

That this is indeed an extension follows from the monotonicity [LE4] of Q (·|x).
Similarly to what we did in the previous section, for any n ∈ N and any extended real map g on X , we denote by E n(g)

the value of the (global) lower expectation E (g(Xn)) of the extended real variable g(Xn) that only depends on the state Xn

at time n: E n(g) := E (g(Xn)) = E(g(Xn)|�). Recall as a special case of Corollary 13 [for n = 0] that for any extended real 
map g on X :

E 1(g) = E(g(X1)|�) = sup {Q (h|�) : h ∈ G (X ) and h ≤ g}. (20)

Also, when the lower transition operator T is Perron–Frobenius-like, and therefore has a unique stationary lower expec-
tation E ∞ on G (X ), we can extend this lower expectation to extended real maps g on X by similarly letting

E ∞(g) := sup {E ∞(h) : h ∈ G (X ) and h ≤ g}. (21)

This extended functional then satisfies a similar invariance property:

Proposition 18. Assume that T is Perron–Frobenius-like. Then E ∞(g) = E ∞(T g) for any extended real map g on X .

Proof. Observe that

E ∞(g) = sup {E ∞(h) : h ∈ G (X ) and h ≤ g} ≤ sup {E ∞(h) : h ∈ G (X ) and T h ≤ T g}
= sup {E ∞(T h) : h ∈ G (X ) and T h ≤ T g}
≤ sup {E ∞(h′) : h′ ∈ G (X ) and h′ ≤ T g} = E ∞(T g),

where the first inequality follows because h ≤ g implies that T h ≤ T g [use Equation (19)], the second equality because 
E ∞(h) = E ∞(T h) [use Proposition 17], and the last inequality because T h ∈ G (X ) [LE5].

For the converse inequality E ∞(T g) ≤ E ∞(g), fix any ε > 0. We may assume without loss of generality that there is 
some h ∈ G (X ) such that h ≤ T g: otherwise E ∞(T g) = −∞ by Equation (21), and the converse inequality holds trivially. 
So consider any such h. Since X is finite, it follows from Equation (19) and the monotonicity of T [which follows easily from 
Equation (19)] that there is some hε ∈ G (X ) such that hε ≤ g and h ≤ T hε + ε. The monotonicity and constant additivity 
of E ∞ [which follow easily from Equation (21)] then imply that E ∞(h) ≤ E ∞(T hε) +ε and E ∞(hε) ≤ E ∞(g), whence, since 
E ∞(T hε) = E ∞(hε) [use Proposition 17] also E ∞(h) ≤ E ∞(g) + ε. Since this inequality holds for any h ∈ G (X ) such that 
h ≤ T g , it follows from Equation (21) that E ∞(T g) ≤ E ∞(g) + ε. Since this inequality holds for all ε > 0, we are done. �

We are now ready to start our analysis. Our first, basic result is a Markov property for the global models. It states that 
all global conditional models are completely determined by the global conditional models E(·|x), x ∈ X :
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Proposition 19 (Markov property for global models). Consider any extended real variable f , any situation s ∈ �♦ and any x ∈ X , 
then

E( f |sx) = E( f (s •)|x).

A perhaps more familiar way of writing this is E( f (X1 X2 . . . )|sx) = E( f (sX1 X2 . . . )|x).

Proof. Consider, for ease of notation, the extended real variable g := f (s •). Consider any bounded above submartingale M
such that lim sup M (sx •) ≤ f (sx •), and let M ′ be the real process defined by M ′(u) := M (su) for all u ∈ �♦ . M ′ is clearly 
a bounded above submartingale because M is, and moreover M ′(x) = M (sx) and lim sup M ′(x •) = lim sup M (sx •) ≤
f (sx •) = g(x •), whence, by Equation (16)

E( f |sx) = sup {M (sx) : M ∈M b and lim sup M (sx•) ≤ f (sx•)}
≤ sup {M ′(x) : M ′ ∈M b and lim sup M ′(x•) ≤ g(x•)} = E(g|x).

Conversely, consider any bounded above submartingale M such that lim sup M (x •) ≤ g(x •), and let M ′ be the real process 
defined by letting M ′(sxu) := M (xu) for all u ∈ �♦ , and letting M ′(t) := M (sx) in all situations t that do not follow sx. 
Then M ′ is clearly a bounded above submartingale because M is, and moreover M ′(sx) = M (x) and lim sup M ′(sx •) =
lim sup M (x •) ≤ g(x •) = f (sx •), whence, again by Equation (16)

E(g|x) = sup {M (x) : M ∈M b and lim sup M (x•) ≤ g(x•)}
≤ sup {M ′(sx) : M ′ ∈M b and lim sup M ′(sx•) ≤ f (sx•)} = E( f |sx). �

This allows us to introduce a new notation E |n(g|x) for conditional lower expectations of extended real variables g that 
do not depend on the first n − 1 states X1:n−1, with n ∈N:

E |n(g|x) := E(g|sx) = E(g(s •)|x),
where s is any situation of length n − 1. Obviously, E |n(g|·) is an extended real-valued map on X .

We can now prove a number of related corollaries to our general law of iterated lower expectations, formulated in 
Theorem 16.

Corollary 20. Let n ∈N and k ∈N0 , and consider any extended real variable g that does not depend on the first n +k − 1 states. Then

E |n(g|·) = T k E |n+k(g|·).

Proof. It clearly suffices to give the proof for k = 1. So consider any extended real variable g that does not depend on the 
first n states, and any x ∈ X . We prove that E |n(g|x) = Q (E |n+1(g|·)|x).

Consider any x1:n−1 ∈ X1:n−1, then it follows from Theorem 16 and Proposition 15 that

E(g|x1:n−1x) = E(E(g|X1:n+1)|x1:n−1x) = E(E(g|x1:n−1xXn+1)|x1:n−1x). (22)

Because g in particular does not depend on the first n − 1 states, we see that for the left-hand side of this equality: 
E(g|x1:n−1x) = E |n(g|x). We now look at the right-hand side. Consider the extended real map h := E(g|x1:n−1x ·) on X and 
the n + 1-measurable extended real variable h(Xn+1) = E(g|x1:n−1xXn+1), then we see that

E(E(g|x1:n−1xXn+1)|x1:n−1x) = E(h(Xn+1)|x1:n−1x) = sup {Q (h′|x1:n−1x) : h′ ∈ G (X ) and h′ ≤ h}
= sup {Q (h′|x) : h′ ∈ G (X ) and h′ ≤ h} = Q (h|x),

where the second equality follows from Corollary 13, the third from the Markov property (18) of the local models, and 
the last from Equation (19). To complete the proof, consider that, since g does not depend on the first n states, h =
E(g|x1:n−1x ·) = E |n+1(g| ·). �
Corollary 21. Let � ∈N and consider any extended real variable g that does not depend on the first � − 1 states. Then:

E (g) = E 1(T �−1 E |�(g|·)).

Proof. It follows from Corollary 20 with n = 1 and k = � − 1 that E |1(g|·) = T �−1 E |�(g|·). Furthermore, by applying The-
orem 16 [for m := 0 and n := 1], we find that E (g) = E (E(g|X1)). This establishes the proof because it follows from the 
definition of E 1 and E |1(g|·) that E (E(g|X1)) = E 1(E |1(g|·)). �
Corollary 22. Consider any n ∈N and any extended real map f on X . Then E n( f ) = E k(T n−k f ) = E 1(T n−1 f ) for any 1 ≤ k ≤ n.



G. de Cooman et al. / International Journal of Approximate Reasoning 76 (2016) 18–46 37
Proof. We use Corollary 21 with � := n and g := f (Xn), leading to

E n( f ) = E (g) = E 1(T n−1 E |n(g|·)),
since the extended real variable g only depends on the n-the state Xn , and therefore does not depend on the first n − 1
states. For the same reason, we see that for any x ∈ X , E |n(g|x) = E(g|sx) = E(g(sxXn+1 . . . )|sx) = E( f (x)|sx) = f (x), where 
s is any situation of length n − 1, and where the second equality follows from Proposition 15, and the last from coherence 
property LE∗5. Hence E n( f ) = E 1(T n−1 f ). Now consider any natural k ≤ n, then we find in a similar manner that E k( f ) =
E 1(T k−1 f ) and therefore also

E 1(T n−1 f ) = E 1(T k−1T n−k f ) = E k(T n−k f ). �
6.3. Shift invariance

We introduce the shift operator θ on N by letting θ(n) := n + 1 for all n ∈ N. This induces a shift operator on �: θω is 
the path with (θω)n := ωθ(n) = ωn+1 for all n ∈ N. And this also induces a shift operation on variables f : θ f is the variable 
defined by (θ f )(ω) := f (θω) for all ω ∈ �.

Proposition 23. Let n ∈N0 . If the variable g does not depend on the first n states, then θ g does not depend on the first n + 1 states.

Proof. Assume g does not depend on the first n states, so there is some variable f such that g(s •) = f for all s ∈ X1:n , 
where of course X1:n = X n . Then for all x ∈ X , s ∈ X n and all ω ∈ �:

(θ g)(xsω) = g(θ(xsω)) = g(sω) = f (ω),

which concludes the proof. �
We call a variable f shift invariant if θ f = f , meaning that

f (ω) = f (θω) for all ω ∈ �.

Proposition 24. A shift invariant variable f does not depend on the first n states X1:n, for all n ∈N0 .

Proof. Immediate consequence of Proposition 23. �
Another way to understand that a variable f does not depend on the first n states, is that then f (ω) = f (sθnω) for all 

s ∈ X1:n and ω ∈ �, which we also write as f = f (sθn •) for all s ∈ X1:n .
The following propositions tell us that the global lower expectations satisfy a shift invariance property.

Proposition 25. Let n ∈N and consider any extended real variable g that does not depend on the first n −1 states. Then for all k ∈N0:

E |n(g|·) = E |n+k(θ
k g|·).

Proof. It clearly suffices to prove the statement for k = 1. So consider any s ∈ X1:n−1 [recall that X1:n−1 = X n−1] and 
any x, y ∈ X , then it follows from Proposition 19 that E |n(g|x) = E(g|sx) = E(g(s •)|x) and E |n+1(θ g|x) = E(θ g|ysx) =
E(θ g(ys •)|x). Now observe that θ g(ys •) = g(θ(ys •)) = g(s •). �
Proposition 26. For any extended real variable f and any n ∈N0:

E (θn f ) = E n+1(E |1( f |·)).

Proof. Since θn f does not depend on the first n states [see Proposition 23], we infer from Corollary 21 [with � := n + 1] 
and Proposition 25 that indeed

E (θn f ) = E 1(T n E |n+1(θ
n f |·)) = E 1(T n E |1( f |·)) = E n+1(E |1( f |·)),

where the last equality follows from E n+1 = E 1 ◦ T n [see Corollary 22]. �
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As a generalisation of the case for precise Markov chains, we can call an imprecise Markov chain stationary or time 
invariant if

E ( f ) = E (θ f ) for all extended real variables f .

The following proposition gives a simple characterisation of stationarity.

Proposition 27 (Stationarity). Consider an imprecise Markov chain with marginal lower expectation E 1 and lower transition opera-
tor T that is Perron–Frobenius-like with stationary lower expectation E ∞ . Then the imprecise Markov chain is stationary if and only if 
E ∞ = E 1 .

Proof. Assume that E ∞ = E 1, then E 2 = E 1 ◦ T = E ∞ ◦ T = E ∞ = E 1, where the first equality follows from Corollary 22, 
and the one but last equality from Proposition 18. Hence it follows from Proposition 26 and Corollary 21 [with � := 1] 
that for any extended real variable f , E (θ f ) = E 2(E |1( f |·)) = E 1(E |1( f |·)) = E ( f ). Hence the imprecise Markov chain is 
stationary.

Assume, conversely, that the imprecise Markov chain is stationary. Let h be any gamble on X , and consider the real 
variables f := h(X1) and θ f = h(X2). Then on the one hand E ( f ) = E 1(h), and on the other hand E (θ f ) = E 2(h), so it 
follows from Corollary 22 [with n := 2] and stationarity that E 1 ◦ T = E 2 = E 1. So E 1 is T -invariant, which implies that 
E 1 = E ∞ [use Proposition 17 to get the equality for gambles, which also implies the equalities for their extensions, via 
Equations (20) and (21)]. �

We gather from Proposition 27 that, with any Perron–Frobenius-like lower transition operator T and associated stationary 
lower expectation E ∞ , there always corresponds a unique stationary imprecise Markov chain; its initial model is given by 
Q (·|�) := E ∞ . We will denote its corresponding (shift-invariant) global lower expectation operator by E st.

7. Transition and return times

Let us now look at lower (and upper) expected transition and return times, as a simple and elegant example of what 
can be done using our extensions of the joint lower and upper expectations to an infinite time horizon and extended real 
variables, and their properties, discussed in the previous section.

Consider two (possibly identical) state values x and y in X . Suppose that the imprecise Markov chain starts out at 
time n in state value x, then we can ask ourselves how long it will take for it to reach the state value y, and when y = x, 
for the imprecise Markov chain to return to the state value x. To study this, we introduce the extended real variables τn

x→y
given by:

τn
x→y(ω) :=

{
0 if ωn �= x

inf {m ∈ N : ωn+m = y} if ωn = x.
(23)

Observe that θτn
x→y = τn+1

x→y . Consider the lower expected time E(τn
x→y |sx), where s is any situation of length n − 1. Then, 

since τn
x→y clearly does not depend on the first n − 1 states, we infer from Proposition 19 [the Markov property] that 

E(τn
x→y |sx) = E(τn

x→y(s •)|x) = E |n(τn
x→y |x). Moreover, we infer from Proposition 25 that

E |n+1(τ
n+1
x→y|x) = E |n+1(θτ

n
x→y|x) = E |n(τn

x→y|x),
so we conclude that E(τn

x→y |sx) neither depends on the initial segment s, nor on its length n −1. A similar conclusion holds 
for E(τn

x→y |sx). We therefore define the lower and upper expected transition times from x to y as

τ x→y := E(τ 1
x→y|x) = E |n(τn

x→y|x) and τ x→y := E(τ 1
x→y|x) = E |n(τn

x→y|x). (24)

When y = x, we talk about return times rather than transition times. It follows from LE∗5 that τ x→y ≥ τ x→y ≥ 1.
On any path xX2 • that starts in x, the following recursion equation is satisfied:

τ 1
x→y(xX2 •) :=

{
1 if X2 = y

1 + τ 2
z→y(xz •) if X2 = z �= y

= 1 +
∑

z∈X \{y}
I{z}(X2)τ

2
z→y(xz •), (25)

using our convention that 0 · +∞ = 0. We know from Theorem 16 and Proposition 15 that

τ x→y = E(τ 1
x→y|x) = E(E(τ 1

x→y|xX2)|x). (26)

Moreover, for any z ∈ X \ {y}, we infer from Equation (25), Proposition 15 [repeatedly] and coherence [LE∗6] that

E(τ 1
x→y|xz) = E(τ 1

x→y(xzX3 . . . )|xz) = E(1 + τ 2
z→y(xzX3 . . . )|xz) = 1 + E(τ 2

z→y(xzX3 . . . )|xz)

= 1 + E(τ 2
z→y|xz) = 1 + τ z→y,
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Similarly, we infer from Equation (25), Proposition 15 and coherence [LE∗5] that

E(τ 1
x→y|xy) = E(τ 1

x→y(xy X3 . . . )|xy) = E(1|xy) = 1.

Hence

E(τ 1
x→y|xX2) = 1 +

∑
z∈X \{y}

I{z}(X2)τ z→y,

and if we plug this expression into the local conditional expectation on the right-hand side of Equation (26), and use 
coherence [LE∗6], Corollary 13 and Equation (19), we are led to the following system of non-linear equations for the lower 
transition (and return) times:

τ x→y = 1 + T

( ∑
z∈X \{y}

I{z}τ z→y

)
(x) for all x, y ∈ X . (27)

A completely analogous argument leads to the corresponding system for the upper transition and return times:

τ x→y = 1 + T

( ∑
z∈X \{y}

I{z}τ z→y

)
(x) for all x, y ∈ X . (28)

Finding a general solution to these systems is a difficult task, which we will not tackle here; for the special case of imprecise 
birth–death chains, see Ref. [14].

We end this section by solving the following simple binary case. Let X = {a,b} and let

T h(x) = E 1(h) = (1 − ε)
h(a) + h(b)

2
+ ε min h for all h ∈ G (X ) and x ∈ X , (29)

with ε ∈ (0, 1). It is clear that T nh = E 1(h) and therefore this imprecise Markov chain is Perron–Frobenius-like, with 
E ∞ = E 1, so it is stationary as well; see Proposition 27. Since the transition model Q (·|x) = E 1 is the same for all state 
values x ∈ X , this is an imprecise-probabilistic version of a Bernoulli (iid) process,18 with

θ a = 1 − θb := E 1(I{a}) = 1

2
− ε

2
and θa = 1 − θ b := E1(I{a}) = 1

2
+ ε

2
.

In this simple binary case, Equation (27) can be significantly simplified. For example, for y = a and any x ∈ {a, b}, we find 
that

τ x→a = 1 + T (I{b}τ b→a)(x) = 1 + E 1(I{b}τ b→a) = 1 + τ b→a E 1(I{b}) = 1 + τ b→aθ b, (30)

where the second equality follows from Equation (29) and the third one from coherence [LE3] and the following lemma.

Lemma 28. Consider a binary imprecise Markov chain with state space X = {a, b} whose local models are given by Equation (29), 
with ε ∈ (0, 1). Then 1 ≤ τ b→a ≤ τ b→a < +∞.

Proof. Since ε ∈ (0, 1), it follows that θ a > 0. Consider the real process M defined by M (�) := 1/θ a , �M (�) := 0 and, for 
all n ∈N and x1:n ∈ X1:n:

�M (x1:n) :=
{

1 − I{a}1/θ a if xk = b for all k ∈ {1, . . . ,n}
0 otherwise.

(31)

Since coherence implies that E1(0) = 0 and

E1(1 − I{a}1/θ a) = 1 + E1(−I{a}1/θ a) = 1 − E1(I{a}1/θ a) = 1 − 1/θ a E1(I{a}) = 0,

it follows from Equations (29) and (31) that M is a supermartingale.
Consider now any n ∈ N and x1:n ∈ X1:n . If xk = b for all k ∈ {1, . . . , n}, we have that

M (x1:n) = M (�) + �M (�) +
n−1∑
k=1

�M (x1:k) = 1/θ a + 0 + (n − 1) = 1/θ a + n − 1.

18 There are various ways to generalise a Bernoulli process to an imprecise probabilities context; see Ref. [2] for discussion.
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Otherwise, we find that

M (x1:n) = M (�) + �M (�) +
k∗−1∑
k=1

�M (x1:k) = 1/θ a + 0 + (k∗ − 1 − 1/θ a) = k∗ − 1,

where k∗ is the smallest index k such that xk = a. Hence, we find that the supermartingale M is bounded below by zero 
and therefore belongs to Mb, and that

lim inf M (ω) =
{

+∞ if ωk = b for all k ∈ N

inf{k ∈N : ωk = a} − 1 otherwise
(32)

for all ω ∈ �.
For all ω ∈ �(b), Equations (23) and (32) now imply that lim inf M (ω) = τ 1

b→a(ω). Hence, since M ∈ Mb, it follows from 
Equation (17) that

τ b→a := E(τ 1
b→a|b) ≤ M (b) = M (�) + �M (�)(b) = 1/θa < +∞.

We also already know that 1 ≤ τ b→a ≤ τ b→a—see the text after Equation (24). �
Since the lemma tells us that τ b→a is real-valued, we can now solve Equation (30) for x = b to find that τ b→a = 1/θa . 

Equation (30) also implies that τ b→a = τ a→a . Hence, also using the symmetry, we obtain the following expressions for the 
lower transition and return times:

τ a→a = τ b→a = 1

θa
= 2

1 + ε
and τ b→b = τ a→b = 1

θb
= 2

1 + ε
.

An analogous argument—simplifying Equation (28) for y = a, solving the resulting system to find τ b→a and τ a→a , and 
then invoking symmetry—leads to the following similar expressions for the upper transition and return times:

τ a→a = τ b→a = 1

θ a
= 2

1 − ε
and τ b→b = τ a→b = 1

θ b
= 2

1 − ε
.

8. An interesting equality in imprecise Markov chains

We now prove an interesting equality for imprecise Markov chains, which will be instrumental in proving our point-wise 
ergodic theorem in the next section.

Consider, for any f ∈ G (X ), the corresponding gain process W [ f ], defined by:

W [ f ](X1:n) := [ f (X1) − E 1( f )] +
n∑

k=2

[ f (Xk) − T f (Xk−1)] for any n ∈N, (33)

the corresponding average gain process �W �[ f ], defined by:

�W �[ f ](X1:n) := 1

n

[
[ f (X1) − E 1( f )] +

n∑
k=2

[ f (Xk) − T f (Xk−1)]
]

for any n ∈N, (34)

and the ergodic average process A [ f ], defined by:

A [ f ](X1:n) := 1

n

n∑
k=1

[ f (Xk) − E k( f )] for any n ∈N. (35)

We define these processes to be 0 in the initial situation �. Now observe that, for any n ∈ N and any f ∈ G (X ):

n−1∑
�=0

�W �[T � f ](X1:n) = 1

n

n−1∑
�=0

[
T � f (X1) − E 1(T � f )

] + 1

n

n−1∑
�=0

n∑
k=2

[
T � f (Xk) − T �+1 f (Xk−1)

]
, (36)

and moreover
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n−1∑
�=0

n∑
k=2

[
T � f (Xk) − T �+1 f (Xk−1)

]

=
n−1∑
�=0

n∑
k=2

T � f (Xk) −
n−1∑
�=0

n∑
k=2

T �+1 f (Xk−1) =
n−1∑
�=0

n∑
k=2

T � f (Xk) −
n∑

�=1

n−1∑
k=1

T � f (Xk)

=
n∑

k=2

f (Xk) +
n−1∑
�=1

(
T � f (Xn) +

n−1∑
k=2

T � f (Xk)

)
−

n−1∑
k=1

T n f (Xk) −
n−1∑
�=1

(
T � f (X1) +

n−1∑
k=2

T � f (Xk)

)

=
n∑

k=2

f (Xk) +
n−1∑
�=1

T � f (Xn) −
n−1∑
k=1

T n f (Xk) −
n−1∑
�=1

T � f (X1)

=
n∑

k=1

f (Xk) +
n∑

�=1

T � f (Xn) −
n∑

k=1

T n f (Xk) −
n−1∑
�=0

T � f (X1),

and if we substitute this back into Equation (36), we find that, after getting rid of the cancelling terms, recalling that 
E 1(T � f ) = E �+1( f ), and reorganising a bit:

n−1∑
�=0

�W �[T � f ](X1:n) = 1

n

[
−

n−1∑
�=0

E 1(T � f ) +
n∑

k=1

f (Xk) +
n∑

�=1

T � f (Xn) −
n∑

k=1

T n f (Xk)

]

= 1

n

n∑
k=1

[ f (Xk) − E k( f )] + 1

n

n∑
�=1

T � f (Xn) − 1

n

n∑
k=1

T n f (Xk)

or in other words:

A [ f ](X1:n) =
n−1∑
�=0

�W �[T � f ](X1:n) + 1

n

n∑
k=1

T n f (Xk) − 1

n

n∑
�=1

T � f (Xn). (37)

This is an important relationship between the ergodic average and the average gain. We now intend to show that under 
certain conditions the remaining terms on the right-hand side essentially cancel out for large enough n.

9. Consequences of the Perron–Frobenius-like character

Let us associate with a lower transition operator T the following (weak) coefficient of ergodicity [22,12]:

ρ(T ) := max
x,y∈X

max
h∈G1(X )

|T h(x) − T h(y)| = max
h∈G1(X )

‖T h‖v,

where G1(X ) := {h ∈ G (X ) : 0 ≤ h ≤ 1}, and where for any h ∈ G (X ), its variation (semi)norm is given by ‖h‖v := max h −
min h. If we define the following distance between two lower expectation operators E and F [22]:

d(E, F ) = max
h∈G1(X )

|E(h) − F (h)|,

then it is not difficult to see [using LE3, LE5 and LE8] that 0 ≤ d(E, F ) ≤ 1, and that for any f ∈ G (X ):

|E( f ) − F ( f )| ≤ d(E, F )‖ f ‖v. (38)

Škulj and Hable [22] prove the following results, which will turn out to be crucial to our argument.

Theorem 29 ([22]). Consider lower transition operators S and T , and two lower expectations E a and E b on G (X ). Then the following 
statements hold:

(i) 0 ≤ ρ(T ) ≤ 1.
(ii) ρ(ST ) ≤ ρ(S)ρ(T ) and therefore ρ(T n) ≤ ρ(T )n for all n ∈N.

(iii) d(E aT , E bT ) ≤ d(E a, E b)ρ(T ).
(iv) The lower transition operator T is Perron–Frobenius-like if and only if there is some r ∈ N such that ρ(T r) < 1.

Indeed, they allow us to derive useful bounds for the various terms on the right-hand side of Equation (37). For any 
non-negative real number a we denote by �a� = max {n ∈ N0 : n ≤ a} the largest natural number that it still dominates—its 
integer part.
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Lemma 30. Let T be a Perron–Frobenius-like lower transition operator, with stationary lower expectation E ∞ , and let r be the small-
est natural number such that ρ := ρ(T r) < 1. Let E a and E b be any two lower expectations on G (X ). Then for all f ∈ G (X ), 
�1, �2 ∈N0:∣∣E a(T �1 f ) − E b(T �2 f )

∣∣ ≤ ‖ f ‖vρ
� min{�1,�2}

r �. (39)

As a consequence, for all f ∈ G (X ), �, �1, �2 ∈N0 and k, k1, k2 ∈ N:∣∣T � f (Xk) − E ∞( f )
∣∣ ≤ ‖ f ‖vρ

� �
r �, (40)∣∣E a(T � f ) − E ∞( f )

∣∣ ≤ ‖ f ‖vρ
� �

r �, (41)∣∣T � f (Xk) − E b(T � f )
∣∣ ≤ ‖ f ‖vρ

� �
r �, (42)∣∣T �1 f (Xk1) − T �2 f (Xk2)

∣∣ ≤ ‖ f ‖vρ
� min{�1,�2}

r �. (43)

Proof. We may assume without loss of generality that �1 ≤ �2. Using Equation (38), Theorem 29(iii) and the fact that we 
can consider T �1 as a lower transition operator in its own right:∣∣E a(T �1 f ) − E b(T �2 f )

∣∣ ≤ d(E aT �1 , E bT �2)‖ f ‖v ≤ d(E a, E bT �2−�1)ρ(T �1)‖ f ‖v.

Our proof of the first inequality (39) is complete if we realise that 0 ≤ d(E a, E bT �2−�1 ) ≤ 1, and that ρ(T �1 ) ≤ ρ(T r� �1
r �) ≤

ρ(T r)�
�1
r � by Theorem 29(i) and (ii).

Denote, for any x ∈ X , by Ex the expectation operator that assigns all probability mass to x, meaning that Ex( f ) := f (x)
for all f ∈ G (X ). To prove the second inequality (40), consider any x ∈ X and let E a = Ex , E b = E ∞ and �1 = �2 = �, then 
we infer from (39) that indeed:∣∣T � f (x) − E ∞( f )

∣∣ = ∣∣Ex(T � f ) − E ∞(T � f )
∣∣ ≤ ‖ f ‖vρ

� �
r �.

To prove the third inequality (41), let E b = E ∞ and �1 = �2 = �, then we infer from (39) that indeed:∣∣E a(T � f ) − E ∞( f )
∣∣ = ∣∣E a(T � f ) − E ∞(T � f )

∣∣ ≤ ‖ f ‖vρ
� �

r �,

where we used that E ∞( f ) = E ∞(T � f ) for all � ∈ N0; see Proposition 17.
To prove the fourth inequality (42), consider any x ∈ X and let E a = Ex and �1 = �2 = �, then we infer from (39) that 

indeed:∣∣T � f (x) − E b(T � f )
∣∣ = ∣∣Ex(T � f ) − E b(T � f )

∣∣ ≤ ‖ f ‖vρ
� �

r �.
To prove the fifth inequality (43), consider any x, y ∈ X and let E a = Ex and E b = E y . Then we infer from (39) that indeed:∣∣T �1 f (x) − T �2 f (y)

∣∣ = ∣∣Ex(T �1 f ) − E y(T �2 f )
∣∣ ≤ ‖ f ‖vρ

� min{�1,�2}
r �. �

Lemma 31. Consider an imprecise Markov chain with initial—or marginal—model E 1 and lower transition operator T . Assume that T
is Perron–Frobenius-like, with stationary lower expectation E ∞ , and let r be the smallest natural number such that ρ := ρ(T r) < 1. 
Then the following statements hold for all f ∈ G (X ):

(i) |�W �[T � f ](X1:n)| ≤ ‖ f ‖vρ
� �

r � for all � ∈N0 and n ∈N.
(ii) limn→∞ 1

n

∑n
k=1 T n f (Xk) = E ∞( f ).

(iii) limn→∞ 1
n

∑n
�=1 T � f (Xn) = E ∞( f ).

(iv) limn→∞ 1
n

∑n
k=1 E k( f ) = E ∞( f ).

Proof. Recall from Equation (34) that:

n�W �[T � f ](X1:n) = [
T � f (X1) − E 1(T � f )

] +
n∑

k=2

[
T � f (Xk) − T �+1 f (Xk−1)

]
.

If we also invoke Lemma 30, we find that:

n
∣∣�W �[T � f ](X1:n)

∣∣ ≤ ∣∣T � f (X1) − E 1(T � f )
∣∣ +

n∑
k=2

∣∣T � f (Xk) − T �+1 f (Xk−1)
∣∣

≤ ‖ f ‖vρ
� �

r � +
n∑

k=2

‖ f ‖vρ
� �

r � = n‖ f ‖vρ
� �

r �,



G. de Cooman et al. / International Journal of Approximate Reasoning 76 (2016) 18–46 43
which proves statement (i). Similarly, by Lemma 30:∣∣∣∣1

n

n∑
k=1

[
T n f (Xk) − E ∞( f )

]∣∣∣∣ ≤ 1

n

n∑
k=1

∣∣T n f (Xk) − E ∞( f )
∣∣ ≤ 1

n

n∑
k=1

‖ f ‖vρ
� n

r � = ‖ f ‖vρ
� n

r �,

which proves statement (ii). Similarly, again by Lemma 30:∣∣∣∣1

n

n∑
�=1

[
T � f (Xn) − E ∞( f )

]∣∣∣∣ ≤ 1

n

n∑
�=1

∣∣T � f (Xn) − E ∞( f )
∣∣ ≤ 1

n

n∑
�=1

‖ f ‖vρ
� �

r �

≤ ‖ f ‖v

n

∞∑
�=0

ρ� �
r � = ‖ f ‖v

n
r

∞∑
s=0

ρs = ‖ f ‖v

n

r

1 − ρ
,

which proves statement (iii). Finally, by Lemma 30 and an argumentation similar to our proof for statement (iii):∣∣∣∣1

n

n∑
k=1

E k( f ) − E ∞( f )

∣∣∣∣ ≤ 1

n

n∑
k=1

∣∣E k( f ) − E ∞( f )
∣∣ = 1

n

n∑
k=1

∣∣E 1(T k−1 f ) − E ∞( f )
∣∣

≤ 1

n

n∑
k=1

‖ f ‖vρ
� k−1

r � ≤ ‖ f ‖v

n

r

1 − ρ
,

which proves statement (iv). �
We can now prove our main result, which comes in two equivalent versions. The first is readily compared to the classical 

ergodic theorem we stated in Equation (1). The second version is more directly amenable to a proof using our strong law of 
large numbers for submartingale differences (Corollary 8) and Equation (37).

Theorem 32 (Point-wise ergodic theorem). Consider an imprecise Markov chain with lower transition operator T . Assume that T is 
Perron–Frobenius-like, with stationary lower expectation E ∞ . Then for all f ∈ G (X )19:

lim inf
n→∞

1

n

n∑
k=1

f (Xk) ≥ E ∞( f ) strictly almost surely.

Proof. Because of Lemma 31(iv), this is an immediate translation of the equivalent inequality in Lemma 33. �
Lemma 33. Consider an imprecise Markov chain with lower transition operator T . Assume that T is Perron–Frobenius-like, with 
stationary lower expectation E ∞ . Then for all f ∈ G (X ):

lim inf A [ f ] ≥ 0 strictly almost surely.

Proof. We begin with the first inequality. Let r be the smallest natural number such that ρ := ρ(T r) < 1. Consider any 
q ∈N, and let gq := ∑rq−1

�=0 T � f , then it follows from Equation (33) and LE2 that for all n ∈ N:

W [gq](X1:n) ≤
rq−1∑
�=0

W [T � f ](X1:n) and therefore �W �[gq](X1:n) ≤
rq−1∑
�=0

�W �[T � f ](X1:n).

Hence, if we also take into account Equation (37) and Lemma 31, we find that:

lim inf A [ f ] = lim inf
n→∞

n−1∑
�=0

�W �[T � f ](X1:n)

≥ lim inf
n→∞

rq−1∑
�=0

�W �[T � f ](X1:n) + lim inf
n→∞

n−1∑
�=rq

�W �[T � f ](X1:n)

19 The version of the zero–one law in Ref. [19, Theorem 2] guarantees that the shift-invariant event {lim infn→∞ 1
n

∑n
k=1 f (Xk) ≥ E ∞( f )

}
has lower 

probability one or zero. Our theorem is stronger, in that it guarantees that this lower probability is one. Similar comments apply for the shift-invariant 
events in Lemma 33 and Corollary 34, even though the shift-invariance of the event in Lemma 33 is not immediate.
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≥ lim inf �W �[gq] − ‖ f ‖v lim sup
n→∞

n−1∑
�=rq

ρ� �
r �

= lim inf �W �[gq] − ‖ f ‖v

∞∑
�=rq

ρ� �
r � ≥ lim inf �W �[gq] − ‖ f ‖vr

ρq

1 − ρ
. (44)

By combining Equation (33) with the coherence [LE5 and LE8] of the local models of the Markov chain, we see that W [gq]
is a submartingale for which �W [gq] is uniformly bounded. It therefore follows from our strong law of large numbers 
for submartingale differences [Corollary 8] that lim inf �W �[gq] ≥ 0 strictly almost surely, meaning that there is some test 
supermartingale T (q) that converges to +∞ on any path ω for which lim inf �W �[gq] < 0. Furthermore, by the argumen-
tation in the proof of Corollary 8, we also know that 0 ≤ T (q)(x1:n) ≤ ( 3

2 )n for all n ∈ N and x1:n ∈ X1:n . If we now invoke 
Equation (44), we see that T (q) converges to +∞ on any path ω where lim infn→∞ A [ f ](ω) < −‖ f ‖v

rρq

1−ρ .

Now consider any sequence of positive real numbers w(q) such that 
∑

q∈N w(q) = 1, then it follows from the consid-

erations above that the sequence of non-negative real numbers ai(x1:n) := ∑i
q=1 w(q)T (q)(x1:n), i ∈ N, is non-decreasing 

and bounded above by ( 3
2 )n , and therefore converges to a non-negative real number, for all n ∈ N and x1:n ∈ X1:n . 

Hence, we can define the real process T := ∑
q∈N w(q)T (q) , which clearly converges to +∞ on any path ω where 

lim infn→∞ A [ f ](ω) < 0. Moreover, T (�) = 1 and T is non-negative. So we are done with the first inequality if we 
can prove that T is a supermartingale. Consider, therefore, any situation s and any Q (·|s) ∈ M(Q (·|s)), then, if we denote 
its (probability) mass function by p(·|s):

Q (�T |s) =
∑

x∈X

p(x|s)�T (s)(x) =
∑

x∈X

p(x|s)
∑
q∈N

w(q)�T (q)(s)(x)

=
∑
q∈N

w(q)
∑

x∈X

p(x|s)�T (q)(s)(x) =
∑
q∈N

w(q) Q (�T (q)(s)|s) ≤ 0,

where the inequality follows from Q (�T (q)(s)|s) ≤ Q (�T (q)(s)|s) ≤ 0; see Equation (2). If we now recall Equation (3), we 
see that indeed Q (�T (s)|s) ≤ 0. �

We can fairly easily extend this result to gambles that depend on a finite number of states.

Corollary 34. Consider an imprecise Markov chain with lower transition operator T . Assume that T is Perron–Frobenius-like, with 
stationary lower expectation E ∞ . Then for all f ∈ G (X r), with r ∈ N:

lim inf
n→∞

1

n

n∑
k=1

f (Xk:k+r−1) ≥ E st( f (X1:r)) strictly almost surely, (45)

where E st is the stationary joint lower expectation, defined at the very end of Section 6.3.

Proof. We give a proof by induction. We know from Theorem 32 that Equation (45) holds for r = 1. Now consider any q ∈N, 
and assume as our induction hypothesis that Equation (45) holds for r = q, then we prove that it also holds for r = q + 1.

Consider any f ∈ G (X q+1), and define the real process M by letting M (X1:�) := 0 for � = 0, 1, . . . , q and

M (X1:q+n) :=
n−1∑
k=0

[
f (Xk+1:k+q+1) − E( f (Xk+1:k+q+1)|X1:k+q)

]
for all n ∈N.

Then for any n ∈N0 and any situation x1:q+n ∈ X1:q+n , we find that

�M (x1:q+n)(Xq+n+1) = M (x1:q+n Xq+n+1) − M (x1:q+n) = f (xn+1:n+q Xq+n+1) − E( f (Xn+1:q+n+1)|x1:n+q)

= f (xn+1:n+q Xq+n+1) − Q ( f (xn+1:n+q Xq+n+1)|x1:n+q),

where the last equality follows from Corollary 3, and therefore, coherence [LE8] implies that Q (�M (x1:q+n)|x1:q+n) = 0. 
Similarly, for any � ∈ {0, 1, . . . , q − 1} and any x1:� ∈ X1:� , coherence [LE5] implies that Q (�M (x1:�)|x1:�) = Q (0|x1:�) = 0. 
Hence, we conclude that M is a submartingale, whose differences are uniformly bounded [because f is, trivially so]. 
Corollary 8 then tells us that lim inf �M � ≥ 0 strictly almost surely, or in other words that there is a test supermartingale 
T that converges to +∞ on the event A := {ω ∈ � : lim inf �M �(ω) < 0}.

Now observe that—keeping in mind that the second terms on the right-hand side of the first equality below always lie 
between min f and max f , due to LE5:
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lim inf
n→∞

1

n

n∑
k=1

f (Xk:k+q) = lim inf
n→∞

[
�M �(X1:n+q) + 1

n

n−1∑
k=0

E( f (Xk+1:k+q+1)|X1:k+q)

]

≥ lim inf
n→∞ �M �(X1:n+q) + lim inf

n→∞
1

n

n−1∑
k=0

E( f (Xk+1:k+q+1)|X1:k+q). (46)

If we consider the gamble g(X1:q) := E st( f (X1:q+1)|X1:q) that only depends on the first q states, then it follows from 
Corollary 3 and the Markov condition (18) that for all x1:q ∈ X1:q

g(x1:q) = E st( f (X1:q+1)|x1:q) = Q ( f (x1:q Xq+1)|x1:q) = Q ( f (x1:q Xq+1)|xq). (47)

Similarly, it follows from Corollary 3, the Markov condition (18) and Equation (47) that for all k ∈ N0 and all x1:k+q ∈ X1:k+q

E( f (Xk+1:k+q+1)|x1:k+q) = Q ( f (xk+1:k+q Xk+q+1)|x1:k+q) = Q ( f (xk+1:k+q Xk+q+1)|xk+q) = g(xk+1:k+q),

and therefore the inequality (46) can be rewritten as

lim inf
n→∞

1

n

n∑
k=1

f (Xk:k+q) ≥ lim inf
n→∞ �M �(X1:n+q) + lim inf

n→∞
1

n

n∑
k=1

g(Xk:k+q−1). (48)

We infer from the induction hypothesis that for the second term on the right-hand side

lim inf
n→∞

1

n

n∑
k=1

g(Xk:k+q−1) ≥ E st(g(X1:q)) strictly almost surely,

meaning that there is some test supermartingale T ∗ that converges to +∞ on the set B of all paths where this inequality 
does not hold. This in turn implies that

lim inf
n→∞

1

n

n∑
k=1

f (Xk:k+q) ≥ E st(g(X1:q)) strictly almost surely,

because it follows from (48) that the paths where this inequality does not hold must belong to A ∪ B , where the test 
supermartingale 1

2 (T + T ∗) converges to +∞. Now observe that

E st(g(X1:q)) = E st(E st( f (X1:q+1)|X1:q)) = E st( f (X1:q+1)),

by Theorem 16 [with m := 0 and n := q]. �
10. Conclusions and discussion

We have motivated expressions for joint lower and upper expectations on extended real-valued variables for impre-
cise Markov chains (with finite state spaces), and proved various interesting properties for them. This has allowed us to 
deal quite elegantly with transition and return times, but we expect our approach to be equally useful in other problems 
involving unbounded and/or extended real-valued variables.

We have also proved versions of the point-wise ergodic theorem for our imprecise Markov chains, involving (bounded) 
functions of a finite number of states. It is a subject of current research whether this result can be extended to gambles 
that depend on the entire state trajectory, and not just on a finite number of states.

Our version in Theorem 32 subsumes the one for (precise) Markov chains discussed in the Introduction, because there 
E ∞( f ) = E∞( f ) = E∞( f ) and therefore

E∞( f ) = E∞( f ) ≥ lim sup
n→∞

1

n

n∑
k=1

f (Xk) ≥ lim inf
n→∞

1

n

n∑
k=1

f (Xk) ≥ E ∞( f ) = E∞( f ) strictly almost surely,

implying that 1
n

∑n
k=1 f (Xk) converges to E∞( f ) (strictly) almost surely. In our more general case, however, we cannot 

generally prove that there is almost sure convergence, and we retain only almost sure inequalities involving limits inferior 
and superior, as is also the case for our strong law of large numbers for submartingale differences. Indeed, that such 
convergence should not really be expected for imprecise probability models was already argued by Walley and Fine [24].

Ergodicity results for Markov chains are quite relevant for applications in queuing theory, where they are for instance 
used to prove Little’s law [25], or ASTA (Arrivals See Time Averages) properties [15]. We believe the discussion in this paper 
could be instrumental in deriving similar properties for queues where the probability models for arrivals and departures are 
imprecise.
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