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Ergodicity theorem Consider a Markov
chain, with a finite state space X . For such
a system, we have proved various Perron-

Frobenius-like theorems. They provide nec-
essary and sufficient conditions for the uncer-
tainty model about the state X

n

to converge, as
n ! •, to an uncertainty model independent of
the initial state X

1

. In Markov chains with pre-
cise probabilities, this convergence is sufficient
for a pointwise ergodic theorem to hold:

lim

n!+•

1

n

n

Â
k=1

f (X
k

) = E•( f ) almost surely

Our result Applying the theory of imprecise
probabilities to stochastic processes, we can
define so-called imprecise Markov chains as
special cases of imprecise probability trees. We
introduce and study submartingales and super-
martingales in such trees, for which we are able
to prove a strong law of large numbers for sub-
martingale differences. Combining this result
with the Perron-Frobenius-like character of our
model we can prove the following

liminf

n!•

1

n

n

Â
k=1

f (X
k

)�E•( f ) strictly almost surely.

Abstract
Imprecise probabilities We present the basic
axioms for the theory of imprecise probabilities
introduced by Walley (1991). For a recent intro-
ductory book, see also Thomas Augustin, Frank
P. A. Coolen, Gert de Cooman and Matthias C. M.
Troffaes (2014).

Suppose a subject is uncertain about the value
that a variable X assumes in a finite set of possible
values X. His uncertainty is modelled by a lower

expectation E, which is a real functional on the
set G (X) of all real-valued functions (gambles)
f : X ! R on X, satisfying the following the basic
so-called coherence axioms:

1. E( f ) � min f for all f 2 G (X);

2. E( f + g) � E( f )+E(g) for all f ,g 2 G (X);

3. E(l f ) = lE( f ) for all f 2 G (X) and real l � 0.

The conjugate upper expectation E is defined by
E( f ) :=�E(� f ) and it follows from the coherence
axioms 1–3 that

4. min f  E( f )  E( f )  max f for all f 2 G (X);

5. E( f +g)E( f )+E(g)E( f +g)E( f )+E(g)
for all f ,g 2 G (X);

6. E( f )  E(g) and E( f )  E(g) for all f ,g 2 G (X)
with f  g;

7. E( f + µ) = E( f ) + µ and E( f + µ) = E( f ) + µ
for all f 2 G (X) and real µ.

Imprecise probabilities
Event trees We denote by X

k:` the tuple (X
k

, . . . ,X`), taking values in set
X

k:` :=⇥`
r=k

X
r

, for any k  ` with k,`2N. A situation is an finite sequence
of states x

1:n 2 X
1:n, with n 2 N

0

, and the set of all situations is denoted
by W⌃. Infinite sequences of states are called paths, and the set of all
paths is denoted by W.

W⌃ :=
[

n2N
0

X
1:n and W := ⇥•

r=1

X
r

.

For any path w 2 W, the initial sequence of its first n elements, X
1:n,

is denoted by wn. A variable is a function defined on W. It is called n-

measurable if it only depends on the value of X

1:n. An event is a subset
of W. With any situation x

1:n, we can associate the so-called exact event

G(x
1:n), which is the set of all paths w 2 W that go through x

1:n.

Processes A process F is a map defined on W⌃. The process differ-

ence DF (x
1:n) 2 G (X

n+1

) is defined by

DF (x
1:n)(xn+1

) := F (x
1:n+1

)�F (x
1:n) for all x

n+1

2 X
n+1

.

We can associate a real process F with extended real variables liminfF
and limsupF , defined for all w 2 W by:

liminfF (w) := liminf

n!•
F (wn) and limsupF (w) := limsup

n!•
F (wn).

Also, with any real process F we can associate the path-averaged pro-

cess hF i, which is the real process defined by:

hF i(x
1:n) :=

(
0 if n = 0

1

n

F (x
1:n) if n > 0

for all n 2 N and x

1:n 2 X
1:n.

Event trees and processes

Imprecise probability trees We turn the event tree into a probability tree

by assigning to each situation x

1:n, a local probability model Q(·|x
1:n). This

local model Q(·|x
1:n) is then an expectation operator on the set G (X

n+1

) of all
gambles g(X

n+1

) on the next state X

n+1

, given that X

1:n = x

1:n. We can equally
well attach to each situation x

1:n a local imprecise probability model Q(·|x
1:n)

for the next state X

n+1

. This local model Q(·|x
1:n) is then a lower expectation

operator on the set G (X
n+1

) of all gambles g(X
n+1

) on the next state X

n+1

,
given X

1:n = x

1:n.

Martingales A submartingale M is a real process such that
Q(DM (x

1:n)|x1:n) � 0 for all n 2 N and x

1:n 2 X
1:n. A real process M is a su-

permartingale if �M is a submartingale, meaning that Q(DM (x
1:n)|x1:n)  0.

We denote the set of all submartingales for a given imprecise probability tree
by M. Similarly, we have M := �M.
Consider any submartingale M and any situation s 2 W⌃, then:

M (s)  sup

w2G(s)
liminfM (w)  sup

w2G(s)
limsupM (w).

Using this inequality, and results from previous papers, we were able to
prove the following formulas for the global conditional lower expectations (the
so-called Shafer–Vovk–Ville formulas)

E( f |s) := sup{M (s) : M 2 M and limsupM (w)  f (w) for all w 2 G(s)}.

As a special case, for any situation x

1:m 2 W⌃ and any n-measurable real
variable f , with n,m 2 N such that n � m:

E( f |x
1:m) = sup{M (x

1:m) : M 2 M and (8x

m+1:n 2 X
m+1:n)M (x

1:n)  f (x
1:n)}.

Imprecise trees and martingales
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3

F (a,a,a) initial situation

We call an event A null if E(A) = 0, and strictly

null if there is some test supermartingale T that
converges to +• on A, meaning that:

limT (w) = +• for all w 2 A.

A test supermartingale is a supermartingale with
T (⇤) = 1 that is non-negative for all situations
in W⌃.
Using the definitions of null and strictly null event,
Shafer and Vovk (2001) proved the following ver-
sion of the supermartingale convergence theo-

rem:

Theorem 1. Let M be a supermartingale that

is bounded below. Then M converges strictly

almost surely to a real variable.

The intuition behind it is that there exists a test
supermartingale which is +• on the paths where
the process diverges. We were able to derive the
following useful theorem:

Theorem 2 (Strong law of large numbers for sub-
martingale differences). Let M be a submartin-

gale such that DM is uniformly bounded. Then

liminfhM i � 0 strictly almost surely.

Strong law of large numbers for submartingale differences

Imprecise Markov chains Imprecise Markov chains are
imprecise probability trees where all local uncertainty models
satisfy the so-called Markov condition:

Q(·|x
1:n) = Q(·|x

n

) for all situations x

1:n 2 W⌃
.

The lower transition operator T : G (X)! G (X) : f 7! T f is
defined by

T f (x) := Q( f |x) for all x 2 X

and the (global) lower expectation E

n

( f ) := E( f (X
n

)) at time
n is then given by

E

n

( f ) = E

1

(T n�1

f ), with T

n�1

f

:= TT . . .T| {z }
n�1 times

f .

An imprecise Markov chain is Perron–Frobenius-like if for
all f 2 G (X), the sequence T

n

f converges pointwise to a
constant real number, denoted by E•( f ). The E•( f ) is also
T -invariant in the sense that E• �T = E•.

Towards an imprecise ergodic theorem For any f 2
G (X), the average gain process is defined by:

hW i[ f ](X
1:n) :=

1

n


[ f (X

1

)�E

1

( f )]+
n

Â
k=2

[ f (X
k

)�T f (X
k�1

)]

�

and the ergodic average process by:

A [ f ](X
1:n) :=

1

n

n

Â
k=1

[ f (X
k

)�E

k

( f )]

It can be proved that

A [ f ](X
1:n) =

n�1

Ầ
=0

hW i[T `
f ](X

1:n)+
1

n

n

Â
k=1

T

n

f (X
k

)�1

n

n

Ầ
=1

T

`
f (X

n

).

Associate with T the (weak) coefficient of ergodicity r:

r(T ) := max

x,y2X
max

h2G
1

(X)
|Th(x)�Th(y)|= max

h2G
1

(X)
kThk

v

,

where G
1

(X) := {h2G (X) : 0 h 1}, and for any h2G (X),
khk

v

:= maxh�minh. Then it can be shown that an imprecise
Markov chain is Perron–Frobenius-like if and only if r(T r)< 1

for some r 2 N. If we define the following distance :

d(E,F) = max

h2G
1

(X)
|E(h)�F(h)|,

then we derive [using 1, 3 and 7] that 0  d(E,F)  1, and :

|E( f )�F( f )| d(E,F)k fk
v

. (1)

Using (1) and the property 0  r(T )  1, we get
��
T

`
1

f (X
k

1

)�T

`
2

f (X
k

2

)
�� k fk

v

rbmin{`
1

,`
2

}
r

c
. (2)

Combining hW i[ f ](X
1:n) with (2), we have

|hW i[T `
f ]| k fk

v

rb`
r

c
. (3)

From (3) and A [ f ](X
1:n) and using Theorem 2

liminfA [ f ] � 0 strictly almost surely,

and consequently our main result,

liminf

n!•

1

n

n

Â
k=1

f (X
k

) � E•( f ) strictly almost surely.

An interesting result for imprecise Markov chains


