A pointwise ergodic theorem for imprecise Markov chains

Gert de Cooman, Jasper De Bock, Stavros Lopatatzidis

SYSTeMS research group, Ghent University, Belgium

{Gert.deCooman, Jasper.DeBock, Stavros.Lopatatzidis}@UGent.be

Abstract

Ergodicity theorem Consider a Markov chain, with a finite state space \mathscr{X} . For such a system, we have proved various Perron-Frobenius-like theorems. They provide necessary and sufficient conditions for the uncertainty model about the state X_n to converge, as $n \rightarrow \infty$, to an uncertainty model independent of the initial state X_1 . In Markov chains with precise probabilities, this convergence is sufficient for a pointwise ergodic theorem to hold:

Imprecise probabilities

Imprecise probabilities We present the basic axioms for the theory of imprecise probabilities introduced by Walley (1991). For a recent introductory book, see also Thomas Augustin, Frank P. A. Coolen, Gert de Cooman and Matthias C. M. Troffaes (2014).

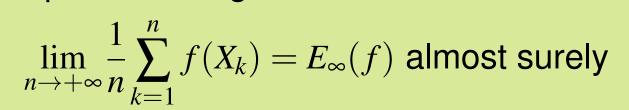
Suppose a subject is uncertain about the value that a variable *X* assumes in a finite set of possible values \mathscr{X} . His uncertainty is modelled by a *lower expectation E*, which is a real functional on the set $\mathscr{G}(\mathscr{X})$ of all real-valued functions (gambles) $f: \mathscr{X} \to \mathbb{R}$ on \mathscr{X} , satisfying the following the basic so-called coherence axioms:

Event trees and processes

Event trees We denote by $X_{k:\ell}$ the tuple (X_k, \ldots, X_ℓ) , taking values in set $\mathscr{X}_{k:\ell} := \times_{r=k}^{\ell} \mathscr{X}_r$, for any $k \leq \ell$ with $k, \ell \in \mathbb{N}$. A situation is an finite sequence of states $x_{1:n} \in \mathscr{X}_{1:n}$, with $n \in \mathbb{N}_0$, and the set of all situations is denoted by Ω^{\Diamond} . Infinite sequences of states are called *paths*, and the set of all paths is denoted by Ω .

$$\Omega^{\Diamond} \coloneqq \bigcup_{n \in \mathbb{N}_0} \mathscr{X}_{1:n} \text{ and } \Omega \coloneqq \times_{r=1}^{\infty} \mathscr{X}_r.$$

For any path $\omega \in \Omega$, the initial sequence of its first *n* elements, $\mathscr{X}_{1:n}$, is denoted by ω^n . A variable is a function defined on Ω . It is called *nmeasurable* if it only depends on the value of $X_{1:n}$. An *event* is a subset of Ω . With any situation $x_{1:n}$, we can associate the so-called *exact event*



Our result Applying the theory of imprecise probabilities to stochastic processes, we can define so-called imprecise Markov chains as special cases of imprecise probability trees. We introduce and study submartingales and supermartingales in such trees, for which we are able to prove a strong law of large numbers for submartingale differences. Combining this result with the Perron-Frobenius-like character of our model we can prove the following

 $\liminf_{n\to\infty} \frac{1}{n} \sum_{k=1}^{n} f(X_k) \ge \underline{E}_{\infty}(f) \text{ strictly almost surely.}$

1. $\underline{E}(f) \ge \min f$ for all $f \in \mathscr{G}(\mathscr{X})$;

2. $\underline{E}(f+g) \ge \underline{E}(f) + \underline{E}(g)$ for all $f, g \in \mathscr{G}(\mathscr{X})$; 3. $\underline{E}(\lambda f) = \lambda \underline{E}(f)$ for all $f \in \mathscr{G}(\mathscr{X})$ and real $\lambda \geq 0$. The conjugate upper expectation \overline{E} is defined by $\overline{E}(f) := -\underline{E}(-f)$ and it follows from the coherence axioms 1–3 that

4. $\min f \leq \underline{E}(f) \leq \overline{E}(f) \leq \max f$ for all $f \in \mathscr{G}(\mathscr{X})$; 5. $\underline{E}(f+g) \leq \underline{E}(f) + \overline{E}(g) \leq \overline{E}(f+g) \leq \overline{E}(f) + \overline{E}(g)$ for all $f, g \in \mathscr{G}(\mathscr{X})$;

6. $\underline{E}(f) \leq \underline{E}(g)$ and $\overline{E}(f) \leq \overline{E}(g)$ for all $f, g \in \mathscr{G}(\mathscr{X})$ with $f \leq g$;

7. $\underline{E}(f + \mu) = \underline{E}(f) + \mu$ and $\overline{E}(f + \mu) = \overline{E}(f) + \mu$ for all $f \in \mathscr{G}(\mathscr{X})$ and real μ .

 $\Gamma(x_{1:n})$, which is the set of all paths $\omega \in \Omega$ that go through $x_{1:n}$.

Processes A process \mathscr{F} is a map defined on Ω^{\Diamond} . The process difference $\Delta \mathscr{F}(x_{1:n}) \in \mathscr{G}(\mathscr{X}_{n+1})$ is defined by

 $\Delta \mathscr{F}(x_{1:n})(x_{n+1}) \coloneqq \mathscr{F}(x_{1:n+1}) - \mathscr{F}(x_{1:n}) \text{ for all } x_{n+1} \in \mathscr{X}_{n+1}.$

We can associate a real process \mathscr{F} with extended real variables $\liminf \mathscr{F}$ and $\limsup \mathscr{F}$, defined for all $\omega \in \Omega$ by:

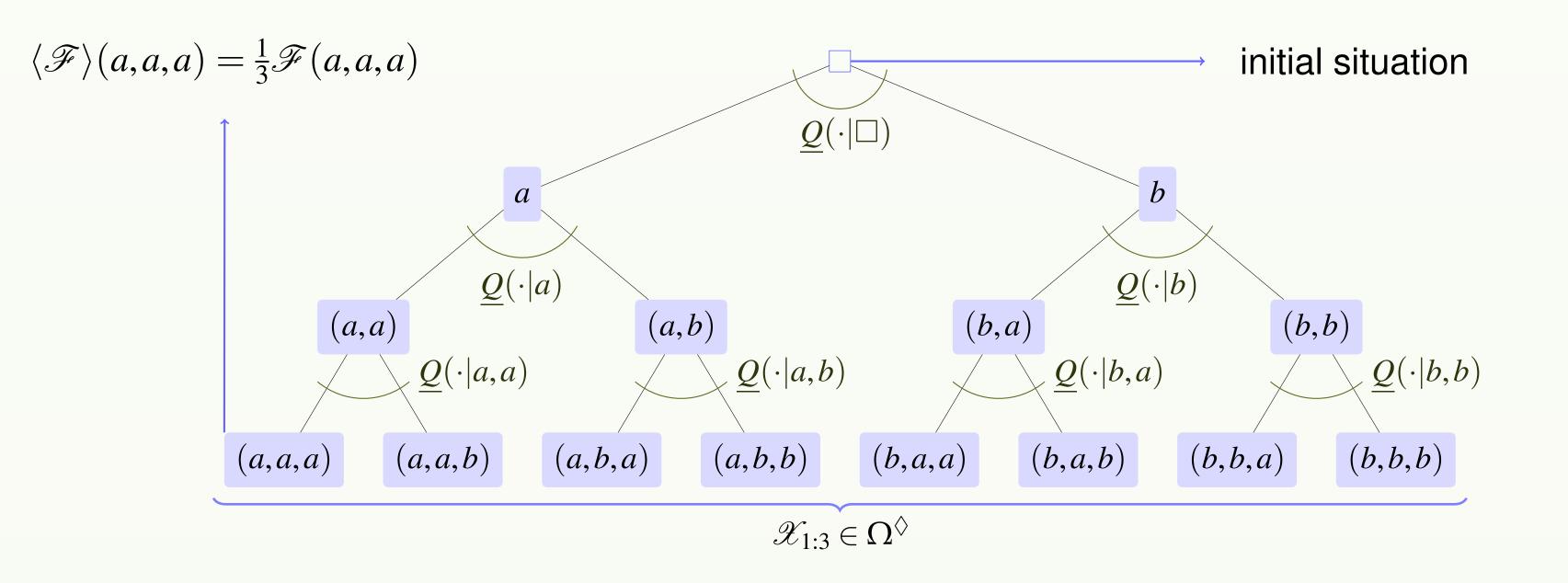
 $\liminf \mathscr{F}(\boldsymbol{\omega}) \coloneqq \liminf_{n \to \infty} \mathscr{F}(\boldsymbol{\omega}^n) \text{ and } \limsup \mathscr{F}(\boldsymbol{\omega}) \coloneqq \limsup_{n \to \infty} \mathscr{F}(\boldsymbol{\omega}^n).$

Also, with any real process *F* we can associate the *path-averaged process* $\langle \mathscr{F} \rangle$, which is the real process defined by:

$$\langle \mathscr{F} \rangle(x_{1:n}) \coloneqq \begin{cases} 0 & \text{if } n = 0 \\ \frac{1}{n} \mathscr{F}(x_{1:n}) & \text{if } n > 0 \end{cases}$$
 for all $n \in \mathbb{N}$ and $x_{1:n} \in \mathscr{X}_{1:n}$.

Imprecise trees and martingales

Imprecise probability trees We turn the event tree into a *probability tree* by assigning to each situation $x_{1:n}$, a *local* probability model $Q(\cdot|x_{1:n})$. This local model $Q(\cdot|x_{1:n})$ is then an expectation operator on the set $\mathscr{G}(\mathscr{X}_{n+1})$ of all gambles $g(X_{n+1})$ on the next state X_{n+1} , given that $X_{1:n} = x_{1:n}$. We can equally well attach to each situation $x_{1:n}$ a local *imprecise* probability model $Q(\cdot|x_{1:n})$ for the next state X_{n+1} . This local model $Q(\cdot|x_{1:n})$ is then a *lower expectation* operator on the set $\mathscr{G}(\mathscr{X}_{n+1})$ of all gambles $g(X_{n+1})$ on the next state X_{n+1} , given $X_{1:n} = x_{1:n}$.



Martingales A submartingale *M* is a real process such that $Q(\Delta \mathscr{M}(x_{1:n})|x_{1:n}) \ge 0$ for all $n \in \mathbb{N}$ and $x_{1:n} \in \mathscr{X}_{1:n}$. A real process \mathscr{M} is a *supermartingale* if $-\mathcal{M}$ is a submartingale, meaning that $\overline{Q}(\Delta \mathcal{M}(x_{1:n})|x_{1:n}) \leq 0$. We denote the set of all submartingales for a given imprecise probability tree by \mathbb{M} . Similarly, we have $\overline{\mathbb{M}} := -\mathbb{M}$.

Consider any submartingale \mathcal{M} and any situation $s \in \Omega^{\Diamond}$, then:

 $\mathcal{M}(s) \leq \sup \liminf \mathcal{M}(\omega) \leq \sup \limsup \mathcal{M}(\omega).$ $\omega \in \Gamma(s)$ $\omega \in \Gamma(s)$

Using this inequality, and results from previous papers, we were able to prove the following formulas for the global conditional lower expectations (the so-called Shafer–Vovk–Ville formulas)

 $\underline{E}(f|s) \coloneqq \sup\{\mathscr{M}(s) \colon \mathscr{M} \in \underline{\mathbb{M}} \text{ and } \limsup \mathscr{M}(\omega) \leq f(\omega) \text{ for all } \omega \in \Gamma(s)\}.$ As a special case, for any situation $x_{1:m} \in \Omega^{\Diamond}$ and any *n*-measurable real

 $\underline{E}(f|x_{1:m}) = \sup\{\mathscr{M}(x_{1:m}) \colon \mathscr{M} \in \underline{\mathbb{M}} \text{ and } (\forall x_{m+1:n} \in \mathscr{X}_{m+1:n}) \mathscr{M}(x_{1:n}) \leq f(x_{1:n})\}.$

Strong law of large numbers for submartingale differences

We call an event A null if $\overline{E}(A) = 0$, and strictly *null* if there is some test supermartingale \mathcal{T} that converges to $+\infty$ on A, meaning that:

 $\lim \mathscr{T}(\omega) = +\infty$ for all $\omega \in A$.

A *test supermartingale* is a supermartingale with $\mathscr{T}(\Box) = 1$ that is non-negative for all situations in Ω^{\diamond} .

Using the definitions of null and strictly null event, Shafer and Vovk (2001) proved the following version of the supermartingale convergence theorem:

Theorem 1. Let *M* be a supermartingale that is bounded below. Then *M* converges strictly almost surely to a real variable.

The intuition behind it is that there exists a test supermartingale which is $+\infty$ on the paths where the process diverges. We were able to derive the following useful theorem:

Theorem 2 (Strong law of large numbers for submartingale differences). Let *M* be a submartingale such that $\Delta \mathcal{M}$ is uniformly bounded. Then $\liminf \langle \mathscr{M} \rangle \geq 0$ strictly almost surely.

An interesting result for imprecise Markov chains

Imprecise Markov chains Imprecise Markov chains are Towards an imprecise ergodic theorem For any $f \in$ for some $r \in \mathbb{N}$. If we define the following distance :

imprecise probability trees where all local uncertainty models satisfy the so-called *Markov condition*:

variable *f*, with $n, m \in \mathbb{N}$ such that $n \ge m$:

 $Q(\cdot|x_{1:n}) = Q(\cdot|x_n)$ for all situations $x_{1:n} \in \Omega^{\Diamond}$.

The *lower transition operator* $\underline{\mathbf{T}}: \mathscr{G}(\mathscr{X}) \to \mathscr{G}(\mathscr{X}): f \mapsto \underline{\mathbf{T}} f$ is defined by

 $\underline{\mathrm{T}} f(x) \coloneqq Q(f|x)$ for all $x \in \mathscr{X}$

and the (global) lower expectation $\underline{E}_n(f) := \underline{E}(f(X_n))$ at time *n* is then given by

 $\underline{E}_n(f) = \underline{E}_1(\underline{\mathbf{T}}^{n-1}f), \text{ with } \underline{\mathbf{T}}^{n-1}f \coloneqq \underbrace{\underline{\mathbf{T}}\underline{\mathbf{T}}\dots\underline{\mathbf{T}}}_{n-1 \text{ times}}f.$

An imprecise Markov chain is Perron-Frobenius-like if for all $f \in \mathscr{G}(\mathscr{X})$, the sequence $\underline{T}^n f$ converges pointwise to a constant real number, denoted by $\underline{E}_{\infty}(f)$. The $\underline{E}_{\infty}(f)$ is also <u>T</u>-invariant in the sense that $\underline{E}_{\infty} \circ \underline{T} = \underline{E}_{\infty}$.

 $\mathscr{G}(\mathscr{X})$, the *average gain* process is defined by: $\langle \mathscr{W} \rangle [f](X_{1:n}) \coloneqq \frac{1}{n} \left[[f(X_1) - \underline{E}_1(f)] + \sum_{k=2}^n [f(X_k) - \underline{T}f(X_{k-1})] \right]$ and the *ergodic average* process by: $\mathscr{A}[f](X_{1:n}) \coloneqq \frac{1}{n} \sum_{k=1}^{n} [f(X_k) - \underline{E}_k(f)]$ It can be proved that $\mathscr{A}[f](X_{1:n}) = \sum_{\ell=0}^{n-1} \langle \mathscr{W} \rangle [\underline{\mathrm{T}}^{\ell} f](X_{1:n}) + \frac{1}{n} \sum_{k=1}^{n} \underline{\mathrm{T}}^{n} f(X_{k}) - \frac{1}{n} \sum_{\ell=1}^{n} \underline{\mathrm{T}}^{\ell} f(X_{n}).$ Associate with <u>T</u> the (weak) *coefficient of ergodicity* ρ : $\rho(\underline{\mathrm{T}}) \coloneqq \max_{x,y \in \mathscr{X}} \max_{h \in \mathscr{G}_{1}(\mathscr{X})} |\underline{\mathrm{T}}h(x) - \underline{\mathrm{T}}h(y)| = \max_{h \in \mathscr{G}_{1}(\mathscr{X})} ||\underline{\mathrm{T}}h||_{\mathrm{v}},$ where $\mathscr{G}_1(\mathscr{X}) := \{h \in \mathscr{G}(\mathscr{X}) : 0 \le h \le 1\}$, and for any $h \in \mathscr{G}(\mathscr{X})$,

 $||h||_{v} := \max h - \min h$. Then it can be shown that an imprecise Markov chain is Perron–Frobenius-like if and only if $\rho(\underline{T}^r) < 1$

 $d(\underline{E},\underline{F}) = \max_{h \in \mathscr{G}_1(\mathscr{X})} |\underline{E}(h) - \underline{F}(h)|,$ then we derive [using 1, 3 and 7] that $0 \le d(\underline{E}, \underline{F}) \le 1$, and : $|\underline{E}(f) - \underline{F}(f)| \le d(\underline{E}, \underline{F}) ||f||_{v}.$ (1) Using (1) and the property $0 \le \rho(\underline{T}) \le 1$, we get $\left|\underline{\mathrm{T}}^{\ell_1}f(X_{k_1}) - \underline{\mathrm{T}}^{\ell_2}f(X_{k_2})\right| \leq \|f\|_{\mathrm{v}}\rho^{\lfloor\frac{\min\{\ell_1,\ell_2\}}{r}\rfloor}.$ (2) Combining $\langle \mathscr{W} \rangle [f](X_{1:n})$ with (2), we have $|\langle \mathscr{W} \rangle [\underline{\mathrm{T}}^{\ell} f]| \leq ||f||_{\mathrm{v}} \rho^{\lfloor \frac{\ell}{r} \rfloor}.$ (3) From (3) and $\mathscr{A}[f](X_{1:n})$ and using **Theorem 2** $\liminf \mathscr{A}[f] \ge 0$ strictly almost surely, and consequently our main result, $\liminf_{n\to\infty}\frac{1}{n}\sum_{k=1}^{n}f(X_k)\geq \underline{E}_{\infty}(f) \text{ strictly almost surely.}$