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“It’s probability theory, Jim, but not as we know it”



LOWER PREVISIONS



Lower and upper previsions

b

c

a

ΣX

P(I{c}) = 1/4

P(I{c}) = 4/7

Equivalent model
Consider the set L (X) = RX of all real-valued maps on X . We define
two real functionals on L (X): for all f : X → R

PM (f ) = min{Pp(f ) : p ∈M } lower prevision/expectation
PM (f ) = max{Pp(f ) : p ∈M } upper prevision/expectation.

Observe that
PM (−f ) =−PM (f ).



Basic properties of lower previsions

Definition
We call a real functional P on L (X) a lower prevision if it satisfies the
following properties:

for all f and g in L (X) and all real λ ≥ 0:
1. P(f )≥min f [boundedness];
2. P(f +g)≥ P(f )+P(g) [super-additivity];
3. P(λ f ) = λP(f ) [non-negative homogeneity].

Theorem
A real functional P is a lower prevision if and only if it is the lower
envelope of some credal set M .



Conditioning and lower previsions

Suppose we have two variables X1 in X1 and X2 in X2.

Consider for instance:
I a joint lower prevision P1,2 for (X1,X2) defined on L (X1×X2);
I a conditional lower prevision P2(·|x1) for X2 conditional on X1 = x1,

defined on L (X2), for all values x1 ∈X1.

Coherence
These lower previsions P1,2 and P2(·|X1) must satisfy certain (joint)
coherence criteria: compare with Bayes’s Rule and de Finetti’s
coherence criteria for precise previsions.

Complication
A joint lower prevision P1,2 does not always uniquely determine a
conditional P2(·|X1), we can only impose coherence between them.
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Many variables: notation

Suppose we have variables

Xi ∈Xi, i ∈ N

For S⊆ N we denote the S-tuple of variables Xs, s ∈ S by

XS ∈XS :=×s∈SXs

and generic values by XS = xS.

Now consider an input-output pair I,O⊆ N.

Conditional lower previsions

PO(f (XO)|xI) = lower prevision of f (XO) conditional on XI = xI.
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Coherence criterion: Walley (1991)

The conditional lower previsions POs
(·|XIs), s = 1, . . . ,n are coherent if

and only if:

for all fj ∈L (XOj∪Ij), all k ∈ {1, . . . ,n}, all xIk ∈XIk and all
g ∈L (XOk∪Ik), there is some zN ∈ {xIk}∪

⋃n
j=1 suppIj

(fj) such that:[ n

∑
s=1

[fs−POs
(fs|xIs)]− [g−POk

(g|xIk)]

]
(zN)≥ 0.

where suppI(f ) :=
{

xI ∈XI : I{xI}f 6= 0
}

.

This is quite complicated and cumbersome!
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A few papers that try to brave the complications

@ARTICLE{miranda2007,
author = {Miranda, Enrique and De Cooman, Gert},
title = {Marginal extension in the theory of coherent lower previsions},
journal = {International Journal of Approximate Reasoning},
year = 2007,
volume = 46,
pages = {188--225}

}



A few papers that try to brave the complications

@ARTICLE{miranda2007,
author = {De Cooman, Gert and Miranda, Enrique},
title = {Weak and strong laws of large numbers for coherent lower previsions},
journal = {Journal of Statistical Planning and Inference},
year = 2008,
volume = 138,
pages = {2409--2432}

}



SETS OF DESIRABLE
GAMBLES



Why work with sets of desirable gambles?

Working with sets of desirable gambles D:
I is simpler, more intuitive and more elegant
I is more general and expressive than (conditional) lower previsions
I gives a geometrical flavour to probabilistic inference
I shows that probabilistic inference and Bayes’ Rule are ‘logical’

inference
I includes classical propositional logic as another special case
I includes precise probability as one special case
I avoids problems with conditioning on sets of probability zero



First steps: Williams (1977)

@ARTICLE{williams2007,
author = {Williams, Peter M.},
title = {Notes on conditional previsions},
journal = {International Journal of Approximate Reasoning},
year = 2007,
volume = 44,
pages = {366--383}

}



First steps: Walley (2000)

@ARTICLE{walley2000,
author = {Walley, Peter},
title = {Towards a unified theory of imprecise probability},
journal = {International Journal of Approximate Reasoning},
year = 2000,
volume = 24,
pages = {125--148}

}



Set of desirable gambles as a belief model

Gambles:
A gamble f : X → R is an uncertain reward whose value is f (X).

H

T

−1 1

−1

1

(f (H), f (T))

Set of desirable gambles:
D ⊆L (X) is a set of gambles that a subject strictly prefers to zero.
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Coherence for a set of desirable gambles
A set of desirable gambles D is called coherent if:

D1. if f ≤ 0 then f 6∈D [not desiring non-positivity]
D2. if f > 0 then f ∈D [desiring partial gains]
D3. if f ,g ∈D then f +g ∈D [addition]
D4. if f ∈D then λ f ∈D for all real λ > 0 [scaling]

H

T

−1 1

−1

1

Precise models cor-
respond to the special
case that the convex
cones D are actually
halfspaces!
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Connection with lower previsions

H

T
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f −P(f )

P(f )

P(f ) = sup{α ∈ R : f −α ∈D}
supremum buying price for f
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INFERENCE



Inference: natural extension
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posi(K ) :=
{ n

∑
k=1

λkfk : fk ∈K ,λk > 0,n > 0
}
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Inference: natural extension
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Inference: marginalisation and conditioning

Let DN be a coherent set of desirable gambles on XN .

For any subset I ⊆ N, we have the XI-marginals:

DI = margI(DN) := DN ∩L (XI),

so
f (XI) ∈DI ⇔ f (XI) ∈DN .

How to condition a coherent set DN on the observation that XI = xI?

The updated set of desirable gambles DNcxI ⊆L (XN\I) on XN\I is:

g ∈DNcxI ⇔ I{xI}g ∈DN .

Works for all conditioning events: no problem with conditioning on sets
of probability zero!



Conditional lower previsions

Just like in the unconditional case, we can use a coherent set of
desirable gambles DN to derive conditional lower previsions.

Consider disjoint subsets I and O of N:

PO(g|xI) := sup
{

µ ∈ R : I{xI}[g−µ] ∈DN
}

= sup{µ ∈ R : g−µ ∈DNcxI} for all g ∈L (XO)

is the lower prevision of g, conditional on XI = xI.

PO(g|XI) is the gamble on XI that assumes the value PO(g|xI) in
xI ∈XI.



Coherent conditional lower previsions

Consider m couples of disjoint subsets Is and Os of N, and
corresponding conditional lower previsions POs

(·|XIs) for s = 1, . . . ,m.

Theorem (Williams, 1977)
These conditional lower previsions are (jointly) coherent if and only if
there is some coherent set of desirable gambles DN that produces
them, in the sense that for all s = 1, . . . ,m:

POs
(g|xIs) := sup

{
µ ∈ R : I{xIs}[g−µ] ∈DN

}
for all g ∈L (XOs) and all xIs ∈XIs .



A few papers that avoid the complications

@ARTICLE{miranda2007,
author = {De Cooman, Gert and Hermans, Filip},
title = {Imprecise probability trees: Bridging two theories of imprecise probability},
journal = {Artificial Intelligence},
year = 2008,
volume = 172,
pages = {1400--1427}

}



A few papers that avoid the complications

@ARTICLE{miranda2007,
author = {De Cooman, Gert and Miranda, Enrique},
title = {Irrelevant and independent natural extension for sets of desirable gambles},
journal = {Journal of Artificial Intelligence Research},
year = 2012,
volume = 45,
pages = {601--640}

}



PERMUTATION SYMMETRY



Symmetry group

Consider a variable X assuming values in a finite set X and a finite
group P of permutations π of X

Modelling that there is a symmetry P behind X:
if you believe that inferences about X will be invariant under any
permutation π ∈P.

Consider any permutation π ∈P and any gamble f on X :

π
tf := f ◦π, meaning that (π tf )(x) = f (π(x)) for all x ∈X .

π t is a linear transformation of the vector space L (X).

P t :=
{

π
t : π ∈P

}
is a finite group of linear transformations of the vector space L (X).



How to model permutation symmetry?
Permutation symmetry:
You are indifferent between any gamble f on X and its permutation π tf .

f ≈ π
tf ⇔ f −π

tf ≈ 0.

This leads to a linear space IP of indifferent gambles:

IP := span(
{

f −π
tf : f ∈L (X) and π ∈P

}
).

A set of desirable gambles D is strongly P-invariant if

D+IP ⊆D

or actually:
D+IP = D.
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Let’s see what this means:
Consider the linear subspace of all permutation invariant gambles:

LP(X) :=
{

f ∈L (X) : (∀π ∈P)f = π
tf
}

Because P t is a finite group, this linear space can be seen as the
range of the following special linear transformation:

projP : L (X)→L (X) with projP(f ) :=
1
|P| ∑

π∈P
π

tf .

Theorem

1. π t ◦projP = projP = projP ◦π t

2. projP ◦projP = projP
3. rng(projP) = LP(X) and
4. ker(projP) = IP .



Symmetry representation theorem

Consider any gamble f on X :

f = f −projP(f )︸ ︷︷ ︸
∈IP

+projP(f )︸ ︷︷ ︸
∈LP (X)

Theorem (Symmetry Representation Theorem)
Let D be strongly P-invariant, then:

f ∈D⇔ projP(f ) ∈D.

So D has a lower-dimensional representation projP(D)⊆LP(X).



Permutation invariant gambles

Consider the permutation invariant atoms:

[x] := {π(x) : π ∈P}

which constitute a partition of X :

AP := {[x] : x ∈X } .

Then the permutation invariant gambles f ∈LP(X)

I are constant on these invariant atoms [x]; and
I can therefore be seen as gambles on these atoms.

“f ∈L (AP)”.



FINITE EXCHANGEABILITY



Exchangeability for sets of desirable gambles

@ARTICLE{cooman2012,
author = {De Cooman, Gert and Quaeghebeur, Erik},
title = {Exchangeability and sets of desirable gambles},
journal = {International Journal of Approximate Reasoning},
year = 2012,
vol = 53,
pages = {363--395}

}



Permutations and count vectors

Consider any permutation π of the set of indices {1,2, . . . ,n}.

For any x = (x1,x2, . . . ,xn) in X n, we let

πx := (xπ(1),xπ(2), . . . ,xπ(n)).

For any x ∈X n, consider the corresponding count vector T(x), where
for all z ∈X :

Tz(x) := |{k ∈ {1, . . . ,n} : xk = z}| .

Example
For X = {a,b} and x = (a,a,b,b,a,b,b,a,a,a,b,b,b), we have

Ta(x) = 6 and Tb(x) = 7.



Let m = T(x) and consider the permutation invariant atom

[m] := {y ∈X n : T(y) = m} .

This atom has how many elements?(
n
m

)
=

n!
∏x∈X mx!

Let HypGeon(·|m) be the expectation operator associated with the
uniform distribution on [m]:

HypGeon(f |m) :=
(

n
m

)−1

∑
x∈[m]

f (x) for all f : X n→ R

Interestingly:

projP(f )(x) = HypGeon(f |m) for all x ∈ [m]

can be seen as a gamble on the composition m of an urn with n balls.



COUNTABLE
EXCHANGEABILITY



Bruno de Finetti’s exchangeability result

Infinite Representation Theorem:
The sequence X1, . . . , Xn, . . . of random variables in the finite set X is
exchangeable iff there is a (unique) coherent prevision H on the linear
space V (ΣX ) of all polynomials on ΣX such that for all n ∈ N and all
f : X n→ R:

E(f ) = H
(

∑
m∈N n

HypGeon(f |m)Bm

)
.

Observe that

Bm(θ) = MultiNomn([m]|θ) =
(

n
m

)
∏

x∈X
θ

mx
x

∑
m∈N n

HypGeon(f |m)Bm(θ) = MultiNomn(f |θ)



Representation theorem for sets of desirable gambles

Representation Theorem
A sequence D1, . . . , Dn, . . . of coherent sets of desirable gambles is
exchangeable iff there is some (unique) Bernstein coherent
H ⊆ V (ΣX ) such that:

f ∈Dn⇔MultiNomn(f |·) ∈H for all n ∈ N and f ∈L (X n).

A set H of polynomials on ΣX is Bernstein coherent if:

B1. if p has some non-positive Bernstein expansion then p 6∈H

B2. if p has some positive Bernstein expansion then p ∈H

B3. if p1 ∈H and p2 ∈H then p1 +p2 ∈H

B4. if p ∈H then λp ∈H for all positive real numbers λ .



Suppose we observe the first n variables, with count vector m = T(x):

(X1, . . . ,Xn) = (x1, . . . ,xn) = x.

Then the remaining variables

Xn+1, . . . ,Xn+k, . . .

are still exchangeable, with representation H cx = H cm given by:

p ∈H cm⇔ Bm p ∈H .

Conclusion:
A Bernstein coherent set of polynomials H completely characterises all
predictive inferences about an exchangeable sequence.



Suppose we observe the first n variables, with count vector m = T(x):

(X1, . . . ,Xn) = (x1, . . . ,xn) = x.

Then the remaining variables

Xn+1, . . . ,Xn+k, . . .

are still exchangeable, with representation H cx = H cm given by:

p ∈H cm⇔ Bm p ∈H .

Conclusion:
A Bernstein coherent set of polynomials H completely characterises all
predictive inferences about an exchangeable sequence.



PREDICTIVE INFERENCE
SYSTEMS



Predictive inference systems

Formal definition:
A predictive inference system is a map Ψ that associates with every
finite set of categories X a Bernstein coherent set of polynomials on
ΣX :

Ψ(X ) = HX .

Basic idea:
Once the set of possible observations X is determined, then all
predictive inferences about successive observations X1, . . . , Xn, . . . in
X are completely fixed by Ψ(X ) = HX .



Inference principles

Even if (when) you don’t like this idea, you might want to concede the
following:

Using inference principles to constrain Ψ:
We can use general inference principles to impose conditions on Ψ, or
in other words to constrain:

– the values HX can assume for different X

– the relation between HX and HY for different X and Y

Taken to (what might be called) extremes (Carnap, Walley, . . . ):
Impose so many constraints (principles) that you end up with a single Ψ,
or a parametrised family of them, e.g.:

the λ system, the IDM family
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A few examples

Renaming Invariance
Inferences should not be influenced by what names we give to the
categories.

Pooling Invariance
For gambles that do not differentiate between pooled categories, it
should not matter whether we consider predictive inferences for the set
of original categories X , or for the set of pooled categories Y .

Specificity
If, after making a number of observations in X , we decide that in the
future we are only going to consider outcomes in a subset Y of X , we
can discard from the past observations those outcomes not in Y .



Look how nice!

Renaming Invariance

For any onto and one-to-one π : X → Y

BCπ (m) p ∈HY ⇔ Bm (p◦Cπ) ∈HX for all p ∈ V (ΣY ) and m ∈NX

Pooling Invariance

For any onto ρ : X → Y

BCρ (m) p ∈HY ⇔ Bm (p◦Cρ) ∈HX for all p ∈ V (ΣY ) and m ∈NX

Specificity

For any Y ⊆X

Bm|Y p ∈HY ⇔ Bm (p◦ ·|Y ) ∈HX for all p ∈ V (ΣY ) and m ∈NX



EXAMPLES



Imprecise Dirichlet Multinomial Model

Let, with s > 0:

∆
s
X :=

{
α ∈ RX

>0 : ∑
x∈X

αx < s

}
and

H s
X := {p ∈ V (ΣX ) : (∀α ∈ ∆

s
X )Diri(p|α)> 0}

This inference system is pooling and renaming invariant, and specific.

For any observed count vector m ∈N n:

Ps({x}|m) =
mx

n+ s
and Ps({x}|m) =

mx + s
n+ s



Haldane system

Let:

H H
X :=

⋃
s>0

{p ∈ V (ΣX ) : (∀α ∈ ∆
s
X )Diri(p|α)> 0}

=
⋃
s>0

H s
X

This inference system is pooling and renaming invariant, and specific.

For any observed count vector m ∈N n:

Ps({x}|m) = Ps({x}|m) =
mx

n
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