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“It's probability theory, Jim, but not as we know it”




LOWER PREVISIONS



Lower and upper previsions

c

Lo P(Iey) =41

%‘ P(Iy) =1/
a b
Equivalent model

Consider the set . (.2) =R” of all real-valued maps on .2". We define
two real functionals on . (%2): forall /: 2" — R

P ,(f) =min{P,(f): p € .#} lower prevision/expectation
P4 (f) = max{P,(f): p € .4} upper prevision/expectation.

Observe that

Py (=f)=—P 4(f).



Basic properties of lower previsions

Definition
We call a real functional P on .2 (%) a lower prevision if it satisfies the
following properties:

forallfand gin ¥ (2) and all real 1 > 0:

1. P(f) > minf [boundedness];

2. P(f+g) > P(f)+P(g) [super-additivity];

3. P(Af) =AP(f) [non-negative homogeneity].
Theorem

A real functional P is a lower prevision if and only if it is the lower
envelope of some credal set .7/ .



Conditioning and lower previsions

Suppose we have two variables X, in 2} and X, in 25.

Consider for instance:
» ajoint lower prevision P, , for (X;,X,) defined on .« (.2 x 25);
» aconditional lower prevision P,(-|x;) for X, conditional on X = xy,
defined on .« (.%2>), for all values x; ¢ 2.

Coherence

These lower previsions P, , and P,(-|X;) must satisfy certain (joint)
coherence criteria: compare with Bayes’s Rule and de Finetti’'s
coherence criteria for precise previsions.



Conditioning and lower previsions

Suppose we have two variables X, in 2} and X, in 25.

Consider for instance:
» ajoint lower prevision P, , for (X;,X,) defined on .2 (.2 x 25);
» a conditional lower prevision P,(-|x;) for X, conditional on X; = x;,
defined on .« (.%2>), for all values x; ¢ 2.

Coherence

These lower previsions P, , and P, (-|X|) must satisfy certain (joint)
coherence criteria: compare with Bayes’s Rule and de Finetti's
coherence criteria for precise previsions.

Complication

A joint lower prevision P, , does not always uniquely determine a
conditional P, (-|X;), we can only impose coherence between them.



Many variables: notation

Suppose we have variables
X, eZ, ieN
For S C N we denote the S-tuple of variables X, s € S by
Xg € Xy = Xses 2y

and generic values by Xy = xg.



Many variables: notation

Suppose we have variables
X, eZ, ieN
For S C N we denote the S-tuple of variables X, s € S by
Xs € s = Xses Zs
and generic values by Xs = xg.

Now consider an input-output pair 7,0 C N.
Conditional lower previsions

P, (f(Xo)|x;) = lower prevision of /(X)) conditional on X; = x;.



Coherence criterion: Walley (1991)

The conditional lower previsions P, (-|X; ), s = 1,...,n are coherent if
and only if:

forall f; € Z(Z0.u), all ke {1,....n},all x;, € .2; and all
g€ Z(Zo,), there is some zy € {x;, } UL supp, (;) such that:

il[fs ~ Po, ()] 8 — Po, (ghu)] | (aw) = 0.

where supp; (f) .= {x; € 27: Ij,pf #0}.



Coherence criterion: Walley (1991)
The conditional lower previsions P, (-|X; ), s = 1,...,n are coherent if
and only if:

forall f; € Z(Z0.u), all ke {1,....n},all x;, € .2; and all
g€ Z(Zo,), there is some zy € {x;, } UL supp, (;) such that:

il[fs ~ Po, ()] 8 — Po, (ghu)] | (aw) = 0.

where supp; (f) .= {x; € 27: Ij,pf #0}.

This is quite complicated and cumbersome!



A few papers that try to brave the complications
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Abstract

‘We generalise Walley's Marginal Extension Theorem to the case of any finite number of condi-
tional lower previsions. Unlike the procedure of natural extension, our marginal extension always
provides the smallest (most conservative) coherent extensions. We show that they can also be calcu-
lated as lower envelopes of marginal extensions of conditional linear (precise) previsions. Finally, we
use our version of the theorem to study the so-called forward irrelevant product and forward irrel-
evant natural extension of a number of marginal lower previsions.
© 2007 Elsevier Inc. All rights reserved.
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A few papers that try to brave the complications
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Abstract

We prove weak and strong laws of large numbers for coherent lower previsions, where the lower prevision of a random varizble
is given a behavioural interpretation as a subject’s supremum acceptable price for buying it. Our laws are a consequence of the
rationality criterion of coherence, and they can be proven under assumptions that are surprisingly weak when compared to the
standard formulation of the laws in more classical approaches to probability theory.

©2007 Elsevier B.V. Al rights reserved.
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SETS OF DESIRABLE
GAMBLES



Working with sets of desirable gambles Z:

>

>

>

is simpler, more intuitive and more elegant
is more general and expressive than (conditional) lower previsions
gives a geometrical flavour to probabilistic inference

shows that probabilistic inference and Bayes’ Rule are ‘logical’
inference

includes classical propositional logic as another special case
includes precise probability as one special case
avoids problems with conditioning on sets of probability zero



First steps: Williams (1977)
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Abstract

‘The personalist conception of probability is often explicated in terms of betting rates acceptable
to an individual. A common approach, that of de Finetti for example, assumes that the individual is
willing to take cither side of the bet, so that the bet is “fair” from the individual’s point of view. This
can sometimes be unrealistic, and leads to difficultics in the case of conditional probabilities or pre-
visions. An alternative conception is presented in which it is only assumed that the collection of
‘acceptable bets forms a convex cone, rather than a linear space. This leads to the more general con-
ception of an upper conditional prevision. The main concerns of the paper are with the extension of
upper conditional previsions. The main result is that any upper conditional prevision is the upper
envelope of a family of additive conditional previsions.
2006 Elsevier Inc. Al rights reserved.
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Set of desirable gambles as a belief model

Gambles:
A gamble f: 2" — R is an uncertain reward whose value is /(X).

(f(H).f(T))e




Set of desirable gambles as a belief model

Gambles:
A gamble f: 2" — R is an uncertain reward whose value is /(X).

(f(H).f(T)) e

Set of desirable gambles:
7 C (7)) is a set of gambles that a subject strictly prefers to zero.



Coherence for a set of desirable gambles

A set of desirable gambles 7 is called coherent if:

D1.iff<Othenf¢ 2 [not desiring non-positivity]

D2. iff>0thenfec ¥ [desiring partial gains]

D3. iff,.gecZthenf+gec P [addition]

D4. iffe 2then Af € Y forallreal L >0 [scaling]
T
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Precise models cor-
respond to the special
case that the convex
cones 7 are actually
halfspaces!
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Connection with lower previsions

P(f)=suwp{aeR: f—aec P}
supremum buying price for f
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P(f)=suwp{aeR: f—aec P}
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INFERENCE



Inference: natural extension




Inference: natural extension
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Inference: natural extension

8y =posi( UL (Z)~0)

posi(%£") ::{ilﬁk:ﬂeﬁ,lk>0,n>0}

k=1



Inference: marginalisation and conditioning
Let 2y be a coherent set of desirable gambles on 2.
For any subset 7 C N, we have the 2;-marginals:

Iy =marg;(Dy) = INNZL(Z7),
SO

fX1) e 21 < f(X1) € Dn.

How to condition a coherent set Zy on the observation that X; = x;?
The updated set of desirable gambles Zy |x; € £ (Zy\;) On Zy\; is:

g€ Dnlxi =l g€ Dn.

Works for all conditioning events: no problem with conditioning on sets
of probability zero!



Conditional lower previsions

Just like in the unconditional case, we can use a coherent set of
desirable gambles 7 to derive conditional lower previsions.

Consider disjoint subsets 7 and O of N:

Po(glxr) = sup {p € R: L1,y[g — ] € I}
=sup{u €R: g—u € Dy|x} forall g€ L(Zo)

is the lower prevision of g, conditional on X; = x;.

P,(g|X;) is the gamble on 2} that assumes the value P, (g|x;) in
X € 2.



Coherent conditional lower previsions

Consider m couples of disjoint subsets /; and O, of NV, and
corresponding conditional lower previsions P, (-|X; ) fors =1,....,m.

Theorem (Williams, 1977)

These conditional lower previsions are (joinily) coherent if and only if
there is some coherent set of desirable gambles 7, that produces
them, in the sense that forall s = 1,... ,m:

Py (glx1,) = sup {H eR: Iy [g—ul € OjN}
forall g € £(Zo,) and all x;, € 2.



A few papers

that avoid the complications
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Abstract

‘We give an overview of two approaches to probability theory where lower and upper probabilities, rather than probabilities,
are used: Walley's behavioural theory of imprecise probabilites, and Shafer and Vovk's game-theoretic account of probability.
We show that the two theories are more closely related than would be suspected at first sight, and we establish a correspondence
between them that (i) has an interesting interpretation, and (i) allows us to freely import results from one theary into the other.
Gur approach leads to an account of probabiliy trees and random processes in the framework of Walley's theory. We indicate how
our results can be used to reduce the computational complexity of dealing with imprecision in probability trees, and we prove an
interesting and quite general version of the weak law of large numbers.
© 2008 Elsevier B.V. All ights reserved.
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Abstract
The resuilts in this paper add useful tools to the theory of sets of desirable gambles,
growing toolbox for reasoning with partial We investigate how to

combine a number of marginal coherent sets of desirable gambles into a jolnt set using the
properties of epistemic Irrelevance and Independence. We provide formulas for the smallest
such joint, called their independent natural extension, and study its main properties. The
independent natural extension of maximal coherent sets of desirable gambles allows us to
define the strong product of sets of desirable gambles. Finally, we explore an easy way to
generalise these results to also apply for the conditional versions of epistemic irr d
independence. Having such  set of tools that are easily implemented in computer programs
is clearly benefieial to fields, like AT, with & clear interest in coherent reasoning under
uncertainty using general and robust uncertainty models that require no full specifieation.
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PERMUTATION SYMMETRY



Symmetry group

Consider a variable X assuming values in a finite set 2" and a finite
group & of permutations = of 2~

Modelling that there is a symmetry & behind X:

if you believe that inferences about X will be invariant under any
permutation = € .

Consider any permutation 7 € % and any gamble f on 2":

T'f = f o, meaning that (7'f)(x) =f(x(x)) forall xe 2 .

7' is a linear transformation of the vector space .2/ (.2).
P ={n":ne P}

is a finite group of linear transformations of the vector space .#’(.2).



How to model permutation symmetry?

Permutation symmetry:
You are indifferent between any gamble / on .2 and its permutation 7'f.

frrfef-nf=o0.

This leads to a linear space .7 of indifferent gambles:

Iy =span({f—7'f: f€ L(Z)and m € Z}).



How to model permutation symmetry?

g 2012

Accept & Reject Statement-Based Uncertainty Models

Erik Quaeghebeur, Gert de Cooman, and Filip Hermans:=
SYSTeMS Research Group, Ghent University, Gent, Belgium.

Abstract. We develop a framework for modelling and reasoning with uncertainty based on accept
and reject statements about gambles. It generalises the frameworks found in the literature based on
statements of acceptability, desirability, or favourability and clarifies their relative position. Next to the
statement-based formulation, we also provide a translation in terms of preference relations, discuss—
as a bridge to existing frameworks—a number of simplified variants, and show the relationship with
prevision-based uncertainty models. We furthermore provide an application to modelling symmetry
judgements.

Keywords: acceptability, indifference, desirability, favourability, preference, prevision




How to model permutation symmetry?

Permutation symmetry:
You are indifferent between any gamble / on .2 and its permutation 7'f.

frrfef-nf=o0.

This leads to a linear space .7 of indifferent gambles:

Iy =span({f—7'f: f€ L(Z)and m € Z}).

A set of desirable gambles 7 is strongly &Z-invariant if
DP+I»CD

or actually:



Let’'s see what this means:

Consider the linear subspace of all permutation invariant gambles:
Lp(2)={f € L(2): (Vne P)f =n'f}

Because ' is a finite group, this linear space can be seen as the
range of the following special linear transformation:

proj . L (Z) — L (Z) with proj 5 (f) == 7 Z
e

Theorem

1. ' oproj 4 = proj 5 = proj 5 on’
2. proj ;0 proj » = proj »

3. m(proj ) = Z»(2) and

4. ker(proj ) = I ».



Symmetry representation theorem

Consider any gamble f on .2":

[ = —=proj»(f) + proj »(f)
—_—————— ——
€Iy CLp(Z)

Theorem (Symmetry Representation Theorem)
Let & be strongly &7 -invariant, then:

f€P<proj,(f) € 2.

So Z has a lower-dimensional representation proj » (%) C Z»(%).



Permutation invariant gambles

Consider the permutation invariant atoms:
[x] ={m(x): me 2}
which constitute a partition of .2":

Sy ={x]: xe X}.

Then the permutation invariant gambles f € Z» (%)
» are constant on these invariant atoms [x|; and
» can therefore be seen as gambles on these atoms.

feL(Ap) .



FINITE EXCHANGEABILITY



Exchangeability for sets of desirable gambles

International Journal of Approximate Reasoning
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ABSTRACT

Sets of desirable gambles constitute a quite general type of uncertainty model with an
interesting geometrical interpretation. We give a general discussion of such models and
their rationality eriteria. We study exchangeability assessments for them, and prove coun-
terparts of de Finettis Finite and Infinite Representation Theorems. We show that the finite
representation in terms of count vectors has a very nice geometrical interpretation. and
that the representation in terms of frequency vectors is tied up with multivariate Bernstein
{basis} polynomials. We also lay bare the relationships between the representations of
updated exchangeable models, and discuss conservative inference {natural extension)
under exchangeability and the extension of exchangeable sequences.

© 2010 Elsevier Inc. All rights reserved.
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Permutations and count vectors

Consider any permutation 7 of the set of indices {1,2,...,n}.
For any x = (x,x2,...,x,) in 27", we let

X \= (xn(1),xn(2); s 7x7r(n))-

For any x € 27", consider the corresponding count vector 7'(x), where
forallze 2
T.(x) =|{ke{l,..., n}:xe =z}

Example
For 2" ={a,b} and x = (a,a,b,b,a,b,b,a,a,a.b.b,b), we have

T,(x) =6 and Ty(x) =7.



Let m = T'(x) and consider the permutation invariant atom
m| ={ye Z": T(y) =m}.

This atom has how many elements?

<n> n!
m ILE?/ m\'

Let HypGeo”(-|m) be the expectation operator associated with the
uniform distribution on [m]:

, 1
HypGeo (f|m) := <,’;> Y f(x)forallf: 27 - R

Interestingly:
proj »(f)(x) = HypGeo” (f|m) for all x € [m]

can be seen as a gamble on the composition m of an urn with » balls.



COUNTABLE
EXCHANGEABILITY



Bruno de Finetti’s exchangeability result

Infinite Representation Theorem:

The sequence X1, ..., X,, ...of random variables in the finite set 2" is
exchangeable iff there is a (unique) coherent prevision H on the linear
space 7 (X, ) of all polynomials on X »- such that for all » € N and all
f: 2" > R:
£()=( Y. HypGeo' (s ).

meAN"

Observe that

B,,(6) = MultiNom" ([m]|8) = (Z) I er

Z HypGeo" (f|m)B,,(6) = MultiNom" (f|0)

meN"



Representation theorem for sets of desirable gambles

Representation Theorem

A sequence 7', ..., 7", ... of coherent sets of desirable gambles is
exchangeable iff there is some (unique) Bernstein coherent

S C Y (X4 ) such that:

fe 7" < MultiNom"(f|-) € # forallne Nandfe Z(Z™).

A set 7 of polynomials on X 4- is Bernstein coherent if:

B1.
B2.
BS.
B4.

if » has some non-positive Bernstein expansion then p ¢ 77
if » has some positive Bernstein expansion then p € 77

if pp € 7 and p, € 7 then p, +p, € 7

if p € 27 then Ap € 77 for all positive real numbers 1.



Suppose we observe the first » variables, with count vector m = 7'(x):

(X17--~7Xn>: (X],...,X”):X.

are still exchangeable, with representation 77" |x = 77| m given by:

p € H|\m< B,pe H.



Suppose we observe the first n variables, with count vector m = T'(x):
(X1, X)) = (x1,...,%,) = x.
Then the remaining variables
Xoitse s Xniks .-
are still exchangeable, with representation /7| x = 7’| m given by:

p € H|\m< B,pe H.

Conclusion:
A Bernstein coherent set of polynomials .77 completely characterises all
predictive inferences about an exchangeable sequence.



PREDICTIVE INFERENCE
SYSTEMS



A is a map ¥ that associates with every
finite set of categories .2~ a Bernstein coherent set of polynomials on
Yo

(L) =y

Once the set of possible observations 2" is determined, then all
predictive inferences about successive observations X, ..., X, ... in
2" are completely fixed by W(.2") = 7.



Inference principles

Even if (when) you don'’t like this idea, you might want to concede the
following:

Using inference principles to constrain W¥:
We can use general inference principles to impose conditions on ¥, or
in other words to constrain:

— the values .77, can assume for different .2~

— the relation between 77, and .77/, for different 2" and %



Inference principles

Even if (when) you don'’t like this idea, you might want to concede the
following:

Using inference principles to constrain W¥:
We can use general inference principles to impose conditions on ¥, or
in other words to constrain:

— the values ./#,- can assume for different .2~
— the relation between 7, and .77, for different 2" and %

Taken to (what might be called) extremes (Carnap, Walley, ...):

Impose so many constraints (principles) that you end up with a single ¥,
or a parametrised family of them, e.g.:

the A system, the IDM family



A few examples

Renaming Invariance
Inferences should not be influenced by what names we give to the
categories.

Pooling Invariance

For gambles that do not differentiate between pooled categories, it
should not matter whether we consider predictive inferences for the set
of original categories 27, or for the set of pooled categories %'

Specificity

If, after making a number of observations in 2", we decide that in the
future we are only going to consider outcomes in a subset # of 2", we
can discard from the past observations those outcomes not in .



Look how nice!

Renaming Invariance
For any onto and one-to-one n: 2" — %

Be,imyP € Hy < By (poCr) € #y forallpe ¥ (Xy) and m e Ay

Pooling Invariance

Foranyontop: 2" — %
Be,mP € Hy < By (poCp) € Hy forallpe ¥V (Ly) and m € Ny

Specificity
Forany & C 2~
B, p €y < By(po-low) € Hy forallpe ¥ (Zy) and me Ny



EXAMPLES



Imprecise Dirichlet Multinomial Model

Let, with s > 0:

S%-::{OCER%: ) (xx<s}

xe 2

and
Hy ={peV(Za): (Ya e A’ )Diri(p|a) > 0}

This inference system is pooling and renaming invariant, and specific.

For any observed count vector m € ./":

my—+s
n—+s

My

and P, ({x}|m) =

Py ({x}|m)

- n—+s



Haldane system

Let:

Ay = J{pe ¥V (L) (Va € A%)Diri(p|ar) > 0}

s>0

s>0

This inference system is pooling and renaming invariant, and specific.

For any observed count vector m € .4

B({x}|m) = Pu({x}|m) = =
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