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Abstract Coherent reasoning under uncertainty can be represented in a very general
manner by coherent sets of desirable gambles. In this framework, and for a given finite
category set, coherent predictive inference under exchangeability can be represented
using Bernstein coherent cones of multivariate polynomials on the simplex generated
by this category set. This is a powerful generalisation of de Finetti’s Representation
Theorem allowing for both imprecision and indecision. We define an inference system
as a map that associates a Bernstein coherent cone of polynomials with every finite
category set. Many inference principles encountered in the literature can then be
interpreted, and represented mathematically, as restrictions on such maps. We discuss
two important inference principles: representation insensitivity—a strengthened
version of Walley’s representation invariance—and specificity. We show that there
is a infinity of inference systems that satisfy these two principles, amongst which
we discuss in particular the inference systems corresponding to (a modified version
of) Walley and Bernard’s Imprecise Dirichlet Multinomial Models (IDMMs) and the
Haldane inference system.

1 Introduction

This paper deals with predictive inference for categorical variables. We are therefore
concerned with a (possibly infinite) sequence of variables Xn that assume values in
some finite set of categories A. After having observed a number ň of them, and having
found that, say X1 = x1, X2 = x2, . . . , Xň = xň, we consider some subject’s belief
model for the next n̂ variables Xň+1, . . .Xň+n̂. In the probabilistic tradition—and we
want to build on this tradition in the context of this paper—this belief can be modelled
by some conditional predictive probability mass function pn̂(·|x1, . . . ,xň) on the set
An̂ of possible values for these next variables. These probability mass functions can
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be used for prediction or estimation, for statistical inferences, and in decision making
involving the uncertain values of these variables. In this sense, predictive inference
lies at the heart of statistics, and of learning under uncertainty.

What connects these predictive probability mass functions for various values
of ň, n̂ and (x1, . . . ,xň) are the requirements of temporal consistency and coher-
ence. The former requires that when n1 ≤ n2, pn1(·|x1, . . . ,xň) can be obtained from
pn2(·|x1, . . . ,xň) through marginalisation; the latter essentially demands that these
conditional probability mass functions should be connected with temporally consist-
ent unconditional probability mass functions through Bayes’s Rule.

A common assumption about the variables Xn is that they are exchangeable. De
Finetti’s famous Representation Theorem [11, 4] then states that the temporally
consistent and coherent conditional and unconditional predictive probability mass
functions associated with a countably infinite exchangeable sequence of variables in
A are completely characterised by1 a unique probability measure on the Borel sets of
the simplex of all probability mass functions on A, called its representation.

This leads us to the central problem of predictive inference: since there is an
infinity of such probability measures on the simplex, which one does a subject choose
in a particular context, and how can a given choice be motivated and justified? The
subjectivists of de Finetti’s persuasion would answer that this question needs no
answer: a subject’s personal predictive probabilities are entirely his, and temporal
consistency and coherence are the only requirements he should heed. Proponents of
the logicist approach to predictive inference would try enunciating general inference
principles in order to narrow down, and hopefully eliminate entirely, the possible
choices for the representing probability measures on the simplex. Our point of view
holds a compromise between the subjectivist and logicist positions: it should be
possible for a subject to make assessments for certain predictive probabilities, and to
combine these with certain inference principles he finds reasonable. Although this is
not the topic of the present conference paper, the inference systems we introduce in
Section 6 provide an elegant framework and tools for making conservative predictive
inferences that combine (local) subjective probability assessments with (general)
inference principles.

This idea of conservative probabilistic inference brings us to a central idea in
de Finetti’s approach to probability [13]: a subject should be able to make certain
probability assessments, and we can then consider these as bounds on so-called
precise probability models. Calculating such most conservative but tightest bounds
is indeed what de Finetti’s Fundamental Theorem of Prevision [13, 19] is about.
The theory of imprecise probabilities [30, 25, 28] looks at conservative probabilistic
inference precisely in this way: how can we calculate as efficiently as possible
the consequences—in the sense of most conservative tightest bounds—of making
certain probability assessments. One advantage of imprecise probability models
is that they allow for imprecision, or in other words, the use of partial probability
assessments using bounding inequalities rather than equalities. In Section 2, we

1 . . . unless the observed sequence has probability zero.
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give a concise overview of the relevant ideas, models and techniques in the field of
imprecise probabilities.

The present paper, then, can be described as an application of ideas in imprecise
probabilities to predictive inference. Its aim is to study—and develop a general frame-
work for dealing with—coherent predictive inference using imprecise probability
models. Using such models will also allow us to represent a subject’s indecision,
which we believe is a natural state to be in when knowing, or having learned little,
about the problem at hand. It seems important to us that theories of learning under
uncertainty in general, and predictive inference in particular, start out with conservat-
ive, very imprecise and indecisive models when little has been learned, and become
more precise and decisive as more observations come in.

Our work here builds on, but manages to reach much further than, an earlier paper
by one of the authors [7]. The main reason why it does so, is that we are now in
a position to use a very powerful mathematical language to represent imprecise-
probabilistic inferences: Walley’s [28] coherent sets of desirable gambles. Here,
the primitive notions are not probabilities of events, nor expectations of random
variables. The focus is rather on the question whether a gamble, or a risky transaction,
is desirable to a subject—strictly preferred to the zero transaction, or status quo. And
a basic belief model is now not a probability measure or lower prevision, but a set of
desirable gambles.

Let us briefly summarise why, in the present paper, we work with such sets as
our basic uncertainty models for doing conservative probabilistic inference. Most
importantly, and as we shall see in Sections 2 and 3, marginalisation and conditioning
are especially straightforward, and there are no issues whatsoever with conditioning
on sets of (lower) probability zero. Furthermore, sets of desirable gambles provide
an extremely expressive and general framework: it encompasses and subsumes as
special cases both classical (or ‘precise’) probabilistic inference and inference in
classical propositional logic [6].

So, now that we have argued why we want to use sets of desirable gambles to
extend the existing probabilistic theory of predictive inference, let us explain in some
detail how we intend to go about doing this. The basic building blocks are introduced
in Sections 2–8. As already indicated above, we give an overview of relevant notions
and results concerning our imprecise probability model of choice—coherent sets
of desirable gambles—in Section 2. In particular, we explain how to use them for
conservative inference as well as conditioning; how to derive more commonly used
models, such as lower previsions and lower probabilities, from them; and how they
relate to precise probability models.

In Section 3, we explain how we can describe a subject’s beliefs about a sequence
of variables in terms of predictive sets of desirable gambles, and the derived notion
of predictive lower previsions. These imprecise probability models generalise the
above-mentioned predictive probability mass functions pn̂(·|x1, . . . ,xň), and they
constitute the basic tools we shall be working with. We also explain what are the
proper formulations for the above-mentioned temporal consistency and coherence
requirements in this more general context.
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In Section 4, we discuss a number of inference principles that we believe could
be reasonably imposed on predictive inferences, and we show how to represent
them mathematically in terms of predictive sets of desirable gambles and lower
previsions. Representation insensitivity means that predictive inferences remain
essentially unchanged when we transform the set of categories, or in other words
that they are essentially insensitive to the choice of representation—the category set.
Another inference principle we look at imposes the so-called specificity property:
when predictive inference is specific, then for a specific question involving a restricted
number of categories, a more general model can be replaced by a more specific model
that deals only with the categories of interest, and will produce the same relevant
inferences [2].

The next important step is taken in Section 5, where we recall from the literature
[9, 8] how to deal with exchangeability when our predictive inference models are
imprecise. We recall that de Finetti’s Representation Theorem can be significantly
generalised. In this case, the temporal consistent and coherent predictive sets of
desirable gambles are completely characterised by a set of (multivariate) polyno-
mials on the simplex of all probability mass functions on the category set. This set
of polynomials must satisfy a number of properties, which taken together define
the notion of Bernstein coherence. It serves completely the same purpose as the
representing probability measure: it completely determines, and conveniently and
densely summarises, all predictive inferences. This is the reason why the rest of the
developments in the paper are expressed in terms of such Bernstein coherent sets of
polynomials.

We introduce coherent inference systems in Section 6 as maps that associate with
any finite set of categories a Bernstein coherent set of polynomials on the simplex
of probability mass functions on that set. The inference principles in Section 4
impose connections between predictive inferences for different category sets, so we
can represent such inference principles mathematically as restrictions on coherent
inference systems, which is the main topic of Section 7.

The material in Sections 8–10 shows, by producing explicit examples, that there
are quite a few different types—even uncountable infinities—of coherent inference
systems that are both representation insensitive and specific. We discuss the vacuous
inference system in Section 8, the family of IDMM inference systems in Section 9
and the Haldane inference system in Section 10.

In the Conclusion (Section 11) we point to a number of surprising consequences
of our results, and discuss avenues for further research.

2 Imprecise probability models

In this section, we give a concise overview of imprecise probability models for
representing, and making inferences and decisions under, uncertainty.

We shall focus on sets of desirable gambles as our uncertainty models of choice,
because they are the most powerful, expressive and general models at hand, because
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they are very intuitive to work with—though unfortunately less familiar to most
people not closely involved in the field—, and, very importantly, because they avoid
problems with conditioning on sets of (lower) probability zero. For more details,
we refer to Refs. [1, 10, 8, 21, 28]. We shall of course also briefly mention derived
results in terms of the more familiar language of (lower) previsions and probabilities.

We consider a variable X that assumes values in some possibility space A. We
model a subject’s beliefs about the value of X by looking at which gambles on this
variable the subject finds desirable, meaning that he strictly prefers them to the zero
gamble—the status quo. This is a very general approach, that extends the usual
rationalist and subjectivist approach to probabilistic modelling to allow for indecision
and imprecision.

A gamble is a (bounded) real-valued function f on A. It is interpreted as an
uncertain reward f (X) that depends on the value of X , and is expressed in units
of some predetermined linear utility. It represents the reward the subject gets in a
transaction where first the actual value x of X is determined, and then the subject
receives the amount of utility f (x)—which may be negative, meaning he has to pay
it. Throughout the paper, we shall use the device of writing f (X) when we want
to make clear what variable the gamble f depends on. Events are subsets of the
possibility space A. With any event B ⊆ A we can associate a special gamble IB,
called its indicator, which assumes the value 1 on B and 0 elsewhere.

We denote the set of all gambles on A by G (A). It is a linear space under point-wise
addition of gambles, and point-wise multiplication of gambles with real numbers.
For any subset A of G (A), posi(A) is the set of all positive linear combinations of
gambles in A: posi(A) := {∑n

k=1 λk fk : fk ∈A, λk ∈ R>0, n ∈ N}. Here, N is the set
of natural numbers (without zero), and R>0 is the set of all positive real numbers. A
convex cone of gambles is a subset A of G (A) that is closed under positive linear
combinations, meaning that posi(A) = A. For any two gambles f and g on A, we
write ‘ f ≥ g’ if (∀x ∈ A) f (x) ≥ g(x), and ‘ f > g’ if f ≥ g and f 6= g. A gamble
f > 0 is called positive. A gamble g≤ 0 is called non-positive. G>0(A) denotes the
convex cone of all positive gambles, and G≤0(A) the convex cone of all non-positive
gambles.

We collect the gambles that a subject finds desirable—strictly prefers to the zero
gamble—into his set of desirable gambles, and we shall take such sets as our basic
uncertainty models. Of course, they have to satisfy certain rationality criteria:

Definition 1 (Coherence). A set of desirable gambles D ⊆ G (A) is called coherent
if it satisfies the following requirements:

D1. 0 /∈D ;
D2. G>0(A)⊆D ;
D3. D = posi(D).

Requirement D3 turns D into a convex cone. Due to D2, it includes G>0(A); by D1–
D3, it avoids non-positivity:

D4. if f ≤ 0 then f /∈ posi(D), or equivalently G≤0(A)∩posi(D) = /0.
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G>0(A) is the smallest coherent subset of G (A). This so-called vacuous model
therefore reflects minimal commitments on the part of the subject: if he knows
absolutely nothing about the likelihood of the different outcomes, he will only strictly
prefer to zero those gambles that never decrease his wealth and have some possibility
of increasing it.

Let us suppose that our subject has a coherent set D of desirable gambles on A,
expressing his beliefs about the value that a variable X assumes in A. We can then
ask what his so-called updated set DcB of desirable gambles on B would be were he
to receive the additional information—and nothing more—that X actually belongs to
some subset B of A. The updating, or conditioning, rule for sets of desirable gambles
states that:

g ∈DcB⇔ gIB ∈D for all gambles g on B. (1)

It states that the gamble g is desirable to a subject were he to observe that X ∈ B
if and only if the called-off gamble gIB is desirable to him. This called-off gamble
gIB is the gamble on the variable X that gives a zero reward—is called off—unless
X ∈ B, and in that case reduces to the gamble g on the new possibility space B. The
updated set DcB is a set of desirable gambles on B that is still coherent, provided
that D is [8]. We refer to Refs. [21, 10, 22] for detailed discussions of updating sets
of desirable gambles.

We now use coherent sets of desirable gambles to introduce derived concepts,
such as coherent lower previsions, and probabilities. Given a coherent set of desirable
gambles D , the functional P defined on G (A) by

P( f ) := sup{µ ∈ R : f −µ ∈D} for all f ∈ G (A), (2)

is a coherent lower prevision [25, Theorem 3.8.1]. The conjugate upper prevision P
is defined by P( f ) := inf{µ ∈ R : µ− f ∈D}=−P(− f ). For any gamble f , P( f )
is called the lower prevision of f , and for any event B, P(IB) is also denoted by
P(B), and called the lower probability of B. Similarly for upper previsions and upper
probabilities.

The coherent conditional model DcB, with B a non-empty subset of A, induces a
conditional lower prevision P(·|B) on G (B), by applying Equation (2):

P(g|B) := sup{µ ∈ R : g−µ ∈DcB}= sup{µ ∈ R : [g−µ]IB ∈D}
for all gambles g on B. (3)

It is not difficult to show [25] that P and P(·|B) are related through the following
coherence condition:

P([g−P(g|B)]IB) = 0 for all g ∈ G (B), (GBR)

called the Generalised Bayes Rule. This rule allows us to infer P(·|B) uniquely
from P, provided that P(B)> 0. Otherwise, there are an infinity of coherent lower
previsions P(·|B) that are coherent with P in the sense that they satisfy (GBR).
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Coherent sets of desirable gambles are more informative than coherent lower
previsions: a gamble with positive lower prevision is always desirable and one with a
negative lower prevision never, but a gamble with zero lower prevision lies on the
border of the set of desirable gambles, and the lower prevision does not generally
provide information about the desirability of such gambles. If such border behaviour
is important—and it is when dealing with conditioning on events with zero (lower)
probability [28, 21, 22, 10]—it is useful to work with sets of desirable gambles rather
than lower previsions, because as Equations (1) and (3) tell us, they allow us to derive
unique conditional models from unconditional ones.

When the lower and the upper prevision coincide on all gambles, then the real
functional P defined on G (A) by P( f ) := P( f ) = P( f ) for all f ∈ G (A) is a linear
prevision. In the particular case that A is finite, this means that it corresponds to
the expectation operator associated with a probability mass function p: P( f ) =
∑x∈A f (x)p(x) =: Ep( f ), where p(x) := P(I{x}) for all x ∈ A.

3 Predictive inference

Predictive inference, in the specific sense we are focussing on here, considers a
number of variables X1, . . . ,Xn assuming values in the same category set A—we
define a category set as any non-empty finite set. We start our discussion of predictive
inference models in the most general and representationally powerful language:
coherent sets of desirable gambles, as introduced in the previous section.

Predictive inference assumes generally that a number ň of observations have been
made, so we know the values x̌xx = (x1, . . . ,xň) of the first ň variables X1, . . . ,Xň. Based
on this observation sample x̌xx, a subject then has a posterior predictive model D n̂

Acx̌xx for
the values that the next n̂ variables Xň+1, . . . ,Xň+n̂ assume in An̂. D n̂

Acx̌xx is a coherent
set of desirable gambles f (Xň+1, . . . ,Xň+n̂) on An̂. Here we assume that n̂ ∈ N. On
the other hand, we want to allow that ň∈N0 :=N∪{0}, which is the set of all natural
numbers with zero: we also want to be able to deal with the case where no previous
observations have been made. In that case, we call the corresponding model D n̂

A a
prior predictive model. Of course, technically speaking, ň+ n̂≤ n.

As we said, the subject may also have a prior, unconditional model, for when no
observations have yet been made. In its most general form, this will be a coherent
set Dn

A of desirable gambles f (X1, . . . ,Xn) on An, for some n ∈ N. Our subject may
also have a coherent set D n̂

A of desirable gambles f (X1, . . . ,Xn̂) on An̂, where n̂≤ n;
and the sets D n̂

A and Dn
A must then be related to each other through the following

marginalisation, or temporal consistency, requirement:

f (X1, . . . ,Xn̂) ∈D n̂
A⇔ f (X1, . . . ,Xn̂) ∈Dn

A for all gambles f on An̂. (4)

In this expression, and throughout this paper, we identify a gamble f on An̂ with
its cylindrical extension f ′ on An, defined by f ′(x1, . . . ,xn̂, . . . ,xn) := f (x1, . . . ,xn̂)
for all (x1, . . . ,xn) ∈ An. If we introduce the marginalisation operator margn̂(·) :=
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·∩G (Ak), then the temporal consistency condition can also be rewritten simply as
D n̂

A = margn̂(D
n
A) = Dn

A∩G (An̂).
Prior (unconditional) predictive models Dn

A and posterior (conditional) ones D n̂
Acx̌xx

must also be related through the following updating requirement:

f (Xň+1, . . . ,Xň+n̂) ∈D n̂
Acx̌xx⇔ f (Xň+1, . . . ,Xň+n̂)I{x̌xx}(X1, . . . ,Xň) ∈Dn

A

for all gambles f on An̂, (5)

which is a special case of Equation (1): the gamble f (Xň+1, . . . ,Xň+n̂) is desirable
after observing a sample x̌xx if and only if the gamble f (Xň+1, . . . ,Xň+n̂)I{x̌xx}(X1, . . . ,Xň)
is desirable before any observations are made. This called-off gamble is the gamble
that gives zero reward—is called off—unless the first ň observations are x̌xx, and in
that case reduces to the gamble f (Xň+1, . . . ,Xň+n̂) on the variables Xň+1, . . . ,Xň+n̂.
The updating requirement is a generalisation of Bayes’s Rule for updating, and in
fact reduces to it when the sets of desirable gambles lead to (precise) probability
mass functions [28, 6]. But contrary to Bayes’s Rule for probability mass functions,
the updating rule (5) for coherent sets of desirable gambles clearly does not suffer
from problems when the conditioning event has (lower) probability zero: it allows
us to infer a unique conditional model from an unconditional one, regardless of the
(lower or upper) probability of the conditioning event.

As explained in Section 2, we can use the relationship (2) to derive prior (un-
conditional) predictive lower previsions Pn̂

A(·) on G (An̂) from the prior sets D n̂
A

through:

Pn̂
A( f ) := sup

{
µ ∈ R : f −µ ∈D n̂

A
}

for all gambles f on An̂,

and posterior (conditional) predictive lower previsions Pn̂
A(·|x̌xx) on G (An̂) from the

posterior sets D n̂
Acx̌xx through:

Pn̂
A( f |x̌xx) := sup

{
µ ∈ R : f −µ ∈D n̂

Acx̌xx
}

for all gambles f on An̂.

We also want to condition predictive lower previsions on the additional information
that (Xň+1, . . . ,Xň+n̂) ∈ Bn̂, where B is some proper subset of A. Using the ideas in
Sections 2, this leads for instance to the following lower prevision:

Pn̂
A(g|x̌xx,Bn̂) := sup

{
µ ∈ R : [g−µ]IBň ∈D n̂

Acx̌xx
}

for all gambles g on Bn̂, (6)

which is the lower prevision Pn̂
A(·|x̌xx) conditioned on the event Bn̂.

4 Principles for predictive inference

So far, we have introduced coherence, marginalisation and updating as basic re-
quirements of rationality that prior and posterior predictive inference models must
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satisfy. In addition to these, we now also consider a number of further conditions,
which have been suggested by a number of authors as reasonable properties—or
requirements—for predictive inference models.

We shall call representation insensitivity the combination of pooling, renaming
and category permutation invariance; see Ref. [7] for more information. It means
that predictive inferences remain essentially unchanged when we transform the set
of categories, or in other words that they are essentially insensitive to the choice
of representation—the category set. It is not difficult to see that representation in-
sensitivity can be formally characterised as follows. Consider two category sets A
and B such that there is a so-called relabelling map ρ : A→ B that is onto, i.e. such
that B = ρ(A) := {ρ(x) : x ∈ A}. Then with a sample xxx in An, there corresponds a
transformed sample ρxxx := (ρ(x1), . . . ,ρ(xn)) in Bn. And with any gamble f on Bn

there corresponds a gamble f ◦ρ on An.
Representation insensitivity: For all category sets A and B such that there is an

onto map ρ : A→ B, all ň, n̂ ∈ N considered, all x̌xx ∈ Aň and all gambles f on Bn̂:

Pn̂
A( f ◦ρ) = Pn̂

B( f ) and Pn̂
A( f ◦ρ|x̌xx) = Pn̂

B( f |ρ x̌xx), (RI1)

or alternatively, and more generally, in terms of predictive sets of desirable gambles:

f ◦ρ ∈D n̂
A⇔ f ∈D n̂

B and f ◦ρ ∈D n̂
Acx̌xx⇔ f ∈D n̂

Bcρ x̌xx. (RI2)

There is another peculiar, but in our view intuitively appealing, potential property
of predictive inferences. Assume that in addition to observing a sample of observa-
tions x̌xx of ň observations in a category set A, our subject comes to know or determ-
ine in some way that the n̂ following observations will belong to a proper subset
B of A, and nothing else—we might suppose for instance that an observation of
(Xň+1, . . . ,Xň+n̂) has been made, but that it is imperfect, and only allows him to
conclude that (Xň+1, . . . ,Xň+n̂) ∈ Bn̂.

We can then make the following requirement, which uses models conditioned on
the event Bn̂, as introduced through Equations (1), (3) and (6).

Specificity: For all category sets A and B such that B⊆ A, all ň, n̂ ∈ N considered,
all x̌xx ∈ Aň and all gambles f on Bn̂:

Pn̂
A( f |Bn̂) = Pn̂

B( f ) and Pn̂
A( f |x̌xx,Bn̂) = Pn̂

B( f |x̌xx↓B), (SP1)

or alternatively, and more generally, in terms of predictive sets of desirable gambles:

f IBn̂ ∈D n̂
A⇔ f ∈D n̂

B and f IBn̂ ∈D n̂
Acx̌xx⇔ f ∈D n̂

Bcx̌xx↓B, (SP2)

where x̌xx↓B is the tuple of observations obtained by eliminating from the tuple x̌xx all
observations not in B. In these expressions, when x̌xx↓B is the empty tuple, so when
no observations in x̌xx are in B, the ‘posterior’ predictive model is simply taken to
reduce to the ‘prior’ predictive model. Specificity [2, 3, 24] means that the predictive
inferences that a subject makes are the same as the ones he would get by focussing
on the category set B, and at the same time discarding all the previous observations
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producing values outside B, in effect only retaining the observations that were inside
B! It is as if knowing that the future observations belong to B allows our subject to
ignore all the previous observations that happened to lie outside B.

5 Adding exchangeability to the picture

We are now, for the remainder of this paper, going to add two additional assumptions.
The first assumption is that we are dealing with a countably infinite sequence of
variables X1, . . . ,Xn, . . . that assume values in the same category set A. For our
predictive inference models, this means that there is a sequence Dn

A of coherent sets
of desirable gambles on An, n ∈ N. The second assumption is that this sequence of
variables is exchangeable, which means, roughly speaking, that the subject believes
that the order in which these variables are observed, or present themselves, has no
influence on the decisions and inferences he will make regarding these variables.

In this section, we explain succinctly how to deal with these assumptions tech-
nically, and what their consequences are for the predictive models we are interested
in. For a detailed discussion and derivation of the results presented here, we refer to
Refs. [9, 8].

We begin with some useful notation, which will be employed numerous times in
what follows. Consider any element ααα ∈ RA. We consider ααα as an A-tuple, with as
many (real) components αx ∈ R as there are categories x in A. For any subset B⊆ A,
we then denote by αB := ∑x∈B αx the sum of its components over B.

Consider an arbitrary n ∈ N. We denote by xxx = (x1, . . . ,xn) a generic, arbitrary
element of An. Pn is the set of all permutations π of the index set {1, . . . ,n}. With
any such permutation π , we can associate a permutation of An, also denoted by π ,
and defined by (πxxx)k := xπ(k), or in other words, π(x1, . . . ,xn) := (xπ(1), . . . ,xπ(n)).
Similarly, we lift π to a permutation π t of G (An) by letting π t f := f ◦ π , so
(π t f )(xxx) := f (πxxx). The permutation invariant atoms [xxx] := {πxxx : π ∈Pn}, xxx ∈ An

are the smallest permutation invariant subsets of An.
We now introduce the counting map TTT : An→N n

A : xxx 7→ TTT (xxx), where the count
vector TTT (xxx) is the A-tuple with components Tz(xxx) := |{k ∈ {1, . . . ,n} : xk = z}| for
all z ∈ A, and the set of possible count vectors for n observations in A is given by
N n

A :=
{

mmm ∈ NA
0 : mA = n

}
. So Tz(xxx) is the number of times the category z appears

in the sample xxx. If mmm = TTT (xxx), then [xxx] = {yyy ∈ An : TTT (yyy) = mmm}, so the atom [xxx] is
completely determined by the single count vector mmm of all its elements, and is therefore
also denoted by [mmm].

We also consider the linear expectation operator Hyn
A(·|mmm) associated with the

uniform distribution on the invariant atom [mmm]:

Hyn
A( f |mmm) :=

1
|[mmm]| ∑

xxx∈[mmm]

f (xxx) for all gambles f on An,
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where the number of elements ν(mmm) := |[mmm]| in the invariant atom [mmm] is given by the
multinomial coefficient:

ν(mmm) =

(
mA

mmm

)
=

(
n
mmm

)
:=

n!
∏z∈A mz!

.

This expectation operator characterises a (multivariate) hyper-geometric distribution
[17, Section 39.2], associated with random sampling without replacement from an
urn with n balls of types z ∈ A, whose composition is characterised by the count
vector mmm. This hyper-geometric expectation operator can also be seen as a linear
transformation Hyn

A between the linear space G (An) and the generally much lower-
dimensional linear space G (N n

A ), turning a gamble f on An into a so-called count
gamble Hyn

A( f ) := Hyn
A( f |·) on count vectors.

Next, we consider the simplex ΣA of all probability mass functions θθθ on A:
ΣA :=

{
θθθ ∈ RA : θθθ ≥ 0 and θA = 1

}
. With a probability mass function θθθ ∈ ΣA on A,

there corresponds the following multinomial expectation operator Mnn
A(·|θθθ):2

Mnn
A( f |θθθ) := ∑

xxx∈An
f (xxx)∏

z∈A
θ

Tz(xxx)
z for all gambles f on An,

which characterises the multinomial distribution, associated with n independent trials
of an experiment with possible outcomes in A and probability mass function θθθ .
Observe that Mnn

A( f |θθθ) = ∑mmm∈N n
A

Hyn
A( f |mmm)ν(mmm)∏z∈A θ

mz
z = CoMnn

A(Hyn
A( f )|θθθ),

where we used the so-called count multinomial expectation operator:

CoMnn
A(g|θθθ) := ∑

mmm∈N n
A

g(mmm)ν(mmm)∏
z∈A

θ
mz
z for all gambles g on N n

A . (7)

Let us introduce the notation NA :=
⋃

m∈NN m
A for the set of all possible count

vectors, corresponding to samples of at least one observation. N 0
A is the singleton

containing only the null count vector 000, all of whose components are zero. Then⋃
m∈N0

N m
A = NA∪{000} is the set of all possible count vectors. For any such count

vector mmm ∈NA ∪{000}, we consider the (multivariate) Bernstein basis polynomial
BA,mmm of degree mA on ΣA, defined by:

BA,mmm(θθθ) := ν(mmm)∏
z∈A

θ
mz
z =

(
mA

mmm

)
∏
z∈A

θ
mz
z for all θθθ ∈ ΣA. (8)

In particular, of course, BA,000 = 1. Any linear combination p of Bernstein basis
polynomials of degree n≥ 0 is a (multivariate) polynomial (gamble) on ΣA, whose
degree deg(p) is at most n.3 We denote the linear space of all these polynomials

2 To avoid confusion, we make a (perhaps non-standard) distinction between the multinomial expect-
ation, which is associated with sequences of observations, and the count multinomial expectation,
associated with their count vectors.
3 The degree may be smaller than n because the sum of all Bernstein basis polynomials of fixed de-
gree is one. Strictly speaking, these polynomials p are restrictions to ΣA of multivariate polynomials
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of degree up to n by V n(A). Of course, polynomials of degree zero are simply real
constants. For any n≥ 0, we can introduce a linear isomorphism CoMnn

A between
the linear spaces G (N n

A ) and V n(A): with any gamble g on N n
A , there corresponds

a polynomial CoMnn
A(g) := CoMnn

A(g|·) = ∑mmm∈N n
A

g(mmm)BA,mmm in V n(A), and con-
versely, for any polynomial p ∈ V n(A) there is a unique gamble bn

p on N n
A such that

p = CoMnn
A(b

n
p) [8].4 We denote by V (A) :=

⋃
n∈N0

V n(A) the linear space of all
(multivariate) polynomials on ΣA, of arbitrary degree.

A set HA ⊆ V (A) of polynomials on ΣA is called Bernstein coherent if it satisfies
the following properties:

B1. 0 /∈HA;
B2. V +(A)⊆HA;
B3. posi(HA) = HA.

Here, V +(A) is the set of Bernstein positive polynomials on ΣA: those polynomials p
such that p(θθθ)> 0 for all θθθ in the interior int(ΣA) := {θθθ ∈ ΣA : (∀x ∈ A)θx > 0} of
ΣA. As a consequence, for the set V −0 (A) :=−V +(A)∪{0} of Bernstein non-positive
polynomials:

B4. V −0 (A)∩HA = /0.

We are now ready to deal with exchangeability. We shall give a definition for coherent
sets of desirable gambles that generalises de Finetti’s definition [11, 13], and which
allows for a generalisation of his Representation Theorem.

First of all, fix n ∈ N. Then the subject considers the variables X1, . . . ,Xn to be
exchangeable when he does not distinguish between any gamble f on An and its
permuted version π t f , or in other words, if the gamble f −π t f is equivalent to the
zero gamble for—or indifferent to—him. This means that he has a so-called set of
indifferent gambles: I n

A := { f −π t f : f ∈ G (An) and π ∈Pn}. If the subject also
has a coherent set of desirable gambles Dn

A, then this set must be compatible with
the set of indifferent gambles I n

A , in the sense that it must satisfy the rationality
requirement Dn

A +I n
A = Dn

A [8, 23]. We then say that the sequence X1, . . . ,Xn, and
the model Dn

A, are exchangeable. Next, the countably infinite sequence of variables
X1, . . . ,Xn . . . is called exchangeable if all the finite subsequences X1, . . . ,Xn are, for
n ∈ N. This means that all models Dn

A, n ∈ N are exchangeable. They should of
course also be temporally consistent.

Theorem 1 (Representation Theorem [8]). The sequence of sets Dn
A of desirable

gambles on An, n ∈ N is coherent, temporally consistent and exchangeable if and
only if there is a Bernstein coherent set HA of polynomials on ΣA such that for all
n̂ ∈ N, all gambles f on An̂, all m̌mm ∈NA and all x̌xx ∈ [m̌mm]:

f ∈D n̂
A⇔Mnn̂

A( f ) ∈HA and f ∈D n̂
Acx̌xx⇔Mnn̂

A( f )BA,m̌mm ∈HA. (9)

q on RA, called representations of p. For any p, there are multiple representations, with possibly
different degrees. The smallest such degree is then called the degree deg(p) of p.
4 Strictly speaking, Equation (7) only defines the count multinomial expectation operator CoMnn

A
for n > 0, but it is clear that the definition extends trivially to the case n = 0.
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In that case this representation HA is unique and given by HA :=
⋃

n∈N Mnn
A(D

n
A).

The representation HA is a set of polynomials that plays the same role as a density,
or distribution function, on ΣA in the precise-probabilistic case. It follows from
Equation (9) that HA completely determines all predictive inferences about the
sequence of variables X1, . . . ,Xn, . . . , as it fixes all prior predictive models D n̂

A and all
posterior predictive models D n̂

Acx̌xx.
Equation (9) also tells us that the posterior predictive models D n̂

Acx̌xx only depend
on the observed sequence x̌xx through the count vector m̌mm = TTT (x̌xx): count vectors are
sufficient statistics under exchangeability. For this reason, we shall from now on
denote these posterior predictive models by D n̂

Acm̌mm as well as by D n̂
Acx̌xx. Also, every

now and then, we shall use D n̂
Ac000 as an alternative notation for D n̂

A.
An immediate but interesting consequence of Theorem 1 is that updating on

observations preserves exchangeability: after observing the values of the first ň
variables, with count vector m̌mm, the remaining sequence of variables Xň+1,Xň+2, . . .
is still exchangeable, and Equation 9 tells us that its representation is given by the
Bernstein coherent set of polynomials HAcm̌mm defined by:

HAcm̌mm :=
{

p ∈ V (A) : BA,m̌mm p ∈HA
}
. (10)

For the special case m̌mm = 000, we find that HAc000 = HA. Clearly, HAcm̌mm is completely
determined by HA. One can consider HA as a prior model on the parameter space
ΣA, and HAcm̌mm plays the role of the posterior that is derived from it. We see from
Equations (9) and (10) that—similar to what happens in a precise-probabilistic
setting—the multinomial distribution serves as a direct link between on the one hand,
the ‘prior’ HA and its prior predictive inference models D n̂

A and, on the other hand,
the ‘posterior’ HAcm̌mm and its posterior predictive inference models D n̂

Acm̌mm. Recalling
our convention for m̌mm = 000, we can summarise this as follows: for all n̂ ∈ N and all
m̌mm ∈NA∪{000}:

D n̂
Acm̌mm =

{
f ∈ G (An̂) : Mnn̂

A( f ) ∈HAcm̌mm
}

(11)

and, as an immediate consequence,

Pn̂
A( f |m̌mm) = sup

{
µ ∈ R : Mnn̂

A( f )−µ ∈HAcm̌mm
}

for all f ∈ G (An̂). (12)

The sets of desirable polynomials HA are the fundamental models, as they allow us
to determine the HAcm̌mm and all predictive models uniquely.

6 Inference systems

We have seen in the previous section that, once we fix a category set A, predictive
inferences about exchangeable sequences assuming values in A are completely
determined by a Bernstein coherent set HA of polynomials on ΣA. So if we had
some way of associating a Bernstein coherent set HA with every possible set of
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categories A, this would completely fix all predictive inferences. This leads us to the
following definition.

Definition 2 (Inference systems). We denote by F the collection of all category sets,
i.e. finite non-empty sets. An inference system is a map Φ that maps any category
set A ∈ F to some set of polynomials Φ(A) = HA on ΣA. An inference system
Φ is coherent if for all category sets A ∈ F, Φ(A) is a Bernstein coherent set of
polynomials on ΣA.

So, a coherent inference system is a way to systematically associate coherent pre-
dictive inferences with any category set. Since the inference principles in Section 4
impose connections between predictive inferences for different category sets, we
now see that we can interpret these inference principles—or rather, represent them
mathematically—as properties of, or restrictions on, coherent inference systems.

7 Representation insensitivity and specificity under
exchangeability

Let us now investigate what form the inference principles of representation insensit-
ivity (RI2) and specificity (SP2) take for predictive inference under exchangeability,
when such inference can be completely characterised by Bernstein coherent sets of
polynomials. This will allow us to reformulate these principles as constraints on—or
properties of—inference systems.

Recalling the notations and assumptions in Section 4, we start by considering the
surjective (onto) map Cρ : RA → RB, defined by Cρ(ααα)z := ∑x∈A : ρ(x)=z αx for all
ααα ∈ RA and all z ∈ B. It allows us to give the following elegant characterisation of
representation insensitivity.

Theorem 2. An inference system Φ is representation insensitive if and only if for all
category sets A and B such that there is an onto map ρ : A→ B, for all p ∈ V (B)
and all mmm ∈NA∪{000}: (p◦Cρ)BA,mmm ∈Φ(A)⇔ pBB,Cρ (mmm) ∈Φ(B).

Next, we turn to specificity. Let us define the surjective map rB : RA → RB by:
rB(ααα)z := αz for all ααα ∈ RA and all z ∈ B. So in particular, rB(mmm) is the count vector
on B obtained by restricting to B the (indices of the) components of the count vector
mmm on A. We also define the one-to-one map iA : RB→ RA by iA(ααα)x := αx if x ∈ B
and 0 otherwise, for all ααα ∈ RB and all x ∈ A. This map can be used to define the
following one-to-one maps Ir

B,A : V (B)→ V (A), for any r ∈ N0, as follows:

Ir
B,A(p) := ∑

nnn∈N deg(p)+r
B

bdeg(p)+r
p (nnn)BA,iA(nnn) for all polynomials p in V (B). (13)

The maps Ir
B,A allow us to give the following elegant characterisation of specificity:
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Theorem 3. An inference system Φ is specific if and only if for all category sets
A and B such that B ⊆ A, for all p ∈ V (B), all mmm ∈ NA ∪ {000} and all r ∈ N0:
Ir
B,A(p)BA,mmm ∈Φ(A)⇔ pBB,rB(mmm) ∈Φ(B).

8 The vacuous inference system

In this and the following sections, we provide explicit and interesting examples
of representation insensitive and specific inference systems. We begin with the
simplest one: the vacuous inference system ΦV, which is the smallest, or most
conservative, coherent inference system. It associates with any category set A the
smallest Bernstein coherent set ΦV(A) =HV,A :=V +(A) containing all the Bernstein
positive polynomials—the ones that are guaranteed to be there anyway, by Bernstein
coherence alone. Since V +(A) consists of all the polynomials that are positive on
int(ΣA) we easily derive that, for any m̌mm∈NA∪{000}, HV,Acm̌mm =HV,A = V +(A). The
predictive models for this inference system are now straightforward to find, as they
follow directly from Equations (11) and (12). For any n̂ ∈ N and any m̌mm ∈NA∪{000},
we find that

D n̂
V,A = D n̂

V,Acm̌mm =
{

f ∈ G (An̂) : Mnn̂
A( f ) ∈ V +(A)

}
(14)

Pn̂
V,A( f ) = Pn̂

V,A( f |m̌mm) = min
θθθ∈ΣA

Mnn̂
A( f |θθθ) for all f ∈ G (An̂). (15)

In particular, D1
V,A = D1

V,Acm̌mm = G>0(A), and P1
V,A( f ) = P1

V,A( f |m̌mm) = min f for all
f ∈ G (A). These are the most conservative exchangeable predictive models there
are, and they arise from making no other assessments than exchangeability alone.
They are not very interesting, because they involve no non-trivial commitments, and
they do not allow learning from observations.

Even though it makes no non-trivial inferences, the vacuous inference system
satisfies representation insensitivity and specificity.

Theorem 4. The vacuous inference system ΦV is coherent, representation insensitive
and specific.

We now show that there is, besides ΦV, an infinity of other, more committal, specific
and representation insensitive coherent inference systems.

9 The IDMM inference systems

Imprecise Dirichlet Models (or IDMs, for short) are a family of parametric inference
models introduced by Walley [26] as conveniently chosen sets of Dirichlet densities
diA(·|ααα) with constant prior weight s:

{diA(·|ααα) : ααα ∈ Ks
A} , with Ks

A :=
{

ααα ∈ RA
>0 : αA = s

}
= {sttt : ttt ∈ int(ΣA)} , (16)
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for any value of the (so-called) hyperparameter s ∈ R>0 and any category set A. The
Dirichlet densities diA(·|ααα) are defined on int(ΣA).

These IDMs generalise the Imprecise Beta models introduced earlier by Walley
[25]. In a later paper [29], Walley and Bernard introduced a closely related family
of predictive inference models, called the Imprecise Dirichlet Multinomial Models
(or IDMMs, for short). We use the ideas behind Walley’s IDM(M)s to construct
an interesting family of coherent inference systems. Interestingly, we shall need a
slightly modified version of Walley’s IDMs to make things work. The reason for
this is that Walley’s original version, as described by Equation (16), has a number
of less desirable properties, that were either unknown to, or ignored by, Walley and
Bernard. For our present purposes, it suffices to mention that, contrary to what is
often claimed, and in contradistinction with our new version, inferences using the
original version of the IDM(M) do not always become more conservative (or less
committal) as the hyperparameter s increases.

In our version, rather than using the hyperparameter sets Ks
A, we consider the sets

∆
s
A :=

{
ααα ∈ RA

>0 : αA < s
}

for any s ∈ R>0.

Observe that ∆ s
A = {s′ttt : s′ ∈ R>0,s′ < s and ttt ∈ int(ΣA)} =

⋃
0<s′<s Ks′

A . For any
s ∈ R>0, and any category set A, we now consider the following set of desirable
polynomials p, with positive Dirichlet expectation DiA(p|ααα) for all hyperparameters
ααα ∈ ∆ s

A:
H s

IDM,A := {p ∈ V (A) : (∀ααα ∈ ∆
s
A)DiA(p|ααα)> 0} .

We shall see further on in Theorem 5 that this set is Bernstein coherent. We call
the inference system Φ s

IDM, defined by Φ s
IDM(A) := H s

IDM,A for all category sets A,
the IDMM inference system with hyperparameter s > 0. The corresponding updated
models are, for any m̌mm ∈NA∪{000}, given by:

H s
IDM,Acm̌mm = {p ∈ V (A) : (∀ααα ∈ ∆

s
A)DiA(p|m̌mm+ααα)> 0} (17)

Using these expressions, the predictive models for the IDMM inference system are
straightforward to find; it suffices to apply Equations (11) and (12). For any n̂ ∈ N
and any m̌mm ∈NA∪{000}:

D s,n̂
IDM,Acm̌mm =

{
f ∈ G (An̂) : (∀ααα ∈ ∆

s
A)DiA(Mnn̂

A( f )|m̌mm+ααα)> 0
}
, (18)

Ps,n̂
IDM,A( f |m̌mm) = inf

ααα∈∆ s
A

DiA(Mnn̂
A( f )|m̌mm+ααα) for all f ∈ G (An̂), (19)

where:

DiA(Mnn̂
A( f )|m̌mm+ααα) = ∑

m̂mm∈N n̂
A

Hyn̂
A( f |m̂mm)

1

(m̌A +αA)
(n̂)

(
n̂
m̂mm

)
∏
x∈A

(m̌x +αx)
(m̂x).

In general, these expressions seem forbidding, but for n̂ = 1, the so-called immediate
prediction models are manageable enough: for any m̌mm ∈NA∪{000}
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D s,1
IDM,Acm̌mm =

{
f ∈ G (A) : f >−1

s ∑
x∈A

f (x)m̌x

}
, (20)

Ps,1
IDM,A( f |m̌mm) =

1
m̌A + s ∑

x∈A
f (x)m̌x +

s
m̌A + s

min f for all f ∈ G (A), (21)

Interestingly, the immediate prediction models of our version of the IDMM inference
system coincide with those of Walley’s original version.

The IDMM inference systems constitute an uncountably infinite family of coher-
ent inference systems, each of which satisfies the representation insensitivity and
specificity requirements.

Theorem 5. For any s ∈ R>0, the IDMM inference system Φ s
IDM is coherent, repres-

entation insensitive and specific.

10 The Haldane inference system

We can ask ourselves whether there are representation insensitive (and specific) infer-
ence systems whose posterior predictive lower previsions become precise (linear)
previsions. In the present section, we show that this is indeed the case. We use the
family of IDMM inference systems Φ s

IDM, s ∈ R>0, to define an inference system
ΦH that is more committal than each of them:

ΦH(A) = HH,A :=
⋃

s∈R>0

H s
IDM,A =

⋃
s∈R>0

Φ
s
IDM(A) for all category sets A.

We call this ΦH the Haldane inference system, for reasons that will become clear
further on in this section.

Theorem 6. The Haldane inference system ΦH is coherent, representation insensitive
and specific.

It can be shown that, due to its representation insensitivity, the Haldane system
satisfies prior near-ignorance: this means that before making any observation, its
immediate prediction model is vacuous, and as far away from a precise probability
model as possible. But after making even a single observation, its inferences become
precise-probabilistic: they coincide with the inferences generated by the Haldane
(improper) prior. To get there, we first take a look at the models involving sets of
desirable gambles. For any m̌mm ∈NA∪{000}:

HH,Acm̌mm = {p ∈ V (A) : (∃s ∈ R>0)(∀ααα ∈ ∆
s
A)DiA(p|m̌mm+ααα)> 0} . (22)

The corresponding predictive models are easily derived by applying Equation (11).
For any n̂ ∈ N and any m̌mm ∈NA∪{000}:

D n̂
H,Acm̌mm =

{
f ∈ G (An̂) : (∃s ∈ R>0)(∀ααα ∈ ∆

s
A)DiA(Mnn̂

A( f )|m̌mm+ααα)> 0
}
. (23)
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The immediate prediction models are obtained by combining Equations (23), (18)
and (20). For any m̌mm ∈NA:

D1
H,A = G>0(A) and D1

H,Acm̌mm =

{
f ∈ G (A) : ∑

x∈A
f (x)m̌x > 0

}
∪G>0(A). (24)

It turns out that the expressions for the corresponding lower previsions are much
more manageable. In particular, for m̌mm = 000:

Pn̂
H,A( f ) = min

x∈A
f (x,x, . . . ,x) for all f ∈ G (An̂), (25)

and for any m̌mm ∈NA:

Pn̂
H,A( f |m̌mm) = Pn̂

H,A( f |m̌mm) = Pn̂
H,A( f |m̌mm) = ∑

nnn∈N n̂
A

Hyn̂
A( f |nnn)

(
n̂
nnn

)
∏x∈A m̌(nx)

x

m̌(n̂)
A

. (26)

For the immediate prediction models, we find that for any m̌mm ∈NA:

P1
H,A( f ) = min f and P1

H,A( f |m̌mm) = ∑
x∈A

f (x)
m̌x

m̌A
for all f ∈ G (A), (27)

The precise posterior predictive previsions in Equation (26) are exactly the ones
that would be found were we to formally apply Bayes’s rule with a multinomial
likelihood and Haldane’s improper prior [14, 16, 15], whose ‘density’ is a function
on int(ΣA) proportional to ∏x∈A θ−1

x . This, of course, is why we use Haldane’s name
for the inference system that produces them. Our argumentation shows that there
is nothing wrong with these posterior predictive previsions, as they are based on
coherent inferences. In fact, our analysis shows that there is an infinity of precise
and proper priors on the simplex ΣA that, together with the multinomial likelihood,
are coherent with these posterior predictive previsions: every linear prevision on
V (A) that dominates the coherent lower prevision HH,A on V (A),5,6 as defined by
HH,A(p) := sup{µ ∈ R : p−µ ∈HH,A} for all polynomials p on ΣA.

11 Conclusion

We believe this is the first paper that tries to deal in a systematic fashion with predict-
ive inference under exchangeability using imprecise probability models. A salient
feature of our approach is that we consistently use coherent sets of desirable gambles

5 Actually, a suitably adapted version of coherence, where the gambles are restricted to the polyno-
mials on ΣA.
6 It is an immediate consequence of the F. Riesz Extension Theorem that each such linear prevision
is the restriction to polynomials of the expectation operator of some unique σ -additive probability
measure on the Borel sets of ΣA; see for instance Ref. [5].



Predictive inference under exchangeability, and the IDMM 19

as our uncertainty models of choice. This allows us, in contradistinction with most
other approaches in probability theory, to avoid problems with determining unique
conditional models from unconditional ones when conditioning on events with (lower)
probability zero. A set of polynomials HA completely determines all prior and pos-
terior predictive models D n̂

Acm̌mm and Pn̂
A(·|m̌mm), even when the (lower) prior probability

Pň
A([m̌mm]) = HA(BA,m̌mm) of observing the count vector m̌mm is zero. An approach using

only lower previsions and probabilities would make this much more complicated
and involved, if not impossible. Indeed, it can be proved that any inference system
that satisfies representation insensitivity has near-vacuous prior predictive models,
and that therefore its prior predictive lower previsions must satisfy Pň

A([m̌mm]) = 0. This
simply means that it is impossible in a representation insensitive inference system
for the prior lower previsions to uniquely determine posteriors. And therefore any
systematic way of dealing with such inference systems must be able to resolve—or
deal with—this non-unicity in some way. We believe our approach involving coherent
sets of desirable gambles is one of the mathematically most elegant ways of doing
this.

We might also wonder whether there are other representation insensitive and
specific inference systems. We suggest, as candidates for further consideration, the
inference systems that can be derived using Walley’s bounded derivative model
[27], and inference systems that can be constructed using sets of infinitely divisible
distributions, as recently proposed by Mangili and Benavoli [20].
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