
Markov chains
An introduction

Consider a generic continuous-time stochastic process
(Xt)t∈R≥0, where for all t ∈ R≥0 the state Xt is a random
variable that takes values x in the finite state spaceX . We
provideX with some ordering, such that any real-valued
function f onX can be identified with a row vector. We
furthermore letL (X ) denote the set of all real-valued
functions onX . Then any linear operator T : L (X )→
L (X ) can be identified with a matrix.

Precise Markov chains
The stochastic process (Xt)t∈R≥0 is a precise (continuous-
time) Markov chain (pMC) if it satisfies the Markov property:
where n ≥ 0 is an integer and {t1, . . . , tn,s, t} is a strictly
increasing sequence of non-negative time points. The
transition matrix T t

s thus defined satisfies
[T t

s f ](xs) = E( f (Xt)|Xs = xs) (P1)
= E( f (Xt)|Xt1 = x1, . . . ,Xtn = xn,Xs = xs).

A pMC is called stationary if it satisfies T t+∆
t = T ∆

0 =: T∆

for all t,∆ ∈ R≥0. In this case, there is a unique transition
rate matrix Q—a matrix with non-negative off-diagonal
elements and rows that sum up to zero—such that

(∀t ∈ R≥0) T∆ = T t+∆

t ≈ I +∆Q for ∆ suff. small.
Furthermore, Tt then satisfies the differential equation

d
dt

Tt = QTt, with T0 = I. (P2)
Similarly, for any non-stationary pMC there is a time-
dependent transition rate matrix Qt such that

(∀t ∈ R≥0) T t+∆

t ≈ I +∆Qt for ∆ suff. small.

Imprecise Markov chains
It is often infeasible to precisely specify the transition rate
matrix Q of a stationary pMC. Furthermore, assuming
stationarity is not always justified. Therefore, we here
consider the case where the (time-dependent) transition
rate matrix Qt of a (non-stationary) pMC is only known to
be contained in some (non-empty and bounded) set Q.
In other words, we consider the set PQ of all pMCs that
are consistent withQ, in the sense that
(∀t ∈ R≥0)(∃Qt ∈Q) T t+∆

t ≈ I +∆Qt for ∆ suff. small.
This set PQ characterises an imprecise (continuous-time)
Markov chain (iMC) as follows. Analogous to (P1), we define
a lower transition operator T t

s as
[T t

s f ](xs) := E( f (Xt)|Xs = xs) (I1)
= E( f (Xt)|Xt1 = x1, . . . ,Xtn = xn,Xs = xs),

where E(·|·) is the minimum of the conditional expecta-
tions that are induced by the set of consistent processes.
In caseQ has separately specified rows, Krak et al. (2017)
show that T t+∆

t = T ∆
0 =: T ∆ for all t,∆ ∈ R≥0. Moreover,

they show that T ∆ is the unique operator that satisfies
d
dt

T t = QT t, with T 0 = I. (I2)
In (I2), Q is the so-called lower transition rate operator of
Q, which, for any f ∈L (X ) and x ∈X , is defined as

[Q f ](x) := min{[Q f ](x) : Q ∈Q} . (I3)

Ergodicity
We are often interested in the long-term limit behaviour
of stationary pMCs and iMCs. For iMCs, a special case is
when

lim
t→+∞

[T t f ](x) = E∞( f ) for all f ∈L (X ) and x ∈X .

If this is the case, then the iMC is said to be ergodic and
E∞( f ) is called the limit lower expectation. Similarly, a
stationary pMC is ergodic if

lim
t→+∞

[Tt f ](x) = E∞( f ) for all f ∈L (X ) and x ∈X ,

where E∞ is now called the limit expectation.
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Two-service flexi-grid optical link
Consider a single optical link with total spectrum availability S. We
divide the spectrum S into m1 frequency slices of width F = S/m1 called
channels. Arriving messages are assigned to a number of contiguous
channels according to the bandwidth they require. We assume that the
link is used to send two types of messages: type 1 messages require 1
channel and type 2 messages require n2 channels.
In order to limit spectrum fragmentation, we assign arriving type 2
messages to one of the fixed superchannels, which are formed by
combining n2 contiguous channels:

F n2F

S = m1F

This way, we obtain m2 := m1/n2 superchannels, where we assume that
m1 is an integer multiple of n2.
We model the arrival of type 1messages as a Poisson process with
rate λ1, and the arrival of type 2messages as a Poisson process with
rate λ2. Furthermore, we assume that the sojourn time of a message
is exponentially distributed, with rate µ1 for the departure of a type 1
message and rate µ2 for the departure of a type 2message.

Spectrum assignment
Arriving type 1message
If there is at least one free channel, the message is assigned to one of
the free channels according to an assignment policy. We consider three
such policies:R randomly select one of the free channels;
L assign the arriving message to one of the free channels in the
least-filled superchannels;
M assign the arriving message to one of the free channels in the
most-filled superchannels.

R R R R R R R R
L L L L

M

If there is no free channel, then the message is blocked.
Arriving type 2message
If there is at least one free superchannel, the message is assigned to
one of the free superchannels at random. If there is no free superchan-
nel, then the message is blocked.
One measure that quantifies the performance of the assignment policies
is the blocking probability BP1 (BP2), which is the probability that a ran-
domly selected type 1 (type 2) message is blocked. We determine these
blocking probabilities using (im)precise (continuous-time) Markovchainmodels, as introduced in Markov chains: An introduction .Detailed state description

For our purposes, a sufficiently detailed state space is

Xdet :=
{
(i0, . . . , in2) ∈ N(n2+1) :

n2

∑
k=0

ik ≤ m2

}
,

where, for k ∈ {0, . . . ,n2}, ik counts the number of superchannels that are currently
assigned k type 1messages and not a type 2message.
Using this state space, for each of the three policies we construct a stationary pre-cise Markov chain (pMC) model of the optical link that exactly models the dynamics
of the system—at least probabilistically speaking. The transition diagram of these
pMCs is depicted on the right. The rates λP,k of the transitions corresponding to the
arrival of a type 1message are policy- and state-dependent, and satisfy ∑

n2−1
k=0 λP,k = λ1.

Unfortunately, as |Xdet| ∼O((m1/n2)
n2), using this stationary pMC model to exactly deter-

mine the blocking probabilities of large systems (i.e., m1 large and n2 > 2) is infeasible.

i0, . . . , ik, . . . , in2

i0+1, . . . , ik, . . . , in2

i0, . . . , ik−1+1, ik−1, . . . , in2

i0, . . . , ik−1, ik+1+1, . . . , in2

i0−1, . . . , ik, . . . , in2

(m2− I)µ2
(if I < m2)

kikµ1(if ik > 0)

λP,k
(if R > 0, ik > 0)

λ2 (if i0 > 0)

I := ∑
n2
k=0 ik denotes the number of superchannels not occupied

by a type 2 message
R := ∑

n2−1
k=0 ik(n2− k) denotes the number of free channels

Reduced state description

i, j,ei−1, j,e+1

i, j−1,e+1 i+1, j,e

i+1, j,e−1

i, j+1,e−1i−1, j,e

µ
+
1

jµ2

(if j > 0)
λ=

P

λ
−
P

(if R > 0)

λ2

(if e > 0)
µ=

1(if i > 0)

R := m1− i− jn2 denotes the number of free channels

Kim et al. (2015) propose to use the reduced state space
Xred :=

{
(i, j,e) ∈ N3 : m2 ≤ i+ j+ e, i+( j+ e)n2 ≤ m1

}
,

where i ( j) counts the number of assigned type 1 (type 2) messages and e counts
the number of empty superchannels. As |Xred| ∼ O(m1(m1/n2)

2), this reduced state
description is better suited to model large systems (i.e., m1 large and n2 > 2).
By lumping—see Handling state space explosion in Markov chains—states in the
exact pMCs, we obtain pMCs with state spaceXred, the transition diagram of which
is depicted on the left. The rates λ=

P and λ
−
P of the transitions corresponding to the

arrival of a type 1message are state- and policy-dependent, and their sum equals λ1.
If n2 > 2, the (state-dependent) rates µ

+
1 and µ=

1 of the transitions corresponding to the
departure of a type 1message are time-dependent and indeterminable. Therefore,
using these pMCs to determine the blocking probabilities is infeasible.

Kim et al. (2015) alleviate this problem by replacing the time and state-dependent
transition rates µ

+
1 and µ=

1 with constant state-dependent approximations µ̃
+
1 and

µ̃=
1 , thus obtaining stationary but approximate pMCs. They then use these pMCs to
approximate the blocking probabilities.
Instead of determining a single approximation without any sense of its accuracy,
we opt for an approach that results in guaranteed lower and upper bounds. While
precisely determining µ

+
1 (i, j,e, t) and µ=

1 (i, j,e, t) is infeasible, we do know that
µ
+
1 (i, j,e, t)+µ

=
1 (i, j,e, t) = iµ1 and imin(i, j,e)µ1 ≤ µ

+
1 (i, j,e, t)≤ imax(i, j,e)µ1, (1)

where imin(i, j,e) (imax(i, j,e)) denotes the minimum (maximum) number of type 1mes-
sages that are alone in their superchannel. Instead of considering a single transition
rate matrix that, for every state, fixes values for µ

+
1 (i, j,e, t) and µ=

1 (i, j,e, t) that satisfy
(1), we consider the set of all transition rate matrices that satisfy (1). This way, we
characterise policy-dependent imprecise Markov chains (iMCs). For every policy, we
use this iMC to obtain guaranteed lower and upper bounds for the blocking probabilities.
More generally, we also characterise a policy-independent iMC. Using this iMC, we can
provide policy-free bounds for the blocking probabilities.

Numerical example
Below, we depict (the bounds on) the blocking probabilities for a
system with m1 = 40, n2 = 4, µ1 = µ2 = 1 and λ1 = λ2 = λ .
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