
Markov chains
An introduction

Consider a generic continuous-time stochastic process
(Xt)t∈R≥0, where for all t ∈ R≥0 the state Xt is a random
variable that takes values x in the finite state spaceX . We
provideX with some ordering, such that any real-valued
function f onX can be identified with a row vector. We
furthermore letL (X ) denote the set of all real-valued
functions onX . Then any linear operator T : L (X )→
L (X ) can be identified with a matrix.

Precise Markov chains
The stochastic process (Xt)t∈R≥0 is a precise (continuous-time) Markov chain (pMC) if it satisfies the Markov property:
where n ≥ 0 is an integer and {t1, . . . , tn,s, t} is a strictly
increasing sequence of non-negative time points. Thetransition matrix T t

s thus defined satisfies
[T t

s f ](xs) = E( f (Xt)|Xs = xs) (P1)
= E( f (Xt)|Xt1 = x1, . . . ,Xtn = xn,Xs = xs).

A pMC is called stationary if it satisfies T t+∆
t = T ∆

0 =: T∆

for all t,∆ ∈ R≥0. In this case, there is a unique transitionrate matrix Q—a matrix with non-negative off-diagonal
elements and rows that sum up to zero—such that

(∀t ∈ R≥0) T∆ = T t+∆

t ≈ I +∆Q for ∆ suff. small.
Furthermore, Tt then satisfies the differential equation

d
dt

Tt = QTt, with T0 = I. (P2)
Similarly, for any non-stationary pMC there is a time-
dependent transition rate matrix Qt such that

(∀t ∈ R≥0) T t+∆

t ≈ I +∆Qt for ∆ suff. small.

Imprecise Markov chains
It is often infeasible to precisely specify the transition rate
matrix Q of a stationary pMC. Furthermore, assuming
stationarity is not always justified. Therefore, we here
consider the case where the (time-dependent) transition
rate matrix Qt of a (non-stationary) pMC is only known to
be contained in some (non-empty and bounded) set Q.
In other words, we consider the set PQ of all pMCs that
are consistent withQ, in the sense that
(∀t ∈ R≥0)(∃Qt ∈Q) T t+∆

t ≈ I +∆Qt for ∆ suff. small.
This set PQ characterises an imprecise (continuous-time)Markov chain (iMC) as follows. Analogous to (P1), we define
a lower transition operator T t

s as
[T t

s f ](xs) := E( f (Xt)|Xs = xs) (I1)
= E( f (Xt)|Xt1 = x1, . . . ,Xtn = xn,Xs = xs),

where E(·|·) is the minimum of the conditional expecta-
tions that are induced by the set of consistent processes.
In caseQ has separately specified rows, Krak et al. (2017)
show that T t+∆

t = T ∆
0 =: T ∆ for all t,∆ ∈ R≥0. Moreover,

they show that T ∆ is the unique operator that satisfies
d
dt

T t = QT t, with T 0 = I. (I2)
In (I2), Q is the so-called lower transition rate operator of
Q, which, for any f ∈L (X ) and x ∈X , is defined as

[Q f ](x) := min{[Q f ](x) : Q ∈Q} . (I3)

Ergodicity
We are often interested in the long-term limit behaviour
of stationary pMCs and iMCs. For iMCs, a special case is
when

lim
t→+∞

[T t f ](x) = E∞( f ) for all f ∈L (X ) and x ∈X .

If this is the case, then the iMC is said to be ergodic and
E∞( f ) is called the limit lower expectation. Similarly, a
stationary pMC is ergodic if

lim
t→+∞

[Tt f ](x) = E∞( f ) for all f ∈L (X ) and x ∈X ,

where E∞ is now called the limit expectation.
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State space explosion
Precise Markov chains (or pMCs, as introduced in Markov chains:An introduction ) are used ubiquitously to model systems with uncer-
tain dynamics. Consider a stationary pMC and assume that we are
interested in making inferences of the form

lim
t→+∞

E( f (Xt)) = lim
t→+∞

∑
x∈X

π0(x)E( f (Xt)|X0 = x) = lim
t→+∞

∑
x∈X

π0(x)[Tt f ](x),

where f is a real-valued function onX and π0 is an initial probability
distribution. If the pMC is ergodic, then we immediately obtain that

lim
t→+∞

E( f (Xt)) = E∞( f ) = ∑
x∈X

π∞(x) f (x),

regardless of π0. It is well-know that π∞ is the unique probability distri-
bution onX that satisfies the equilibrium condition

π∞Q = 0. (1)
In case the number of states |X | is relatively small, this linear system
of equations can be efficiently solved analytically or numerically. How-
ever, in many applications—see for instance Modelling spectrumassignment in a two-service flexi-grid optical link—the number of
states grows exponentially with respect to the dimensions of the sys-
tem! This state space explosion makes (1) practically unsolvablefor large systems.

Lumping reduces the number of states
One way to reduce the number of states is to lump together states.
For example, in Modelling spectrum assignment in a two-serviceflexi-grid optical link we lump together states that correspond to
the same higher-order description. In any case, this lumping of states
yields the lumped state space X̂ , which is a partition ofX .
The lumped stochastic process (X̂t)t∈R≥0, which has state space X̂ , is
derived from the original stochastic process (Xt)t∈R≥0 using the relation

(∀x̂ ∈ X̂ ) X̂t = x̂⇔ Xt ∈ x̂.

Throughout this poster, we only consider real-valued functions onX
that are constant over the elements of the partition, as such a function
f can be trivially identified with a real-valued function f̂ on X̂ .
Consider a stationary and ergodic pMC with state spaceX and tran-
sition rate matrix Q. Assume, for the sake of simplicity, that the pMC
is irreducible, in the sense that P(Xt = x)> 0 for all t > 0 and all x ∈X .
Given an initial distribution π0 for the original pMC , we find that the
lumped process (X̂t)t∈R≥0 is a pMC with (time-dependent) transition
rate matrix

Q̂t(x̂, ŷ) =
∑x∈x̂ P(Xt = x)∑y∈ŷ Q(x,y)

∑x∈x̂ P(Xt = x)
.

Moreover, regardless of the initial distribution,
lim

t→+∞
E( f̂ (X̂t)) = ∑

x̂∈X̂
π̂∞(x̂) f̂ (x̂).

In this expression, π̂∞ is the unique distribution on X̂ that satisfies
π̂∞Q̂∞ = 0

where
Q̂∞(x̂, ŷ) :=

∑x∈x̂ π∞(x)∑y∈ŷ Q(x,y)

∑x∈x̂ π∞(x)
.

In general, we can only precisely determine the (long-term limit of the)temporal evolution of the probability distribution over the lumps if we firstdetermine the (long-term limit of the) temporal evolution of the probabilitydistribution over the states of the original pMC.

Lumped pMC is stationary
So far, lumping states in order to make determining the steady-state
distribution feasible was limited to the well-known special case where
the lumped process is a stationary pMC. This occurs if the transition rate
matrix Q of the original (stationary and ergodic) pMC satisfies

(∀x̂, ŷ ∈ X̂ ) min
x∈x̂

∑
y∈ŷ

Q(x,y) = Q̂t(x̂, ŷ) = Q̂∞(x̂, ŷ) = max
x∈x̂

∑
y∈ŷ

Q(x,y). (2)

Lumped pMC is not stationary
We now consider an original stationary pMC of which the transition
rate matrix Q does not satisfy (2). In this case, all we can say for sure
about the lumped pMC—without determining the actual distribution
P(Xt = x) of the original pMC—is that, for all t ∈ R≥0,

(∀x̂, ŷ ∈X , x̂ 6= ŷ) min
x∈x̂

∑
y∈ŷ

Q(x,y)≤ Q̂t(x̂, ŷ)≤max
x∈x̂

∑
y∈ŷ

Q(x,y). (3)

We collect all transition rate matrices that satisfy (3) in the set Q̂, and
let Q̂ denote the associated lower transition rate operator. By the
theory of imprecise Markov chains (or iMCs), the lumped pMC is
then contained in the set PQ̂. Consequently, we are guaranteed that
E( f̂ (X̂t)|X̂s = x̂)≤E( f (Xt)|Xs∈ x̂)≤E( f̂ (X̂t)|X̂s = x̂) :=−E(− f̂ (X̂t)|X̂s = x̂).

It can be moreover shown that the obtained iMC is ergodic, whence
E∞( f̂ )≤ E∞( f )≤ E∞( f̂ ) :=−E∞(− f̂ ). (4)

Want to know how to efficiently approximate E( f̂ (X̂t)|X̂s = x̂) or
E∞( f̂ ) up to some guaranteed maximal error? See iMCs: Efficientcomputational methods with guaranteed error bounds .

Alternative bounds on E∞( f )

Assume we are only interested in determining (guaranteed bounds
for) the limit expectation E∞( f ) of some real-valued function f onX .
An alternative to computing the limit lower expectation of the induced
iMC is the following.
For any A⊆ X̂ and x̂ ∈ X̂ , we define

Q̂L(x̂,A) := min
x∈x̂

∑
ŷ∈A

∑
y∈ŷ

Q(x,y) and Q̂U(x̂,A) := max
x∈x̂

∑
ŷ∈A

∑
y∈ŷ

Q(x,y).

Let A be a collection of subsets of X̂ . If we let
Π̂A :=

{
π̂ a probability distribution on X̂ :

(∀A ∈A ) ∑
x̂∈X̂

π̂(x̂)Q̂L(x̂,A)≤ 0≤ ∑
x̂∈X̂

π̂(x̂)Q̂U(x̂,A)
}
,

then
min

π̂∈Π̂A

∑
x̂∈X̂

π̂(x̂) f̂ (x̂)≤ E∞( f )≤ max
π̂∈Π̂A

∑
x̂∈X̂

π̂(x̂) f̂ (x̂), (5)

where the optimisations can be solved using a linear program.
How to pick A and the tightness of the bounds of (5) compared to thebounds (4) of the iMC is the subject of ongoing research.
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