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Abstract 

 

Seventy-two participants estimated products of complex multiplications of two-

digit operands (e.g., 63 x 78), using two strategies that differed in complexity. The 

simple strategy involved rounding both operands down to the closest decades 

(e.g., 60 x 70), whereas the complex strategy required rounding both operands up 

to the closest decades (e.g., 70 x 80). Participants accomplished this estimation 

task in two conditions, a no-load condition and a working-memory load condition 

in which executive components of working memory were taxed. The choice/no-

choice method was used to obtain unbiased strategy execution and strategy 

selection data. Results showed that loading working-memory resources led 

participants to poorer strategy execution. Additionally, participants selected the 

simple strategy more often under working-memory load. We discuss the 

implications of the results to further our understanding of variations in strategy 

selection and execution, as well as our understanding of the impact of working-

memory load on arithmetic performance and other cognitive domains. 
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Working memory, strategy execution, and strategy selection in mental arithmetic 

 

The psychology of arithmetic aims at understanding how people solve 

arithmetic problems. The present project investigated the role of working-memory 

resources on strategic aspects of human cognition in general and in arithmetic in 

particular. Previous empirical research in arithmetic showed three robust 

phenomena relevant to the present project, namely the impacts of problem 

difficulty, multiple-strategy use, and working-memory load. 

Problem difficulty refers to the fact that participants’ performance (i.e., 

solution latencies, error rates) decreases as problem difficulty increases (e.g., 

Ashcraft & Battaglia, 1978; Campbell & Graham, 1985; Duverne, Lemaire, & 

Michel, 2003; Duverne & Lemaire, in press; Geary, 1996; Groen & Parkman, 

1972; LeFevre, Bisanz, et al., 1996; Siegler & Jenkins, 1989). That is, easy 

problems like 3 + 4 yield better performance than harder problems like 7 + 8. This 

problem-difficulty effect has been found for all arithmetic operations in different 

arithmetic tasks, in children and adults of different ages, as well as in patients with 

Alzheimer dementia, and is mainly assumed to reflect the execution of mental 

calculation processes (see Zbrodoff & Logan, 2005, for a recent review).  

The second robust empirical finding relevant to the present project concerns 

multiple-strategy use. A strategy can be defined as “a procedure or a set of 

procedures for achieving a higher level goal or task. These procedures do not 

require conscious awareness to be called a strategy.” (Lemaire & Reder, 1999, p. 

365). To solve arithmetic problems, participants use several strategies like 

memory retrieval (e.g., 7 + 6 = 13), calculation (e.g., 8 + 3 = 8 + 1 + 1 +1), 



WORKING MEMORY AND ARITHMETIC 

 4 

decomposition into easier problems (e.g., 8 + 9 = 8 + 10 – 1), and arithmetic rules 

(e.g., N + 0 = N; see Hecht, 2002; Kirk & Ashcraft, 2001; LeFevre, Bisanz, et al., 

1996; LeFevre, Sadesky, & Bisanz, 1996). In computational estimation, 

investigated here, several strategies are used as well to estimate approximate 

solutions (Baroody, 1989; Case & Snowder, 1990; Dowker, 1997; Dowker, Flood, 

Griffiths, Harriss, & Hook, 1996; LeFevre, Greenham, & Waheed, 1993; Lemaire 

& Lecacheur, 2002a, Lemaire, Lecacheur, & Farioli, 2000, Levine, 1982; 

Newman & Berger, 1984; Pelham, Sumarta, & Myaskovsky, 1994; Reys, Rybolt, 

Bestgen, & Wyatt, 1982; Snowder & Markovits, 1990). Especially two strategies 

seem to be used by adults (e.g., Levine, 1982; Lemaire, Arnaud, & Lecacheur, 

2004): rounding both operands to the closest smaller decades and rounding both 

operands to the closest larger decades. For example, when people have to estimate 

the product 825 x 36, the first (simple) strategy would imply that they calculate 

820 x 30 whereas the second (more complex) strategy would imply that they 

calculate 830 x 40. 

The third phenomenon relevant to the present project concerns the role of 

working-memory resources in arithmetic performance (see DeStefano & LeFevre, 

2004, for a review). Previous works showed that secondary tasks loading on 

working memory interfere with both verification and production of simple mental 

arithmetic sums or products (Ashcraft, Donley, Halas, & Vakali, 1992; De 

Rammelaere, Stuyven, & Vandierendonk, 1999, 2001; De Rammelaere & 

Vandierendonck, 2001; Hecht, 2002; Lemaire, Abdi, & Fayol, 1996). Logie, 

Gilhooly, and Wynn (1994) suggested that executive functions of working 
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memory seem to be important in ‘performing the calculations required for mental 

addition and in producing approximately correct answers’ (our emphasis; p. 395) 

and that they may be involved in implementing calculation procedures or 

estimation strategies. 

 The issue of working-memory involvement in execution of mental 

calculation processes has been investigated with several arithmetic tasks, but 

remains not fully understood. Most studies that used simple arithmetic tasks (e.g., 

8 + 6 = ?) have shown that problem-difficulty effects, an index of the execution of 

mental calculation processes, do not vary across working-memory load conditions 

(e.g., Ashcraft, 1995; De Rammelaere & Vandierendonck, 2001; De Rammelaere 

et al., 2001; Duverne, Lemaire, & Vandierendonck, 2006; Lemaire et al., 1996). 

These results suggest that working memory is not involved in arithmetic strategy 

execution. Other studies that used more complex arithmetic tasks (e.g., 358 + 261 

= ?), however, showed an increased problem-difficulty with increased working-

memory load, suggesting that working-memory resources may be at stake in 

mental calculation processing (e.g., Fürst & Hitch, 2000, Seitz & Schumann-

Hengsteler, 2000, 2002). Following Hecht (2002), a multiple-strategy use 

approach might shed light on this discrepancy. 

 The issue of working-memory involvement in different arithmetic 

strategies has rarely been directly investigated. To our knowledge, only Hecht 

(2002) has conducted research on this topic. He asked people to verify simple 

sums (e.g., 4 + 8 = 13 Yes/No?) while loading working memory and assessed the 

strategies used on each problem. He found that retrieval was mainly used whether 
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working memory was loaded or not.  Strategy execution, in contrast, was hindered 

by load on working memory, but only when counting was used to solve the 

problems. In brief, Hecht’s study on simple arithmetic strategies and working 

memory found that strategy execution, but not strategy selection, was influenced 

by working-memory load. This very interesting study further suggests that the 

involvement of working memory in arithmetic varies across strategies. 

Nevertheless, only very easy problems (additions with two one-digit operands) 

were used in Hecht’s study. As these problems have been practiced over and over, 

between 60% and 100% of them are solved via direct retrieval (e.g., Ashcraft & 

Kirk, 2001; LeFevre, Bisanz, et al., 1996; LeFevre, Sadesky, & Bisanz, 

1996;Campbell & Timm, 2000). Such a retrieval bias may obscure the potential 

role of working-memory resources in strategy selection. In the present study, we 

used complex arithmetic problems (multiplications of two two-digit operands) to 

increase our chances to detect an impact of working-memory load on the ability to 

adaptively select strategies.  

 

Overview of the present study 

The purpose of the present research was to investigate the role of working 

memory in strategy selection and strategy execution in the computational 

estimation task. Participants had to provide estimates of two-digit operand 

products (e.g. 78 x 42) in a no-load condition and in a working-memory load 

condition. In the latter condition, working memory was loaded by means of a 

Choice Reaction Time task (CRT task), where participants have to decide if 
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randomly presented tones are high or low. This task has been shown to interfere 

with executive functions of working memory, but not to tax slave systems of 

working memory (i.e., the phonological loop and the visuo-spatial sketch pad) 

(Szmalec, Vandierendonck, & Kemps, 2005; Vandierendonck, De Vooght, & Van 

der Goten, 1998a, 1998b; see Schunn, Lovett, & Reder, 2001, for an analogous 

task). In particular, the CRT task affects the executive functions ‘input 

monitoring’ (as the sequence of tones is unpredictable) and ‘decision making’ (as 

participants have to decide whether the tone is high or low). 

 In order to independently determine the involvement of working 

memory on strategy execution and strategy selection, we used the choice/no-

choice method (Siegler & Lemaire, 1997). This method provides a means of 

obtaining unbiased measures of performance characteristics of strategies (see also 

Geary, Hamson, & Hoard, 2000; Hanich, Jordan, Kaplan, & Dick, 2001; Jordan & 

Montani, 1997; Lemaire & Lecacheur, 2001, 2002a, 2002b). It requires collecting 

performance under two types of conditions: (a) a choice condition in which 

participants are free to choose between the available strategies on each trial, and 

(b) no-choice conditions in which participants must use a given strategy on all 

items. There are as many no-choice conditions as there are available strategies in 

the choice condition. The choice condition allows assessing strategy selection 

(i.e., which strategies are chosen on which problems?), and no-choice conditions 

provide unbiased measures of strategy execution for each strategy (i.e., how fast 

and accurately are the strategies executed?). Speed and accuracy characteristics 
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for each strategy can thus be assessed independently of strategy selection and can 

be compared across different memory-load conditions. 

We tested each strategy parameter (i.e., strategy selection and strategy 

execution) by manipulating experimental and problem-feature variables in order 

to collect further evidence of the impact of working-memory load. First, 

manipulations of strategy complexity and problem difficulty allowed us to test 

strategy execution. Strategy complexity was manipulated by restricting the 

strategy repertoire to two estimation strategies that are commonly used by adult 

participants in computational estimation and that vary in complexity: (1) a simple 

strategy in which both operands are rounded to the closest smaller decades (e.g., 

rounding 78 x 42 to 70 x 40), and (2) a complex strategy in which both operands 

are rounded to the closest larger decades (e.g., rounding 78 x 42 to 80 x 50). Both 

strategies involve common processes like encoding operands, rounding both 

operands, holding the rounded operands in memory, calculating an approximate 

product, and providing the answer aloud. This allowed us to collect data on 

comparable strategies. However, both strategies also differed in the complexity of 

the most central arithmetic processes: The complex strategy involves rounding the 

operands by incrementing the decade digits, holding in memory rounded decade 

digits that are not displayed on the screen, and calculating products of larger 

rounded operands. Both strategies have been used in previous studies (e.g., 

Lemaire et al., 2004) in which was empirically confirmed that they differ in 

complexity. Under no-choice conditions and without working-memory load, the 
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simple strategy was executed around 1000 ms faster than the complex one, 

indicating that the latter is more resource consuming than the former.  

Problem difficulty was also manipulated so as to test the impact of 

working-memory load on strategy execution. Problem difficulty is a classic effect 

in arithmetic showing larger latencies and more errors on hard problems 

compared to easier problems (see Zbrodoff & Logan, 2005, for a recent review). 

The main interpretation of this effect suggests that it reflects calculation-

processing rates.  

The hypothesis that working-memory resources are involved in strategy 

execution predicts Working Memory x Strategy Complexity and Working 

Memory x Problem Difficulty interactions in no-choice conditions. This should 

happen because of larger latency and accuracy differences between the simple and 

complex strategies when working memory is overloaded. Moreover, latencies and 

errors on hard problems should increase when working memory is overloaded, 

compared to easy problems. These predictions related to variations in strategy 

execution need to be tested in no-choice conditions, since strategy execution in 

choice conditions might be biased by the number of time each strategy is used.  

Regarding strategy selection, two hypotheses were tested. First, we 

hypothesized that fewer working-memory resources would be left free to use the 

complex strategy under working-memory load condition. This hypothesis predicts 

that the simple strategy should be used more often than the complex one, 

especially under working-memory load condition. Further, if participants select 

the simple strategy more often on hard than on easy problems, then we can also 
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predict that the impact of working-memory load on strategy execution observed in 

no-choice conditions would disappear in choice conditions. In other words, larger 

effects of working-memory load on the complex strategy than on the simple 

strategy should not be significant in the choice condition, because participants 

would use the simple strategy on hard problems more often, which would increase 

the effects of working-memory load on the simple strategy. Second, we 

hypothesized that choosing the most efficient strategy on each problem also 

requires working-memory resources. This hypothesis predicts that participants 

would select the most adaptive strategy on each problem less often under 

working-memory loads. Indeed, effects of working-memory load on strategy 

execution and strategy selection have been found in other cognitive domains such 

as reasoning (e.g., Gilhooly, Logie, Wetherick, & Wynn, 1993), but the role of 

working memory in the ability to select the most adaptive strategy on each 

problem remains unaddressed. In the discussion section, we compare the results of 

the present study with those of previous studies that have investigated the role of 

working memory in strategy execution, selection, and adaptivity in cognitive 

domains other than arithmetic.  

We are conscious that restricting the strategy repertoire to two available 

strategies might not fully represent the effects of working-memory load on 

strategy selection and execution in an ecologically valid way. For instance, in 

addition to the simple and complex strategies, participants might use mix 

strategies (e.g., rounding one operand to the closest smaller decade and the other 

one to the closest larger decade) on some problems. The present study however, 
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did not include such mix strategies, since the time-consuming nature of the 

choice/no-choice method makes it impossible to test all strategies in choice and 

no-choice conditions. Participants were thus not free to choose any strategy they 

wanted; they had to choose between two available strategies. Although this 

decision somewhat restricted the notion of ‘choice’ condition, the most crucial 

manipulation was that choosing strategies was possible in the choice condition 

and not in no-choice conditions. We further acknowledge that excluding the mix 

strategy a priori may cause a loss of valuable information. Previous works, 

however, showed that, when participants’ repertoire was restricted to two 

computational strategies, they selected the most appropriate strategy on most 

problems (Lemaire et al., 2004). Thus, although the exclusion of the mix strategy 

caused some loss in ecological validity, it also enabled us to combine two well-

established techniques, namely the choice/no-choice method (disentangling 

strategy selection and strategy execution) and the dual-task method (to test the 

role of working memory) in a powerful experimental design. 

 

Method 

 

Participants 

Seventy-two undergraduate students of the University of Provence (Aix-

en-Provence, France) participated for course credit. Participants were randomly 

assigned to one of three groups (i.e., choice, no-choice/simple, no-

choice/complex). We assessed each individual’s arithmetic skill, using both 
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addition and subtraction-multiplication subtests of a standardized test (i.e., the 

French Kit, devised by French, Ekstrom, & Price, 1963). Each subtest consisted of 

two pages of problems for a total of four pages. All participants were given two 

minutes per page, and were instructed to solve the problems as fast and accurately 

as possible. Number of correct answers on both addition and subtraction-

multiplication tests were summed to yield a total arithmetic score. We also 

collected measures of verbal knowledge, using a French version of the Mill-Hill 

Vocabulary Scale (MHVS; Deltour, 1993; Raven, Court, & Raven, 1986). The 

MHVS consists of 33 items distributed across three pages. Each item was a target 

word followed by six proposed words, and the task consisted of identifying which 

of the proposed words had the same meaning as the target word. The number of 

correct items represented the level of verbal ability. There were no differences 

between the three groups of participants on arithmetic skill, verbal knowledge, 

gender, or age (all p’s > .25). 

 

Stimuli 

Stimuli for the primary task were 80 products presented in a standard form 

(a x b), in which a and b were two-digit numbers. All problems were mixed-unit 

problems like 23 x 49. That is, all problems were made of one operand with a unit 

digit smaller than 5 and one operand with a unit digit larger than 5. This set of 

products was presented twice, once under no-load condition and once under 

working-memory load condition, in order to have exactly the same problems 

across both load conditions.  
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Two problem characteristics were factorially manipulated, problem 

difficulty and problem type. Based on the median of correct products (3543), a 

distinction was made between easy and hard problems. Easy problems had a mean 

correct product of 2474 (range: 1176 - 3534) whereas hard problems had a mean 

correct product of 4633 (range: 3551 - 6586). All problems were matched on side 

of the larger operand and on side of the operand with the smallest unit digit. The 

larger of both operands was on left position (e.g., 81 x 46) in half the problems 

and on right position (e.g., 32 x 48) in the other problems. The operand with 

smallest unit digit was on left position (e.g., 41 x 57) in half the problems and on 

right position (e.g., 37 x 52) in the other problems. 

In order to determine how participants efficiently choose strategies so as to 

improve performance, we manipulated problem type. We selected problems based 

on how close estimates for each problem were with each rounding strategy. 

Therefore, half the problems were categorized as rounding-down problems and 

half were rounding-up problems. Rounding-down problems were problems for 

which the estimates are closer to correct products when using the simple strategy 

(i.e., rounding both operands down to the closest decades). Rounding-up problems 

were problems for which the estimates are closer to correct products when using 

the complex strategy (i.e., rounding both operands up to the closest decades). The 

choice of the most adaptive strategy should thus be based on the sum of the unit 

digits, since small sums of unit digits are more accurately solved with the simple 

strategy, whereas large sums of unit digits are more accurately solved with the 

complex strategy. A rounding-down problem like 26 x 71, for example, would be 
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estimated most accurately with the simple strategy, whereas a rounding-up 

problem like 68 x 34 would be estimated most accurately with the complex 

strategy. 

Moreover, following previous findings in the domain of mental arithmetic 

(see Ashcraft, 1992, 1995; Campbell, 2005; Dehaene, 1997; Geary, 1994, for 

reviews), selection of all problems was made so as to control for the following 

factors: (a) no operand had 0 or 5 as unit digits, to avoid the application of rules 

(N x 0 = 0); (b) digits were not repeated in the same unit or decade positions (as in 

41 x 47), because solving tie problems (e.g., 4 x 4) often requires a different 

procedure compared to non-tie problems; (c) no reverse orders of operands were 

used (i.e., if 39 x 41 was used, 41 x 39 was not used) in order to reduce training 

effects; and (d) no digits were repeated within operands (as in 33 x 57). 

Stimuli for the CRT task consisted of a series of low (262 Hz) and high 

(524 Hz) tones. These tones were randomly presented 1500 or 2100 ms after the 

preceding tone. Duration of the tones was 80 ms and they were presented at a 

comfortable volume (about 55 – 60 dB). As soon as they heard a tone, participants 

had to press the correct key for either high or low tones. Performance on this task 

was the amount of correct key presses. A key press was coded as correct if the 

right key (i.e., the key corresponding to the presented tone) was pressed at the 

right moment (i.e., after the tone was presented, and before the next tone was 

presented) and 0 otherwise. Since input and output modes were different for CRT 

and estimation task (auditory/manual and visual/verbal for each task, 
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respectively), interferences between both tasks could not be accounted for by 

these processes. 

 

Procedure 

Participants were individually tested in one session that lasted 

approximately one hour. Each participant was tested in one of the following 

conditions: choice, no-choice/simple, or no-choice/complex. Testing choice/no-

choice as a between-subjects factor ensured that there was no influence from prior 

participation in no-choice condition on choice condition performance. Such 

training effects could attenuate differences between the different working-memory 

load conditions. At the beginning of the experiment, we collected information 

about participants’ sex and age. At the end of the experiment, participants 

completed a French version of the Mill-Hill Vocabulary Scale and both addition 

and subtraction-multiplication subtests of the French Kit. 

 The experimental session started with a description of the arithmetic task. 

Participants were told that they would see multiplication problems for which they 

had to give approximate products, without actually calculating the correct 

products. Participants in the choice condition were instructed to use either the 

simple or the complex strategy, and no other strategies. They were also instructed 

to choose the most accurate strategy for every single problem, hence the strategy 

that yields the closest estimates of correct products. No further instructions about 

how to choose between both strategies were provided. Participants in the no-

choice/simple strategy condition were required to use the simple strategy on all 
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problems; they had to round both operands down to the closest smaller decades to 

generate an answer to all problems (e.g., 78 x 42 = 70 x 40 = 2800). Participants 

in the no-choice/complex strategy condition were required to use the complex 

strategy on all problems; they had to round both operands up to the closest larger 

decades (e.g., 78 x 42 = 80 x 50 = 4000). For all participants, it was emphasized 

that adjusting their answer after having executed the strategy, was forbidden. 

Furthermore, using another strategy (e.g., rounding one operand down and 

rounding one operand up) was not allowed. The response was considered as 

erroneous whenever it did not match the result that should be obtained with the 

strategy that was used (verbally reported in the choice conditions and instructed in 

the no-choice conditions). In other words, the coding was thus specifically based 

on the correctness of the execution process (i.e., is the product estimated 

correctly?), and not on a selection process (e.g., was the most adaptive strategy 

chosen?)1. After an initial practice period, no participants had difficulties with 

either strategy and with the no-adjustment requirements. Instructions equally 

stressed speed and precision. 

Each trial began with the 1000-ms presentation of a fixation point in the 

centre of the computer screen. Then, the two-by-two digit problems were 

displayed horizontally in the centre of the screen. Symbols and numbers were 

separated by spaces equal to the width of one character. Timing of each trial 

began when the problem appeared on the screen and ended when the experimenter 

pressed a button, the latter event occurring as soon as possible after the 

participant’s response. On each trial, the experimenter recorded participants’ 
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responses. Moreover, in choice conditions, participants had to say which strategy 

was used on each trial. 

For each between-subjects sample (choice, no-choice/simple, no-

choice/complex), the order of testing no-load and working-memory load 

conditions was counterbalanced. In each sample, half the participants estimated 

products first without secondary task, and then solved them while simultaneously 

accomplishing the CRT task; the order was reversed for the other participants. 

Stimuli for the CRT task (a series of low and high tones) were presented by means 

of another computer. Participants had to press the correct key for either high or 

low tones. Performance on this secondary task was also measured when carried 

out alone (i.e., without primary task), for a duration of 2 minutes/participant. 

The same set of 80 problems was used under no-load and working-

memory load conditions. So, each participant had to solve 160 estimation 

problems. The order of presentation of these problems was randomized for each 

participant. Participants were permitted a 5 min rest period between both memory-

load conditions. Before the experimental trials, participants were given 6 practice 

problems to familiarize themselves with apparatus, procedure, and task. 

 

Results 

 

Analyses of data are reported in three major sections. First, we analyzed 

performance in the executive function task (CRT) under the single- and dual-task 

conditions. The second and third sections aimed at analyzing strategy execution 
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and strategy selection, respectively. Initial analyses indicated that there were no 

order effects between both working-memory load conditions. Therefore, the data 

were grouped across orders in further analyses. In all results, unless otherwise 

noted, differences were significant to at least p < .05.  

 

CRT performance 

A 3 (participant sample: choice, no-choice/simple, no-choice/complex) x 2 

(CRT in isolation vs. CRT in dual-task condition) ANOVA was conducted on 

correct responses of the CRT task (see Table 1 for the percent accuracy). The 

CRT task was performed significantly worse in the dual-task condition than when 

performed in isolation (68% correct responses vs. 95% correct responses; F(1,69) 

= 318.72, MSe = 81.52). This shows interference between primary and secondary 

task, both competing for working-memory resources. Neither the main effect of 

participant sample nor the interaction between participant sample and CRT 

condition were significant (F<1.8 and F<1.0, respectively). Further comparisons 

indeed confirmed that the CRT task was equally well performed in the three 

participant samples in both the single-task condition and the dual-task condition. 

Therefore, a comparable amount of working-memory resources was devoted to 

the secondary task in the three samples when solving the primary task.  

--------------- 
Insert Table 1 about here 

--------------- 
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Strategy execution in the estimation task 

Analyses of strategy execution were performed on latencies (of correctly solved 

problems only) and on percentages of errors2, separately for choice and no-choice 

conditions. The analyses run on no-choice performance tested the impact of 

working-memory load on strategy execution independently of strategy selection. 

The analyses run on choice performance tested whether having the choice among 

strategies (i.e., strategy selection) influenced strategy execution. 

 

No-choice performance 

Latencies. ANOVAs of mean latencies were run with a 2 (Load Condition: 

no load vs. working-memory load) x 2 (Problem Difficulty: easy vs. hard) x 2 

(Problem Type: rounding-down vs. rounding-up problems) x 2 (Strategy 

Complexity: simple vs. complex) mixed design, with repeated measures on the 

first three factors. Results on latencies showed main effects of Load Condition, 

Problem Difficulty, Strategy Complexity, and Problem Type (see Table 2). 

Problems were solved faster in the no-load than in the working-memory load 

condition (3609 ms vs. 4412 ms respectively; F(1,46) = 35.5, MSe = 1746519); 

easy problems were solved faster than hard problems (3769 ms vs. 4252 ms 

respectively; F(1,46) = 15.3, MSe = 1464481); using the simple strategy took less 

time than using the complex strategy (2856 ms vs. 5165 ms respectively; F(1,46) 

= 37.4, MSe = 13701472); and participants were faster with rounding-down than 

with rounding-up problems (3903 ms vs. 4118 ms, respectively; F(1,46) = 8.26, 

MSe = 535390). 
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--------------- 
Insert Table 2 and Figure 1 about here 

--------------- 

Crucially, the interaction between Load Condition and Strategy 

Complexity was significant, F(1,46) = 6.16, MSe = 1746518 (see Figure 1) and 

showed larger differences in latencies between simple and complex strategies 

under the working-memory load condition than under the no-load condition. As 

expected, this interaction revealed that the execution of the complex strategy was 

more impaired under working-memory load condition than the execution of the 

simple strategy. This suggests that strategy execution varied as a function of 

working-memory load. It is also worthwhile to note the significant Problem 

Difficulty x Strategy Complexity interaction, F(1,46) = 4.30, MSe = 1464481, as 

well as the significant Problem Difficulty x Strategy Complexity x Problem Type 

interaction, F(1,46) = 4.47, MSe=277106. The Problem Difficulty x Strategy 

Complexity interaction revealed that the difference between complex and simple 

strategies was larger on hard problems than on small problems. This two-way 

interaction depended on Problem Type, however, as it was true only for the 

rounding-down problems but not for the rounding-up problems. Indeed, for the 

rounding-up problems latencies were always larger on hard than on easy 

problems, whereas for the rounding-down problems this was only true when the 

complex strategy was used. 

 

Percent errors. ANOVAs of mean percent errors in no-choice conditions 

were run with the 2 (Load Condition) x 2 (Problem Difficulty) x 2 (Problem 
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Type) x 2 (Strategy Complexity) design. Analyses revealed three main effects: 

Problems were solved more accurately under no-load than under working-

memory load conditions (12.4% vs. 18.0% errors, respectively; F(1,46) = 42.3, 

MSe = 0.001); easy problems were solved more accurately than hard problems 

(9.8% vs. 20.5% errors, respectively; F(1,46) = 44.1, MSe = 0.01); and the simple 

strategy yielded fewer errors than the complex strategy (10.2% vs. 20.2%, 

respectively; F(1,46) = 10.9, MSe = 0.087).  

Only the Load Condition x Problem Difficulty interaction was significant, 

F(1,46) = 5.35, MSe = 0.004, showing larger problem-difficulty effects in the 

working-memory load condition (11.9% vs. 24.1%) than in the no-load condition 

(7.7% vs. 17.0%). This interaction is consistent with results on latencies 

suggesting that strategy execution depends on the amount of available working-

memory resources. 

 

Choice performance 

Latencies. ANOVAs on choice performance involved a 2 (Load Condition: 

no load vs. working-memory load) x 2 (Problem Difficulty: easy vs. hard) x 2 

(Strategy Complexity: simple vs. complex) design, with repeated measures on 

each factor. Given strategy selection leading to too many cells with no 

observations, data were collapsed over problem type. Like in the no-choice 

conditions, three main effects were replicated (see Table 3): Problems were solved 

faster in the no-load than in the working-memory load condition (6788 ms vs. 

8025 ms, respectively; F(1,23) = 5.26, MSe = 13962166.83); easy problems were 
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solved faster than hard problems (6901 ms vs. 7912 ms, respectively; F(1,23) = 

29.1, MSe = 1685867.58); and the simple strategy was faster than the complex one 

(6623 ms vs. 8189 ms, respectively; F(1,23) = 26.0, MSe = 4527593.70).  

Importantly, and contrary to no-choice conditions, no interactions between 

Load Condition and Problem Difficulty or Strategy Complexity were observed (Fs 

< 2). Thus, whereas working-memory load interacted with strategy complexity in 

no-choice conditions, it did not in the choice conditions. This lack of interaction 

may stem from strategy selection effects on strategy execution: Participants may 

have chosen different strategies on different types of problems so that 

performance varied less across problems in the choice condition. 

--------------- 
Insert Table 3 about here 

--------------- 

Percent errors. Analysis of mean percentages of errors showed significant 

main effects of Problem Difficulty and Strategy Complexity, with more errors on 

hard than on easy problems (18.8% vs. 8.6%, respectively; F(1,23) = 19.3, MSe = 

0.03) and when using the complex strategy than when using the simple one 

(18.6% vs. 8.9%, respectively; F(1,23) = 22.2, MSe = 0.02).  

There was also a Problem Difficulty x Strategy Complexity interaction 

(F(1,23) = 6.3, MSe = 0.02). The difference between strategies was larger for hard 

problems (26.5% vs. 11.2%, for complex and simple strategies, respectively) than 

for easy problems (10.7% vs. 6.6%, for complex and simple strategies, 

respectively). Contrary to results in no-choice conditions, there was no effect of 
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Load Condition (F < 2) and no interactions between Problem Difficulty or 

Strategy Complexity and Load Condition (Fs < 2).  

 
Strategy selection in the estimation task 

Two analyses were run to examine strategy selection characteristics in the 

choice condition only. The first looked at overall strategy use and the second at 

the ability to choose the most adaptive strategy on each problem. 

 

Overall strategy use.  

The ANOVA on mean percentages of use of the simple strategy involved a 

2 (Load Condition: no load vs. working-memory load) x 2 (Problem Difficulty: 

easy vs. hard) x 2 (Problem Type: rounding-down vs. rounding-up problems) 

design, with repeated measures on all factors (see Figure 2). A first important 

observation is that participants were not biased to using one single strategy, since 

simple and complex strategies were used with comparable frequencies (53% vs. 

47% in no-load condition). However, participants used the simple strategy more 

often than the complex one in both no-load and working-memory load conditions.  

Further, the simple strategy was favoured in the working-memory load 

condition compared to the no-load condition (62% vs. 53%, respectively; F(1,23) 

= 9.02, MSe = 0.02). The simple strategy was also largely used on rounding-down 

problems compared to rounding-up problems (68% vs. 47%; F(1,23) = 25.75, 

MSe = 0.08), and on easy problems compared to hard problems (59% vs. 56%; 

F(1,23) = 3.19, MSe = 0.01, p < .09). Interestingly, the Load Condition x Problem 

Type interaction showed that the difference between memory-load conditions was 
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larger for rounding-up problems than for rounding-down problems (12% vs. 6%; 

F(1,23) = 4.53, MSe = 0.01). As expected, participants used the simple strategy 

more often in the working-memory load condition, especially on the more 

demanding rounding-up problems. When working memory was not loaded, there 

were enough resources available to use the complex strategy when necessary.  

Finally, the Problem Type x Problem Difficulty interaction (F(1,23) = 50.77, MSe 

= 0.02) showed that participants used the simple strategy most often on hard 

rounding-down problems and least often on hard rounding-up problems. 

-------------------------------- 
Insert Figure 2 about here 
------------------------------- 

Strategy adaptivity.  

To analyze percentages of most adaptive strategy use for each individual 

and each problem, we coded “1” if the most adaptive strategy was used (i.e., the 

simple strategy on rounding-down problems and the complex strategy on 

rounding-up problems), and “0” when it was not. We analyzed mean percentages 

of adaptive strategy use with an ANOVA, involving a 2 (Load Condition: no load 

vs. working-memory load) x 2 (Problem Difficulty: easy vs. hard) within-subjects 

design (see Table 4). Crucially, we observed a main effect of Load Condition, as 

participants more often used the most adaptive strategy in the no-load condition 

than in the working-memory load condition (62% vs. 59%, respectively, F(1,23) = 

4.53, MSe = 0.01). As expected, loading executive functions of working memory 

had an influence on strategy adaptivity, since participants were significantly less 

adaptive when their working-memory capacities were taxed. More surprisingly, 
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participants seemed to more adaptively choose strategies on hard problems than 

on easy problems (65% vs. 57% most adaptive strategy use, respectively, F(1,23) 

= 19.65, MSe = 0.01). However, this was accounted for by the bias towards using 

the simple strategy almost systematically on hard problems when this strategy was 

actually the most adaptive one. There was no interaction effect, Fs < 1. 

-------------------------------- 
Insert Table 4 about here 
------------------------------- 

 
General Discussion 

 
 

Previous studies showed that arithmetic performance is influenced by 

working-memory load. The present study contributes to our further understanding 

of this influence. The most original features of this experiment include a strategy 

approach, a fairly under-investigated arithmetic domain (computational 

estimation), independent assessments of strategy execution and strategy selection 

(via the choice/no-choice method), and a control of participants’ strategy 

repertoire. The present findings showed that working-memory load influences 

arithmetic performance via its effects on both strategy execution and strategy 

selection. We discuss the implications of these findings to further understand the 

role of working memory in strategic aspects of cognitive performance. 

 

The role of working memory in strategy execution 

Above and beyond effects of strategy and problem-difficulty usually found 

in arithmetic, the present results showed two crucial interactions, Working 
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Memory x Strategy Complexity and Working Memory x Problem Difficulty. The 

complex strategy was more slowed than the simple strategy and more errors were 

made on difficult than on easy problems under working-memory load condition. 

Both interactions are consistent with the hypothesis that executing computational 

estimation strategies requires working-memory resources. Differential task 

demands between both strategies may not only account for lower performance 

with the complex strategy than with the simple strategy; they can also account for 

the impact of working-memory resources on execution of mental calculation as 

tested with strategy complexity and problem difficulty. Both simple and complex 

strategies involve common cognitive processes (i.e., encoding operands, rounding 

operands, calculating products of rounded operands, and saying these products 

aloud), the complex strategy involves additional processes like ten-digit increment 

and intermediary result storage and manipulation. Moreover, calculation difficulty 

differed across strategies since the simple strategy always involved multiplying 

smaller numbers than the complex one, a problem feature that is known to play a 

crucial role in arithmetic (see Ashcraft, 1995; Geary, 1994, for reviews). 

An alternative account for the interaction between working memory and 

strategy complexity is related to inhibition effects. More specifically, complex 

strategies might be executed more slowly than simple strategies because the 

execution of complex strategies involves overriding the execution of simple 

strategies. This effect would be even more important in no-choice conditions 

compared to choice conditions, because participants need to override the simple 

strategy on 100% trials of no-choice/complex conditions, whereas they need to 
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override the simple strategy on 50% trials of choice conditions. Additional 

analyses confirmed that (under no-load) the difference between complex and 

simple strategies was larger in the no-choice condition (1974 ms) than in the 

choice condition (1316 ms), an effect that was even enhanced under working-

memory load (2644 ms vs. 1815 ms, respectively). 

The present effects of working-memory load on strategy execution replicate 

Hecht’s results (2002), who found that execution of the counting strategy was 

disrupted by shortage in working-memory resources while execution of other 

simpler strategies (e.g., memory retrieval) remained intact. Hecht’s and the 

present results suggest that working-memory resources are more crucial in the 

execution of complex strategies than in the execution of simple strategies, at least 

in arithmetic. Of course, it is unknown how demanding a strategy must be in order 

to be affected by working-memory load, an issue that future research might 

pursue.  

Further, the interaction between working-memory load and problem 

difficulty improves our understanding of the impact of working-memory load in 

strategy execution. Previous studies hardly showed that hard problems required 

more working-memory resources than easier problems (e.g., Ashcraft, 1995; De 

Rammelaere & Vandierendonck, 2001; De Rammelaere et al., 2001; Duverne et 

al., 2006; Lemaire et al., 1996; see however Fürst & Hitch, 2000, Seitz & 

Schumann-Hengsteler, 2000, 2002). Given that retrieval is the dominantly used 

strategy in mental calculation, one may infer that working-memory resources are 

not differentially required for easy versus hard problems when answers are 
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retrieved from long-term memory. The working-memory demands may thus be 

more related to other aspects of the solution process than those associated with 

activating long-term memory information (DeStefano & LeFevre, 2004). When 

strategies other than retrieval (e.g., transformation or counting) are used however, 

working-memory load affects hard problems more than easy problems (Seyler, 

Kirk, & Ashcraft, 2003).  

 Finally, we would like to note that the working-memory load by strategy 

complexity and the working-memory load by problem difficulty interactions only 

appeared in no-choice conditions, where effects of strategy selection were 

controlled and participants used both strategies as many times on each type of 

problems. Results were different in the choice condition, where strategy execution 

and strategy selection were not disentangled. Indeed, when strategy selection was 

not differentiated from strategy execution, no significant interactions between 

working-memory load and strategy complexity or between working-memory load 

and problem difficulty were observed. This suggests that, in the choice condition, 

participants found a way to compensate for the effects of working-memory load 

on strategy execution. More precisely, participants in the choice condition could 

opt for the simple strategy when fewer working-memory resources were available. 

Since the simple strategy is faster and more accurate (as shown by no-choice 

analyses), this shift towards a greater use of the simple strategy reduced the 

effects of working-memory load on strategy execution in the choice condition. 

Separate analyses of strategy execution in choice and no-choice conditions thus 

show that choosing among available strategies biases strategy execution data since 
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performance differences across strategies and problems are reduced. Such 

reduction might have decreased potential working-memory effects in previous 

arithmetic studies that only included a choice condition. At a general level, this 

suggests that investigating the role of working memory in strategic aspects of 

cognitive performance requires independent assessments of strategy execution and 

strategy selection. Note that even if participants compensate for the impact of 

working-memory load on strategy execution in choice condition by using the 

simple strategy more often, they did not select the most adaptive strategy 

according to the goal of the task in choice condition.  

 

The role of working memory in strategy selection 

Siegler (1999) already stated that a high trial-by-trial variability is 

characteristic of human cognition. Therefore, as Roberts and Newton (2005) 

noted, we need to understand differences in strategy selection within as well as 

between individuals. The present results showed effects of working-memory load 

on strategy selection. The simple strategy was used more often under working-

memory load than under no-load condition. When fewer working-memory 

resources were left, participants chose the simple strategy more often, especially 

to solve the most demanding problems. Moreover, the manipulation of problem 

type allowed us to test strategy adaptivity and showed that participants chose the 

most adaptive strategy on each problem less systematically in the working-

memory load condition than in the no-load condition. This occurred even if 

participants were instructed to choose between the simple and the complex 
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strategy so as to produce the best estimate for each problem. Both greater use of 

the simplest strategy and decreased use of the most adaptive strategy are 

consistent with the hypothesis that choosing strategies, especially the most 

adaptive strategies, on a trial-by-trial basis requires working-memory resources. 

As it was the case with strategy execution, working-memory effects on 

strategy selection can be accounted for by inhibition effects as well. More 

specifically, the present experiment required selecting between two competitors 

and inhibiting one of them; a competition that is larger in choice conditions than 

in no-choice conditions because of the goal of the task. However, the purpose of 

the present study was to determine whether an executive working-memory load 

would differently affect strategy selection and execution, and not to determine 

which executive functions are at stake in strategy selection and execution. We 

hope that future studies will investigate this issue. 

The effects of working-memory load on strategy selection are inconsistent 

with Hecht’s (2002) lack of effects of working-memory load on the selection of 

simple arithmetic strategies (i.e., he observed that mean percentages of strategy 

use did not change across memory-load conditions). First, Hecht used a simple 

problem verification task, whereas we used a complex computational estimation 

task. Second, participants in Hecht’s study were just required to solve arithmetic 

problems, whereas in the present study they had to adaptively select strategies in 

the choice condition. Third, in simple arithmetic, retrieval is used much more 

often than non-retrieval strategies such as counting, whereas in the computational 

estimation task, participants’ strategy repertoire was limited to two strategies that 
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varied in complexity. Choice data indeed indicated that participants in the present 

study were not biased to the use of one single strategy, since simple and complex 

strategies were used with comparable frequencies. Speculatively, it is possible 

that, when a cognitive task is not accomplished by a massively dominant strategy 

(like retrieval in simple arithmetic), strategy selection requires working-memory 

resources.   

The effects of working-memory load on strategy selection may also explain 

why differences in strategy execution were no longer significant in the choice 

condition: Participants in the choice condition found a way to compensate the 

greater working-memory demands on strategy execution. More specifically, they 

circumvented higher working-memory demands by choosing the simple strategy 

more often than in no-choice conditions. Therefore, (1) smaller problem-difficulty 

effects were observed in the choice than in the no-choice condition, (2) smaller 

strategy-complexity effects were observed in choice condition as well, and (3) the 

effects of working-memory load on strategy complexity observed in no-choice 

conditions disappeared in choice conditions. Such conclusions could only be 

drawn because we used an appropriate experimental method to independently test 

strategy execution and selection. 

Finally, even if participants could somewhat compensate for the effects of 

working-memory load on strategy execution in the choice condition, they selected 

the strategies less adaptively with respect to the goal of the task in the choice 

condition. As far as we know, the effects of working-memory load on strategy 

adaptivity in arithmetic tasks have not been previously tested. The present results 
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suggest that strategy adaptivity is also altered under working-memory load. These 

effects may result from greater complexity to process problem characteristics 

deeply when working memory is loaded. To choose the most adaptive strategy on 

each problem, it is necessary to understand that small sums of unit digits are better 

solved with the simple strategy and that the complex strategy provides most 

accurate estimates on problems with large sums of unit digits. The processing of 

these data may have been impaired under working-memory load. A tentative 

conclusion might thus be that reducing the amount of working-memory resources 

reduces people’s strategy adaptivity. 

 

Working-memory effects on strategy use in other cognitive domains and process 

models 

 The present study showed that, in complex arithmetic, working memory is 

needed in strategy execution, strategy selection, and strategy adaptivity. One 

might wonder whether such findings generalize to other cognitive domains. When 

other domains, like reasoning or problem solving, are considered, the working-

memory effects found run strikingly parallel with those observed in the present 

project. First, effects of working-memory load have been found on strategy 

execution, both in conditional reasoning (e.g., Klauer, Stegmaier, & Meiser, 1997; 

Meiser, Klauer, & Naumer, 2001) and in syllogistic reasoning (e.g., Gilhooly et 

al., 1993). Gilhooly et al. (1993) for example, observed higher errors rates under 

working-memory load. Comparable effects have been found in the present study, 
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as we observed slower and less accurate strategy execution under working-

memory load. 

Second, effects of working-memory load have also been found on strategy 

selection. In a syllogistic reasoning task, Gilhooly et al. (1993) observed a 

significant increase in the incidence of guessing under working-memory load. 

This result was confirmed in a later study (Gilhooly, Logie, & Wynn, 2002), 

which led the authors to conclude that increasing working-memory load produces 

a shift towards less demanding strategies. This shift was also observed in the 

present study, since participants chose the simple (i.e., less demanding) strategy 

more often under no-load condition than under working-memory load condition. 

Third, the effects of working-memory load on strategy adaptivity still 

remains a debated topic. Schunn and Reder (2001) for example, found that 

differences in strategy adaptivity were correlated with working-memory capacity, 

whereas Schunn, Lovett, and Reder (2001) did not find a relationship between 

individual differences in strategy adaptivity and working-memory capacity. More 

recently however, Dierckx and Vandierendonck (2005) specifically tested whether 

task complexity might influence strategy adaptivity. They observed that 

increasing task complexity reduced participants’ strategy adaptivity since they 

tended to apply only one strategy consistently to all problems. Thus, as complex 

tasks load more heavily on working-memory resources, fewer resources are left 

for the strategy selection process, resulting in lower strategy adaptivity. Otherwise 

stated, as participants have to trade off resources between problem solving and 

strategy selection, both processes might be executed worse. This was the case in 
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the present study as well, in which strategy adaptivity was significantly lower 

under working-memory load condition than under no-load condition. 

The present findings suggest several implications for process models on 

strategy use and working memory. For example, the ACT-R theory of Lovett and 

Anderson (1996; Anderson, Reder, & Lebiere, 1996) incorporates notions of 

strategy use and working-memory resources (see also Lovett & Schunn, 1999; 

Payne, Bettman, & Johnson, 1993; Shrager & Siegler, 1998, for other process 

models of strategy choices). In this model there is a parameter (W), which 

determines the available processing capacity and thus limits the amount of 

attention that can be distributed over the to-be-accomplished tasks. When 

participants have to perform two tasks that require attentional resources 

simultaneously (e.g., dual-task paradigms), the total amount of the sources of 

activation has to be shared between these tasks, resulting in poorer task 

performance on both tasks. The present results reveal that poorer task 

performance under working-memory load depends on the ability to use multiple 

strategies and to adaptively select them as a function of problem type. Based on 

this, it would be interesting to test the differential role of working memory when 

participants have different numbers of strategies available or when participants are 

free to choose whichever strategy they have spontaneously available. The 

prediction is that less adaptive strategy choices will be made when more 

alternative strategies are available if the selection processes do require working-

memory resources as the present results suggest. 
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Finally, process models on working memory suggest that working-memory 

capacity can be differentiated along different functions. For example, Oberauer 

and his colleagues (Oberauer, 2002; Oberauer & Kliegl, 2001; Oberauer, 

Demmrich, Mayr, & Kliegl, 2001; Oberauer, Süß, Wilhelm, & Wittman, 2003) 

have reported data consistent with the idea that three working-memory functions 

at least can be distinguished: Simultaneous storage and processing, supervision, 

and coordination of elements into structures (see Miyake et al., 2000, for such 

distinctions of working-memory functions). More specifically, “supervision (also 

referred to as executive processes) involves the monitoring of ongoing processes 

and actions, the selective activation of relevant representations and procedures, 

and the suppression of irrelevant, distracting ones” (Oberauer et al., 2003, p. 169). 

One of the most challenging executive functions that might be at stake in strategy 

selection is related to the suppression of irrelevant strategies like the ability to 

override a prepotent strategy, in the case of several available strategies but one of 

them is more easily activated, or the ability to monitor several competitors, when 

the available strategies are equally difficult to activate. Future research will 

understand which specific executive mechanisms govern strategy execution and 

strategy selection, in arithmetic and in other cognitive domains. 
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Footnotes 

 

1. This coding of correctness implied that a strategy could be coded as 

‘correct’ even though it was not the most adaptive strategy. More 

precisely, when in the choice condition a rounding-down strategy was 

executed correctly although a rounding-up strategy would have been more 

appropriate, the strategy was coded as being executed correctly. As 

explicated further, the coding of strategy adaptivity was not based on the 

correctness of strategy execution but on whether the best strategy was 

chosen according to the problem type. 

2. We also calculated two types of percent deviations between estimates and 

correct products for each problem and each participant (e.g., LeFevre et 

al., 1993; Lemaire et al. 2000; 2004; Lemaire & Lecacheur, 2002a; 

Levine, 1982). The first one is based on the difference between correct 

products of operands and participants’ answers. To illustrate, suppose a 

participant gave 2000 as an estimate for 41 x 57. That participant would be 

17% [(2000 – 2337) / 2337] away from the correct product. The second 

type of deviation is based on the difference between the correct product 

derived from using a particular strategy and participant’s answer. To 

illustrate, suppose a participant - using rounding-down strategy – gave 

2500 as an estimate for 41 x 57. That participant would be 25% [(2500 – 

2000) / 2000] away from the correct product expected from round down. 
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However, effects on each of these percent deviations measure were exactly 

the same as those present in analyses of mean percent errors. 
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Table 1: Percent of correct responses (and standard deviations) in the CRT task when 

executed in isolation or in combination with the primary task, for all choice/no-choice 

conditions. 

 
 

 

Choice No-choice/simple No-choice/complex 

M SD M SD M SD 

Only CRT 96.3 3.8 95.9 4.9 94.1 7.4 

CRT with primary task 68.6 11.6 71.3 14.5 65.2 11.7 
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Table 2. Mean solution times in milliseconds and percent errors (and standard 

deviations) for simple and complex strategies in both memory-load conditions under 

no-choice conditions and for each problem type. 

 
 

 

No-Load Condition Memory-Load Condition 

Simple strategy Complex strategy Simple strategy Complex strategy 

Problem Type x 

Problem Difficulty 

M SD M SD M  SD M SD  

Solution Times (in ms) 

Rounding-Down Problems 

- Easy Problems 2458 182 4040 182 2911 270 5290 270 

- Hard Problems 2525 296 4949 296 3017 365 6034 365 

Rounding-Up Problems 

- Easy Problems 2550 232 4417 232 3050 287 5432 287 

- Hard Problems 2953 314 4976 314 3384 490 6180 490 

Percent Errors 

Rounding-Down Problems 

- Easy  Problems 4.58 1.6  10.00 1.6  8.33 2.3  16.04  2.3 

- Hard Problems  9.79 2.9  22.71 2.9  13.96 3.6  30.42  3.6 

Rounding-Up Problems 

- Easy Problems  4.37 2.4  11.88  2.4  7.08  2.5  16.25  2.5 

- Hard Problems 11.88 2.9  23.75  2.9  21.67  3.2  30.21  3.2 
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Table 3. Mean solution times in milliseconds and percent errors (and standard 

deviations) for simple and complex strategies in both memory-load conditions under 

choice conditions and for each problem type. 

 

 

 

No-Load Condition Memory-Load Condition 

Simple strategy Complex strategy Simple strategy Complex strategy 

Problem Type M SD M SD M SD M SD 

 Solution Times (in ms) 

- Easy Problems 5703  364 6737 421 6758 572 8406 681 

- Hard Problems 6557  481 8155 706 7478 620 9459 717 

 Percent Errors 

- Easy Problems 5.89  1.4 10.61 2.6 7.32  1.4 10.81 2.6 

- Hard Problem 10.76 2.3 23.58 4.2 11.66 4.4 29.33 4.7 
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Table 4. Means (and standard deviations of) percent use of adaptive strategy use as a 

function of problem characteristics under each memory load condition. 

 

 

Problem Type 

No-Load Condition Memory-Load Condition 

RD RU RD RU 

- Easy Problems 

- Hard Problems 

61.2 (14.8) 

69.2 (21.3) 

55.2 (18.1) 

63.1 (19.3) 

64.6 (20.3) 

76.0 (19.0) 

44.58 (29.6) 

50.2 (28.8) 

Note. RD=Rounding-Down Problems; RU=Rounding-Up Problems. 
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Figure captions 

 

Figure 1 

Mean solution times (in milliseconds) for simple and complex strategies in both 

memory-load conditions under no-choice conditions. 

 

Figure 2 

Mean percent use of simple strategy as a function of problem characteristics under 

each memory load condition. 
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Figure 1 
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Figure 2 
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