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1 Introduction

We consider the numerical solution of the following fourth-order boundary

value problem :

y(4) + f(t) y = g(t) , a ≤ t ≤ b (1.1)

subject to the boundary conditions

y(a) = A1, y′′(a) = A2, y(b) = B1, y′′(b) = B2. (1.2)

Hereby f and g are continuous functions in [a, b] and A1, A2, B1 and B2 are

real constants. The unicity of the solution of this problem is guaranteed if

f(t) ≥ 0 and f(t) 6≡ 0 by a theorem of Usmani [6].

In general, the analytical solution of (1.1), (1.2) can not be determined, and

numerical techniques have to be applied. Several papers (see [1]-[18] and cita-

tions therein) have already been devoted to the development of such methods

for equation (1.1) subject to various kinds of boundary conditions, among

which also (1.2).

One possibility to construct suitable methods is to use finite differences, as

Usmani did. In [13] it was shown that the formulae upon which Usmani’s

methods are based can also be obtained using polynomial interpolation. In

that paper, modified methods were proposed which are based on a mixed type

of interpolating functions, i.e. functions of the form

α cos ω t + β sin ω t +
n−2
∑

i=0

γi t
i

where ω is a free parameter which can be fitted to the problem at hand.

As explained in [19], such methods can also be obtained in a much simpler way,

using a six step flow chart. In the next section, we will follow this procedure

to construct exponentially fitted methods.
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2 Derivation of the methods

For N ≥ 5, we define tp := a + p h for p = 0, 1, . . . , N + 1 whereby h :=

(b − a)/(N + 1) and we denote the approximate value of the solution y(tp) in

each knot point as yp.

The finite difference schemes we will construct follow from a central formula

and a begin and end formula, respectively. The central formula takes the form

yp−2 + a1yp−1 + a0yp + a1yp+1 + yp+2 = (2.3)

h4
(

b2 (y
(4)
p+2 + y

(4)
p−2) + b1 (y

(4)
p+1 + y

(4)
p−1) + b0y

(4)
p

)

.

The begin formula reads

c1y0 + c2y1 + c3y2 + y3 =

d1h
2y′′

0 + h4(d2y
(4)
0 + d3y

(4)
1 + d4y

(4)
2 + d5y

(4)
3 + d6y

(4)
4 + d7y

(4)
5 ) .

Due to the symmetry of the problem, the end formule can be derived from the

begin formula by rewriting the latter in a backward form starting from tN+1.

As explained by Ixaru and Vanden Berghe [19], to construct EF methods, one

can follow a six-step procedure. In this section, we consider the first five steps.

The last step, which deals with the error of the method, is the subject of the

next section.

First consider the construction of the central formula:

• Step i : with a := [a0, a1, b0, b1, b2] we define the operator L[h, a] as

L[h, a]y(t) := y(t − 2h) + a1y(t − h) + a0y(t) + a1y(t + h) + y(t + 2h)

−h4
(

b2(y
(4)(t + 2h) + y(4)(t − 2h)) + b0y

(4)(t) + b1(y
(4)(t + h) + y(4)(t − h))

)

.

• Step ii : we determine the maximum value of M such that the algebraic sys-

tem {L∗

m(a) = 0|m = 0, 1, 2, . . . , M − 1} with L∗

m(a) = h−mL[h, a]xm|x=0

can be solved.
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Due to the symmetry L∗

2k+1 = 0 for any integer value of k. Further, we find

L∗

0(a) = 2 + 2a1 + a0

L∗

2(a) = 8 + 2 a1

L∗

4(a) = 32 + 2 a1 − 48 b2 − 48 b1 − 24 b0

L∗

6(a) = 128 + 2 a1 − 2880 b2 − 720 b1

L∗

8(a) = 512 + 2 a1 − 53760 b2 − 3360 b1

L∗

10(a) = 2048 + 2 a1 − 645120 b2 − 10080 b1

such that M = 10 and the solution of the corresponding system is

a1 = −4, a0 = 6, b0 =
79

120
, b1 =

31

180
, b2 = −

1

720
. (2.4)

We also note that, if one assumes that b2 = 0, M = 8 and the solution is

a1 = −4, a0 = 6, b0 =
2

3
, b1 =

1

6
. (2.5)

When one assumes that b2 = b1 = 0, M = 6 and

a1 = −4, a0 = 6, b0 = 1 . (2.6)

• Step iii : to construct EF methods, we start from E∗

0(±z, a) := exp(∓µt)L[h, a] exp(±µt)

where z := µ h and we build G+(Z, a) := (E∗

0(z, a) + E∗

0(−z, a))/2 and

G−(Z, a) := (E∗

0(z, a)−E∗

0(−z, a))/(2 z) where Z = z2. Due to the symme-

try, one then finds G−(Z, a) ≡ 0 and

G+(Z, a) = 2η−1(4Z)+2a1η−1(Z)+a0−2Z2b2η−1(4Z)−b0Z
2−2Z2b1η−1(Z)

where the functions η−1(Z) and η0(Z) are defined as

η−1(Z) =











cos(|Z|1/2) if Z < 0 ,

cosh(Z1/2) if Z ≥ 0 ,
η0(Z) =



























sin(|Z|1/2)/|Z|1/2 if Z < 0,

1 if Z = 0,

sinh(Z1/2)/Z1/2 if Z > 0.

Further we also compute the derivatives G±(m)
(Z, a) with respect to Z.

Defining

ηn(Z) :=
1

Z
[ηn−2(Z) − (2n − 1)ηn−1(Z)], n = 1, 2, 3, . . . (2.7)
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differentiation gives

η′

n(Z) =
1

2
ηn+1(Z), n = 1, 2, 3, . . .

which makes G±(m)
(Z, a) easy to compute.

• Step iv : We consider a reference set of M functions :

{1, t, t2, . . . , tK} ∪ {exp(±µt), t exp(±µt), t2 exp(±µt), . . . , tP exp(±µt)}

where K+2P = M−3. The reference set can be characterized by the couple

(K, P ). The set in which there is no classical (i.e. polynomial) component is

identified by K = −1 while the set in which there is no exponential fitting

component is identified by P = −1. For the case M = 10 e.g., six choices

are possible : (9, −1), (7, 0), . . . (−1, 4). For the cases M = 8 and M = 6

the (P,K) values are resp. varying from (7, −1) downto (−1, 3) and from

(5,−1) downto (−1, 2).

• Step v : solve the algebraic system

L∗

k(a) = 0, 0 ≤ k ≤ K, G±(p)(Z, a) = 0, 0 ≤ p ≤ P . (2.8)

• Step vi : The error term (see next section).

As an example, we consider the case M = 6. The coefficients are rewritten in

terms of A := η−1(Z) and B := η0(Z).

(i) (K,P ) = (5,−1) : a1 = −4, a0 = 6, b0 = 1,

(ii) (K,P ) = (3, 0) : a1 = −4, a0 = 6, b0 =
4(A − 1)2

Z2
,

(iii) (K,P ) = (1, 1)

a1 =
4(2A2 − 2 − BZA)

BZ − 4A + 4
,

a0 =
2ZB(4A − 1) − 8(2A + 1)(A − 1)

BZ − 4A + 4
,

b0 =
−4B(A − 1)2

Z(BZ − 4A + 4)
,

(iv) (K,P ) = (−1, 2)
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a1 =
4(2A2 − 1 − 3BA)

3B − A
,

a0 =
2(3B(2A2 + 1) + BZ(A2 − 1) − 3A(2A2 − 1))

3B − A
,

b0 =
2B(A2 − 1)

Z(3B − A)
.

−20 −10 0 10
−4

6

16

Z

a 0

P=2

P=1

P ∈  {−1,0}

−20 −10 0 10
−14

−4

6

Z

a 1

P ∈  {−1,0}

P=1P=2

−20 −10 0 10
−0.5

1

2.5

Z

b 0

P=0

P=−1

P=1 P=2

Fig. 1. The coefficients a0, a1 and b0 as a function of Z in the case M = 6.

The graphs for these coefficients as functions of Z are depicted in Figure 1.

In the same way, the coefficients for the cases M = 8 and M = 10 can be

computed.

Following the same procedure the expressions for the coefficients of the begin

formula can be obtained for the same reference set. Let us consider the case

M = 6 again. For each value of P , it turns out that

c1 = a1 + 2 c2 = a0 − 1 c3 = a1 d3 = b0 .

The expressions for the values of the other coefficients in the begin formula
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are

(i) (K,P ) = (5,−1) : d1 = −1, d2 = −
1

12
,

(ii) (K,P ) = (3, 0) : d1 = −1, d2 =
2 − 2A + Z

Z2
,

(iii) (K,P ) = (1, 1) : d1 =
4 − 4A + ZB

Z
, d2 =

2A − 2 − ZB

Z2
,

(iv) (K,P ) = (−1, 2) : d1 =
A − 3B

2
, d2 =

B − A

4 Z
.

−20 −10 0 10
−3

−1

1

Z

d 1

P=2

P=1

P∈  {−1,0}

−20 −10 0 10
−0.166

−0.083

0

Z

d 2

P=0

P=−1

P=1

P=2

Fig. 2. The coefficients d1 and d2 as functions of Z in the case M = 6.

In general, the coefficients are Z dependent and in the trigonometric case,

some singularities may arise. For sufficiently small values of |Z| however, the

coefficients are continuous, well behaved functions of Z, as is shown in Fig-

ure 1 and Figure 2. These pictures also clearly show that, for 0 ≪ |Z| < 1

the coefficients approximate their classical values. In order to avoid numerical

instabilities the best way to compute the coefficients in that case is by means

of a truncated Taylor series development. For larger values of |Z|, the values

of the coefficients deviate from their constant (classical) values and their be-

haviour also becomes unpredictable. In the following sections, we will see that

we are often only able to compute an approximate value for the parameter Z,

and hence we can only compute approximate values for the coefficients a0, a1,

. . . . When the coefficients are slowly varying functions of Z (as they are in

the neighbourhood Z = 0), also approximate values of Z will still give quite

good results. In the neighbourhood of singularities however, this is no longer

the case. Therefore, from a practical point of view, the region around Z = 0 is

by far the most interesting one, since it is typically for such values of Z that

EF rules are applied.
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3 Error analysis

We follow the approach of Coleman and Ixaru [20], who adapted a theory

developed by Ghizzetti and Ossicini [21] to the EF framework. This approach

was also taken in [22].

The result is as follows : the error E[y] of a linear functional L[h, a] defined

over an interval [α, β] and applied to y is given by

E[y] =
∫ β

α
Φ(t) L[y](t) dx ,

where L ≡ DK+1(D2 − µ2)P+1 (in the exponential case) and where the kernel

function Φ(t) is a function which is in the null space of L.

If y ∈ C
m(α, β) and if the kernel Φ(t) is of constant sign in ]α, β[, the second

mean-value theorem for integrals gives

E[y] = L[y](ζ)
∫ β

α
Φ(t) dx (3.9)

for some ζ ∈]α, β[.

If Φ does not have a constant sign, we can rewrite Φ(t) = Φ+(t)+Φ−(t) where

Φ±(t) = ±max(0,±Φ(t)), such that, if y ∈ C
m(α, β), the second mean-value

theorem for integrals gives

E[y] = L[y](ζ+)
∫ β

α
Φ+(t) dx + L[y](ζ−)

∫ β

α
Φ−(t) dx .

Let us now check whether an expression of the form (3.9) holds. For the central

formula, this would mean that

lte = hM ΦK,P (Z) DK+1 (D2 − µ2)P+1y(ηp)

where ΦK,P is some function with ΦK,P (0) = L∗

M(a)/M ! and ηp ∈ (tp−2 h, tp+

2 h). Due to the symmetry of the linear functional, it is sufficient to check the

sign of ϕ(t′) := Φ(tp + t′ h)/hM−1 for t′ ∈ [0, 2]. This is done in the contour

plots in Figure 3 for the case M = 6. In the case P = 0 the function ϕ has a

constant sign for all values of Z for which it is defined, for the cases P = 1

and P = 2, there clearly is a bound on the values of Z for which (3.9) holds.
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For the begin formula, similar contour plots are made, but now we check the

sign of the kernel function for t′ ∈ [−1, 2]. The results for M = 6 are depicted

in Figure 4. The same conclusions hold as for the central formula.

If we summarize the results obtained so far for both the central and begin

formula, we can conclude that for sufficiently small values of |Z| one can quite

easily compute (approximations of) the coefficients of the EF methods and

that the error of such methods can be expressed in a closed form. In the next

section, we will use this result to determine a suitable value for the parameter

Z. However, since the error is expressed in terms of the unknown point ζ, the

actual expression which will be used, is the series expansion of the error.

t

Z

−2 −1.5 −1 −0.5 0
−45

−30

−15

0

15

30

45

t

Z

−2 −1.5 −1 −0.5 0
−45

−30

−15

0

15

30

45

t

Z

−2 −1.5 −1 −0.5 0
−45

−30

−15

0

15

30

45

Fig. 3. Contour plots of the function ϕ(t) for the central formula for the cases P = 0
(upper left), P = 1 (upper right) and P = 2 (below) in the case M = 6. The colors
gray and white are used to distinguish positive and negative function values.

For the central formula, this means that we obtain an expression in the form

lte = hM L∗

M(a)

M !
DK+1 (D2 − µ2)P+1y(tp) + O(hM+2) .

E.g., in the case M = 6 this leads to the following results :

(i) P = −1

lte =
h6

6
y(6)(tp) + O

(

h8
)
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t
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−45

−30
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0
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45

t

Z
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0
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Fig. 4. Contour plots of the function ϕ(t) for the begin formula for the cases P = 0
(upper left), P = 1 (upper right) and P = 2 (below) in the case M = 6. The colors
gray and white are used to distinguish positive and negative function values.

(ii) P = 0

lte =
h6

6

(

y(6)(tp) − µ2 y(4)(tp)
)

+ O
(

h8
)

(iii) P = 1

lte =
h6

6

(

y(6)(tp) − 2 µ2 y(4)(tp) + µ4 y(2)(tp)
)

+ O
(

h8
)

(iv) P = 2

lte =
h6

6

(

y(6)(tp) − 3 µ2 y(4)(tp) + 3 µ4 y(2)(tp) − µ6 y(tp)
)

+ O
(

h8
)

.

For the begin formula, one also finds

(i) P = −1

lte =
59 h6

360
y(6)(tp) +

h7

360
y(7)(tp) + O

(

h8
)

(ii) P = 0

lte =
59 h6

360

(

y(6)(tp) − µ2 y(4)(tp)
)

+
h7

360

(

y(7)(tp) − µ2 y(5)(tp)
)

+ O
(

h8
)

(iii) P = 1
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lte =
59 h6

360

(

y(6)(tp) − 2 µ2 y(4)(tp) + µ4 y(2)(tp)
)

+
h7

360

(

y(7)(tp) − 2 µ2 y(5)(tp) + µ4 y(3)(tp)
)

+ O
(

h8
)

(iv) P = 2

lte =
59 h6

360

(

y(6)(tp) − 3 µ2 y(4)(tp) + 3 µ4 y(2)(tp) − µ6 y(tp)
)

+
h7

360

(

y(7)(tp) − 3 µ2 y(5)(tp) + 3 µ4 y(3)(tp) − µ6 y(1)(tp)
)

+ O
(

h8
)

.

4 Parameter selection

We now come to the problem of attributing a value to the parameter µ for the

EF methods, i.e. the cases with P > −1. The determination of the parameter

is an essential part in the EF framework. Most papers on the subject only deal

with the case P = 0. Here, we will use an algorithm valid for any P ≥ 0. It is

an adaptation of an algorithm which was originally presented in [22] and [24]

for solving second order boundary value problems. A short description of this

algorithm can also be found in [23].

The algorithm is based on the expression for the lte. The idea is to look for a

value µj of µ that annihilates its leading term at the point tj, i.e.

D(K+1) (D2 − µ2
j)

(P+1)y(tj) = 0 j = 1, . . . , N . (4.10)

For P = 1 for instance, this means

y(K+5)(tj) − 2 y(K+3)(tj) µ2
j + y(K+1)(tj) µ4

j = 0 j = 1, . . . , N . (4.11)

In order to obtain values for the y(i)-values which appear in this expression, we

can differentiate the differential equation and re-express higher-order deriva-

tives in terms of y, y′, y′′ and y′′′. These derivatives can be approximated by

means of (sufficiently accurate) finite difference formulas. This finally leads

to expressions that only contain y-values. To obtain a first approximation for

these y-values, we can apply the classical method.

The equation (4.10) is of degree P + 1 in µ2. This means that for P = 0, a
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unique value for µj (the sign does not matter in this discussion) is obtained.

For P ≥ 1 in the other hand, P + 1 choices can be made in each point tj. In

deciding which value to choose, two observations are of importance.

(i) When the solution is of the form y(t) = tp eα t with p ∈ N, then one can

show that for P ≥ p, µj = α will be a (constant) solution of (4.10). To be

correct : µ2
j = α2 will be a solution of multiplicity P − p + 1. With this

choice we will in principle obtain machine accuracy, since the solution y(t)

then falls within the fitting space.

(ii) When the solution y(t) is not of the form tp eα t, then in each point tj we

can only try to determine a value for µj such that y(t) is locally as good

as possible approximated by a function within the fitting space. Sometimes

however, the root(s) of (4.10) may become very large at certain points tj

(e.g. due to a denominator that become very small) and experiments have

shown that for such large values of µj, the accuracy decreases. A good

criterion is to attribute at each point of the interval the minimum value (in

norm) of the suggested values for µ2.

These two observations lead to the following conclusions :

(i) If possible, choose a rule for which there is a constant µj for all j.

(ii) If µj cannot be held constant for all j, then try to find a rule for which µj

can be held small. This means that a rule with P = 0 may be less suited in

this case and a rule with P ≥ 1 should be preferred.

5 Numerical examples

5.1 Problem 1

y(4) −
384 t4

(2 + t2)4
y = 24

2 − 11 t2

(2 + t2)4

12



−1 −0.5 0 0.5 1
0

2

4

6

8

Fig. 5. Real (solid line) and imaginary (dashed line) values of µj for Problem 1 in
case M = 8 and P = 0 for h = 1/8.

with boundary conditions

y(−1) =
1

3
, y(1) =

1

3
,

y′′(−1) =
2

27
, y′′(1) =

2

27
.

The solution is given by y(t) =
1

2 + t2
.

Since y(t) does not to belong to the fitting space of a EF-rule, the value of

the parameter µ will not be constant over the interval of integration.

Suppose we first integrate this problem numerically with a classical rule of

order 4, i.e. M = 8 and suppose we next want to improve the accuracy of

the solution by computing the EF solution in the P = 0 case. Then the

determination of µj starts from the expression

y(8)(tj) − y(6)(tj) µ2
j = 0 .

After reexpressing the higher order derivatives in terms of y, y′, y′′ and y′′′ and

approximating the derivatives by means of finite difference schemes of order

O(h4), we obtain a numerical solution for µj, as depicted in Figure 5. The

obtained value for µj is not constant over the interval and becomes quite large

(in modulus) at certain points. Therefore we also consider the case P = 1, for

which we start from

y(8)(tj) − 2 y(6)(tj) µ2
j + y(4)(tj) µ4

j = 0 .

This then leads to the values of two roots µ1,j and µ2,j, depicted at the top of

Figure 6. Again, we notice that at certain points each one of the two possible

values µ1,j and µ2,j becomes (too) large, but when we define µj in each point

as the root with the smallest modulus, we obtain smaller, acceptable values.
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−1 −0,5 0 0,5 1
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−1 −0,5 0 0,5 1
−5

0

5
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−1 −0,5 0 0,5 1
−5

0

5

10

Fig. 6. Real (solid line) and imaginary (dashed line) values of µ1,j (top, left) and µ2,j

(top, right) and µj with smallest modulus (bottom) for Problem 1 in case M = 8
and P = 1 for h = 1/8.

10
−3

10
−2

10
−1

10
−10

10
−8

10
−6

h

E

Fig. 7. the numerical solutions for various fixed meshsizes h obtained with the
classical method (solid line), and the EF P = 1 method with either µ1,j (dashed),
µ2,j (dotted) and µj with smallest modulus (dot-dashed)

The importance of a good choice for µ is shown in Figure 7 in which we

depict the numerical solutions for various fixed meshsizes h obtained with

the classical method (solid line), and the EF P = 1 method with either µ1,j

(dashed), µ2,j (dotted) and µj with smallest modulus (dot-dashed).

In fact, the procedure thus followed turns the fourth order method into a sixth

order method. This is made clear in Figure 8, where we show for each of the

cases M = 6, M = 8 and M = 10 that the classical methods are of order 2,

4 and 6 respectively whilst their EF counterparts behave as methods of order

4, 6 and 8 resp. At least, this is what holds for sufficiently large values of h,

i.e. when the system to solve is not too large.

As N grows, the five-diagonal coefficient matrix indeed becomes more and

more ill-conditioned. In fact, the condition number of the matrix corresponding
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h
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Fig. 8. The maximum error E as a function of the stepsize h for the cases P = −1
(circles) and P = 1 (squares) : on the left M = 6, in the middle the case M = 8
and on the right the case M = 10. The dashed lines indicate orders 2, 4, 6 and 8.

to the P = −1 case
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










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

























grows like N4. We noticed that although it is possible to write A = B2,

whereby

B =





























−2 1

1 −2 1
. . . . . . . . .

1 −2 1

1 −2





























and whose condion number grows as N2, the numerical results do not improve.

The same holds for the EF methods. Although is it still possible to write A

as a product of two matrices, the numerical results do not improve.

This thus leaves us with the conclusion that our methods can only be applied

for sufficiently large stepsizes. But even then, numerical results with 10 digits

15



of accuracy can still be obtained (for M = 10).

5.2 Problem 2

y(4) − t = 4 et

with boundary conditions

y(−1) = −1/e, y(1) = e,

y′′(−1) = 1/e, y′′(1) = 3 e .

The solution of this problem is given by y(t) = et t. In theory, this problem

is solved up to machine accuracy by any EF-rule with P ≥ 1 and µj = 1.

From the previous example, we know however that this will only be the case

for sufficiently large values of h.

In practice, we do not know the µj; we have to determine their values numer-

ically. A natural question to ask is : what happens to the numerical solution

in such a case? How accurate should the parameter µ be computed? In order

to answer these questions we will consider the case M = 6 where h = 1/16.

In this way we will not be disturbed by the ill-conditioning of the coefficient

matrix.

The µj are obtained by annihilating the leading term of the lte, in which firstly

the derivatives are reexpressed in terms of y, y′, y′′, y′′′ using the differential

equation and secondly y′, y′′ and y′′′ are approximated in terms of the already

computed solution y(0) = {yi|i = 1, . . . , N} by finite difference schemes. Since

the yi are only O(h2) accurate, it makes no sense to approximate the deriva-

tives with finite difference schemes that are more accurate (than that). Using

these values µj (let us denote these as µ(1)) in the EF method with P = 1,

we then obtain an improved solution y(1), which is however far from accurate

up to machine precision, as is shown in Figure 9. However, we can use this

improved solution y(1) (which as we already know from the previous example

is O(h4) accurate) to obtain more accurate values for µj (let’s denote these as

µ(2)). In fact now we can approximate the derivatives by EF O(h4) difference
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Fig. 9. The absolute error in y(0), y(1) and y(2) together with the computed values
of µ(1) and µ(2) obtained by applying methods with M = 6 to Problem 2 with
h = 1/16.
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Fig. 10. The maximum absolute error in y(0), y(1) and y(2) obtained by applying
methods with M = 6 to Problem 2 with h = 1/4, h = 1/8 and h = 1/16.

schemes of the type P = 1. One notices that the µ(2) thus computed are quite

accurate, leading to a solution y(2) which is again more accurate then y(1).

One may try to proceed in this way to obtain a solution y(3), but experiments

show that this is only possible if µ(3) is computed by more advanced difference

formulae.

In Figure 10 we show the accuracy of y(0), y(1) and y(2) thus obtained for

h = 1/4, h = 1/8 and h = 1/16. Again we notice that y(0) confirms the

classical method has order 2, whereas y(1) and y(2) indicate that the error for

the EF method has increased to 4.

6 Conclusions

Fourth-order boundary value problems are solved by means of parameter-

ized EF methods. The methods used are determined by imposing conditions
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(related to combinations of polynomials, exponentials and/or trigonometric

functions) onto a linear functional. The trigonometric/exponential part con-

tains a parameter for which a suitable value can be found from the roots of

the leading term of the local truncation error. If, for some level of tuning, a

constant value is found for this parameter, then in principle a very accurate

solution can be obtained. However, the methods strongly suffer from the fact

that the system to be solved is ill-conditioned for small values of the mesh

size. Therefore the methods should only be applied for moderate step sizes.
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