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Abstract

The construction of symmetric and symplectic exponentially-fitted Runge-Kutta methods for the

numerical integration of Hamiltonian systems with oscillatory solutions is reconsidered. In previ-

ous papers fourth-order and sixth-order symplectic exponentially-fitted integrators of Gauss type,

either with fixed or variable nodes, have been derived. In this paper new fourth-order integrators

are constructed by making use of the six-step procedure of Ixaru and Vanden Berghe (Exponential

fitting, Kluwer Academic Publishers, 2004). Numerical experiments for some oscillatory problems are

presented and compared to the results obtained by previous methods.
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1 Introduction

The construction of Runge-Kutta (RK) methods for the numerical solution of ODEs, which have periodic

or oscillating solutions has been considered extensively in the literature [1]-[12]. In this approach the

available information on the solutions is used in order to derive more accurate and/or efficient algorithms

than the general purpose algorithms for such type of problems. In [13] a particular six-step flow chart is

proposed by which specific exponentially-fitted algorithms can be constructed. Up to now this procedure

has not yet been applied in all its aspects for the construction of symplectic RK methods of Gauss type.

In principle the derivation of exponentially-fitted (EF) RK methods consists in selecting the coefficients

of the method such that it integrates exactly all functions of a particular given linear space, i.e. the set

of functions

{1, t, . . . , tK , exp(±λt), t exp(±λt), . . . , tP exp(±λt)} , (1)

where λ ∈ C is a prescribed frequency. In particular when λ = iω, ω ∈ R the couple exp(±λt) is replaced

by sin(ωt), cos(ωt). In all previous papers other set of functions have been introduced.

On the other hand, oscillatory problems arise in different fields of applied sciences such as celestial

mechanics, astrophysics, chemistry, molecular dynamics and in many cases the modelling gives rise to

Hamiltonian systems. It has been widely recognized by several authors [8, 12],[14]-[16] that symplectic

integrators have some advantages for the preservation of qualitative properties of the flow over the stan-

dard integrators when they are applied to Hamiltonian systems. In this sense it may be appropriate to

consider symplectic EFRK methods that preserve the structure of the original flow. In [12] the well-known
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theory of symplectic RK methods is extended to modified (i.e. by introducing additional parameters)

EFRK methods, where the set of functions {exp(±λt)} has been introduced, giving sufficient conditions

on the coefficients of the method so that symplecticness for general Hamiltonian systems is preserved.

Van de Vyver [12] was able to derive a two-stage fourth-order symplectic modified EFRK method of

Gauss type with constant knot-points. Calvo et al. [2]-[4] have studied two-stage as well as three-stage

methods. In their applications for fourth-order methods they consider pure EFRK methods. Their set of

functions is the trigonometric polynomial one consisting essentially of the functions exp(±λt) combined

with exp(±2λt).They constructed fourth-order (two-stage case) methods of Gauss type with frequency

dependent knot points. On the other hand Vanden Berghe et al. have constructed a two-stage EFRK

method of fourth-order integrating the set of functions (1) with (K = 2, P = 0) and (K = 0, P = 1), but

unfortunately these methods are not symplectic. In addition it has been pointed out in [14] that sym-

metric methods show a better long time behaviour than non-symmetric ones when applied to reversible

differential systems.

In this paper we investigate the construction of two-stage (fourth-order) symmetric and symplectic mod-

ified EFRK methods which integrate exactly first-order differential systems whose solutions can be ex-

pressed as linear combinations of functions present in the set (1), but also give a review of previous work

[2, 12]. Our purpose consists in deriving accurate and efficient modified EF geometric integrators based

on the combination of the EF approach, followed from the sixth step flow chart [13], and symmetry and

symplecticness conditions. The paper is organized as follows. In Section 2 we present the notations

and definitions used in the rest of the paper. In Section 3 we present the previously derived methods

of order four. In Section 4 we derive a class of new two-stage symplectic modified EFRK integrators

with frequency dependent nodes and based upon some properties of symplectic and symmetric methods

also described in [4]. In Section 5 we present some numerical experiments for fourth-order methods with

oscillatory Hamiltonian systems and we compare them with the results obtained by other symplectic

(EF)RK Gauss integrators given in [2, 12, 14].

2 Notations and definitions

We consider initial value problems for first-order differential systems

y′(t) = f(t, y(t)), y(t0) = y0 ∈ R
m . (2)

In case of Hamiltonian systems m = 2d and there exits a scalar Hamiltonian function H = H(t, y), so

that f(y) = −J∇yH(t, y), where J is the 2d-dimensional skew symmetric matrix

J =

(

0d Id

−Id 0d

)

, J−1 = −J

and where ∇yH(t, y) is the column vector of the derivatives of H(t, y) with respect to the components

of y = (y1, y2, . . . , y2d)
T . The Hamiltonian system can then be written as

y′(t) = −J∇yH(t, y(t)), y(t0) = y0 ∈ R
2d . (3)

For each fixed t0 the flow map of (2) will be denoted by φh : R
m → R

m so that φh(y0) = y(t0 + h; t0, y0).

In particular, in the case of Hamiltonian systems, φh is a symplectic map for all h in its domain of

definition, i.e. the Jacobian matrix of φh(y0) satisfies

φ′h(y0)Jφ
′
h(y0)

T = J .
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A desirable property of a numerical method ψh for the numerical integration of a Hamiltonian system

is to preserve qualitative properties of the original flow φh such as the symplecticness, in addition to

provide an accurate approximation of the exact φh.

Definition 2.1

A numerical method defined by the flow map ψh is called symplectic if for all Hamiltonian systems (3) it

satisfies the condition

ψ′
h(y0)Jψ

′
h(y0)

T = J . (4)

One of the well-known examples of symplectic numerical methods is the s-stage RK Gauss methods which

possess order 2s. In this paper we shall deal with so-called (modified) implicit RK-methods, introduced for

the first time to obtain explicit EFRK methods [9] and re-used by Van de Vyver [12] for the construction

of two-stage symplectic RK methods.

Definition 2.2

A s-stage modified RK method for solving the initial value problems (1) is a one step method defined by

y1 = ψh(y0) = y0 + h
s
∑

i=1

bif(t0 + cih, Yi) , (5)

Yi = γiy0 + h

s
∑

j=1

aijf(t0 + cjh, Yj), i = 1, . . . , s , (6)

where the real parameters ci and bi are respectively the nodes and the weights of the method. The

parameters γi make the method modified with repect to the classical RK method, where γi = 1, i =

1, . . . , s. The s-stage modified RK-method (5)-(6) can also be represented by means of its Butcher’s

tableau
c1 γ1 a11 . . . a1s

c2 γ2 a21 . . . a2s

... . . .
...

. . .
...

cs γs as1 . . . ass

b1 . . . bs

(7)

or equivalently by the quartet (c, γ,A, b).

The conditions for a modified RK method to be symplectic have been obtained by Van de Vyver [12] and

they are given in the following theorem.

Definition 2.3

A modified RK-method (5)-(6) for solving the Hamiltonian system (3) is symplectic if the following

conditions are satisfied

mij ≡ bibj −
bi
γi
aij −

bj
γj
aji = 0, 1 ≤ i, j ≤ s . (8)

In [2] it is shown that a modified RK-method not only preserves the linear invariants but also quadratic

invariants if its coefficients satisfy conditions (8).

3 A review of previously constructed two-stage methods

In all applications we shall write down the results in terms of exponential or hyperbolic functions in order

to make it easy for the reader to compare the formulae with previously published material.
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3.1 The method of Van de Vyver [12]

Van de Vyver considers the modified RK method (7) with s = 2 and associates with the internal stages

the following linear operators:

Li[h,a]y(t) = y(t+ cih) − γiy(t) − h

2
∑

j=1

aijy
′(t+ cjh), i = 1, 2 , (9)

and with the final stage the linear operator

L[h,b]y(t) = y(t+ h) − y(t) − h

2
∑

i=1

biy
′(t+ cih) (10)

Requiring that the operators vanish for the functions exp(±λt) with fixed nodes ci, i = 1, 2 gives respec-

tively rise to the following equations for the internal (i = 1, 2) and final stages

cosh(ciz) − γi − z(ai1 sinh(c1z) + ai2 sinh(c2z)) = 0

(11)

sinh(ciz) − z(ai1 cosh(c1z) + ai2 cosh(c2z)) = 0

with z = λh and

cosh(z) − 1 − z(b1 sinh(c1z) + b2 sinh(c2z)) = 0

(12)

sinh(z) − z(b1 cosh(c1z) + b2 cosh(c2z)) = 0

The equations (11) and (12) together with the symplecticity conditions

b1
a11

γ1

+ b1
a11

γ1

− b1b1 = 0, b1
a12

γ1

+ b2
a21

γ2

− b2b1 = 0

b2
a22

γ2

+ b2
a22

γ2

− b2b2 = 0

form a consistent non-linear system for the unknowns aij , bi and γi. In order to obtain a fourth-order

method the Gauss nodes are chosen, i.e. c1,2 = 1

2
±

√
3

6
. The following solution was obtained:

a11 =
(exp(z) − 1)(1 + E2)

z(exp(z) + 1)(1 +E)2
, a12 =

2(exp(z) − E2)

z(exp(z) + 1)(1 + E)2
,

a21 =
2(−1 + exp(z)E2)

z(exp(z) + 1)(1 +E)2
, a22 = a11, (13)

γ1 =
2 exp(z/2)(1 + E + E2 + E3)√

E(1 + E)2(exp(z) + 1)
, γ2 = γ1,

b1 =
exp(z) − 1

z exp(c1z)(1 + E)
, b2 = b1,

with E = exp(z
√

3/3)
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The series expansions for these coefficients for small values of z are given by:

b1 =
1

2
+

1

8640
z4 − 1

272160
z6 +

13

104509440
z8 − 163

38799129600
z10 + . . .

γ1 = 1 − 1

288
z4 +

1

2160
z6 − 881

17418240
z8 +

617

117573120
z10 + . . .

a11 =
1

4
− 7

8640
z4 +

31

272160
z6 − 167

13063680
z8 +

1861

1385683200
z10 + . . .

a12 = −
√

3

6
+

1

4
+

√
3

216
z2 − (

√
3

6480
+

7

8640
)z4 + (

17
√

3

3265920
+

31

272160
)z6 −

(
31
√

3

176359680
+

167

13063680
)z8 + (

691
√

3

116397388800
+

1861

1385683200
)z10 + . . .

a21 =

√
3

6
+

1

4
−

√
3

216
z2 + (

√
3

6480
− 7

8640
)z4 + (− 17

√
3

3265920
+

31

272160
)z6

+(
31
√

3

176359680
− 167

13063680
)z8 + (− 691

√
3

116397388800
+

1861

1385683200
)z10 + . . .

Let us remark that these series are slowly converging and up to terms z22 have to be taken into account to

reach an acceptable accuracy. It is also clear that in the limit z → 0 the well-known classical fourth-order

Gauss method is reproduced (see also (21)).

3.2 The method of Calvo et al. [2]

The method of Calvo et al. starts by considering two-stage methods with variable symmetric nodes

c1,2 = 1

2
± θ(h, λ) such that all linear functionals(9) and (10) are exact for the set {1, exp(±λt)}. The

requirement Li[h,a]1 = 0, i = 1, 2 implies that γi = 1, i = 1, 2, meaning that classical RK are considered.

The conditions L[h,b] exp(±λt) = 0 and Li[h,a] exp(±λt) = 0, i = 1, 2 results in a unique solution for

the bi’s and aij ’s, i.e.

b1 = b2 =
sinh(z/2)

z cosh(zθ)

a11 = −cosh(2zθ) − cosh(z(θ + 1/2))

z sinh(2zθ)
, a12 = −−1 + cosh(z(θ − 1/2))

z sinh(2zθ)
(14)

a21 =
−1 + cos(z(θ + 1/2))

z sinh(2zθ)
, a22 =

cosh(2zθ) − cosh(z(θ − 1/2))

z sinh(2zθ)

The symplecticness conditions (8) become here

m11 = b1(2a11 − b1) = 0

m22 = b1(2a22 − b1) = 0 (15)

m12 = m21 = b1(b1 − a12 − a21) = 0

The last condition of (15) is automatically satisfied in view of (14). The conditions m11 and m22 hold iff

θ =
1

z
arccosh





cosh(z/2) +
√

8 + cosh2(z/2)

4



 . (16)

Further (14) and (16) imply that L[h,b] exp(±2λt) = 0 automatically and therefore the final state is

exact for the basis {1, exp(±λt), exp(±2λt)} or when λ = iω for the trigonometric polynomial basis

{1, sin(ωt), cos(ωt), sin(2ωt), cos(2ωt)}.
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Also here it is worthwhile to give the series expansions:

b1 =
1

2
− 1

2160
z4 +

1

108864
z6 +

1

2799360
z8 − 23

1939956480
z10 + . . .

a11 =
1

4
− 7

8640
z4 +

31

272160
z6 − 167

13063680
z8 +

1861

1385683200
z10 + . . .

a12 = (−
√

3

6
+

1

4
) +

√
3

432
z2 + (− 1

4320
+

13
√

3

311040
)z4 + (− 37

√
3

17418240
+

1

217728
)z6 +

(− 1121
√

3

45148078080
+

1

5598720
)z8 + (

355363
√

3

178786389196800
− 23

3879912960
)z10 + . . .

a21 = (

√
3

6
+

1

4
) −

√
3

432
z2 − (

1

4320
+

13
√

3

311040
)z4 + (

37
√

3

17418240
+

1

217728
)z6 +

(
1121

√
3

45148078080
+

1

5598720
)z8 − (

355363
√

3

178786389196800
+

23

3879912960
)z10 + . . .

a22 =
1

4
− 1

4320
z4 +

1

217728
z6 +

1

5598720
z8 − 23

3879912960
z10 + . . .

θ =

√
3

6
+

√
3

432
z2 −

√
3

311040
z4 − 17

√
3

17418240
z6 − 61

√
3

15049359360
z8 +

15073
√

3

16253308108800
z10 + . . .

Let us remark here that these series are also slowly converging and up to terms z22 have to be taken into

account to reach an acceptable accuracy.

4 New two-stage methods

It has been remarked by Hairer et al. [14] that symmetric numerical methods show a better long time

behaviour than nonsymmetric ones when applied to reversible differential equations, as it is the case of

conservative mechanical systems. In [3] it is observed that for modified RK methods whose coefficients

are even functions of h the symmetry conditions are given by

c(h) + Sc(h) = e, b(h) = Sb(h), γ(h) = Sγ(h), SA(h) +A(h)S = γ(h)bT (h) , (17)

where

e = (1, ..., 1)T ∈ R
s and S = (sij) ∈ R

s×s with sij =

{

1, if i+ j = s+ 1,

0, if i+ j 6= s+ 1.

Since for symmetric EFRK methods the coefficients contain only even powers of h, the symmetry condi-

tions can be written in a more convenient form by putting [3]

c(h) =
1

2
e+ θ(h), A(h) =

1

2
γ(h)bT (h) + Λ(h) , (18)

where

d(h) = (θ1, . . . , θs)
T ∈ R

s and Λ = (λij) ∈ R
s×s .

Therefore, for a symmetric EFRK method whose coefficients aij are defined by

aij =
1

2
γibj + λij , 1 ≤ i, j ≤ s

the symplecticness conditions (8) reduce to

µij ≡ bi
γi
λij +

bj
γj
λji = 0, 1 ≤ i, j,≤ s . (19)

The idea of constructing symplectic EFRK taking into account the six-step procedure [13] is new. We

briefly shall survey this procedure and suggest some adaptation in order to make the comparison with

previous work more easy.
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In step (i) we define the appropriate form of an operator related to the discussed problem. Each of

the s internal stages (6) and the final stage (5) can be regarded as being a generalized linear multistep

method on a nonequidistant grid; we can associated with each of them a linear operator (see (9) and

(10)). We further construct the so-called moments which are for Gauss methods the expressions for

Li,j(h,a) = Li[h,a]tj , j = 0, . . . , s − 1 and Li(h,b) = L[h,b]tj , j = 0, . . . , 2s − 1 at t = 0, respectively,

with s = 2.

In step (ii) the linear systems

Lij(h,a) = 0, i = 1, . . . , s, j = 0, 1, . . . , s− 1 ,

Li(h,b) = 0, i = 0, 1, . . . , 2s− 1 .

are solved to reproduce the classical Gauss RK collocation methods, showing the maximum number of

functions which can be annihilated by each of the operators.

The steps (iii) and (iv) can be combined in the present context. First of all we have to define all reference

sets of s and 2s functions which are appropriate for the internal and final stages respectively. These sets

are in general hybrid sets of the following form

1, t, t2, . . . , tK or tK
′

exp(±λt), t exp(±λt), . . . , tP exp(±λt) or tP
′

exp(±λt)

where for the internal stages K + 2P = s − 3 and for the final stage K ′ + 2P ′ = 2s − 3. The set in

which there is no classical component is identified by K = −1 and K ′ = −1, while the set in which there

is no exponential fitting component is identified by P = −1 or P ′ = −1. It is important to note that

such reference sets should contain all successive functions inbetween. Lacunary sets are in principle not

allowed.

Once the sets chosen the operators (9)-(10) are applied to the members of the sets, in this particular case

by taking into account the symmetry and the symplecticness conditions described above. The obtained

independent expressions are put to zero and in step (v) the available linear systems are solved. The

numerical values for λij(h), bi(h), γi(h) and θi(h) are expressed for real values of λ (the pure exponential

case) or for pure imaginary λ = i ω (oscillatory case). In order to make the comparison with previous

work transparable we have opted to denote the results for real λ-values.

After the coefficients in the Butcher tableau have been filled in, the principal term of the local truncation

error can be written down (step (vi)). Essentially, we know [11] that the algebraic order of the EFRK

methods remains the same as the one of the classical Gauss method when this six-step procedure is

followed, in other words the algebraic order is O(h2s), while the stage order is O(hs). Explicit expressions

for this local truncation error will not be discussed here.

Here we shall analyze in particular the construction of symmetric and symplectic EFRK Gauss methods

with s = 2 stages whose coefficients are even functions of h. These EFRK methods have stage order 2

and algebraic order 4. From the symmetry conditions (17), taking into account (18) it follows that the

nodes cj = cj(h
2) and weights bj = bj(h

2) satisfy

c1 =
1

2
− θ, c2 =

1

2
+ θ, b1 = b2 ,

θ being a real parameter, and the coefficients aij = aij(h
2) and γi(h

2) satisfy:

a11 + a22 = γ1b1, a21 + a12 = γ2b1 .

The symplecticness conditions (8) or (19) are equivalent to

a11 = γ1b1/2,
a12

γ1

+
a21

γ2

= b1, a22 = γ2b2/2 ,
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which results in

γ1 = γ2, λ21 = −λ12 .

Taking into account the above relations the Butcher tableau can be expressed in terms of the unknowns

θ, γ1, λ12 and b1 :

1

2
− θ γ1

γ1b1
2

γ1b1
2

+ λ12

1

2
+ θ γ1

γ1b1
2

− λ12

γ1b1
2

b1 b1

(20)

For the internal stages, the relation K + 2P = −1 results in the respective (K,P )-values:

• (K = 1, P = −1) (the classical polynomial case with hybrid set {1, t}), and

• (K = −1, P = 0) (the full exponential case with hybrid set {exp(λt), exp(−λt)}).

For the outer stage, we have K ′ + 2P ′ = 1, resulting in the respective (K ′, P ′)-values:

• (K ′ = 3, P ′ = −1) (the classical polynomial case with hybrid set {1, t, t2, t3}),

• (K ′ = 1, P ′ = 0) (mixed case with hybrid set {1, t, exp(±λt)}) and

• (K ′ = −1, P ′ = 1)( the full exponential case with hybrid set {exp(±λt), t exp(±λt)}).

The hybrid sets (K = 1, P = −1) and (K ′ = 3, P ′ = −1) are related to the polynomial case, giving rise

to the well-known RK order conditions and to the fourth order Gauss method [17]

1

2
−

√
3

6
1 1

4

1

4
−

√
3

6

1

2
+

√
3

6
1 1

4
+

√
3

6

1

4

1

2

1

2

(21)

Let us remark that considering the (K = 1, P = −1) set for the internal stages gives rise to γ1 = 1,

a value which is not compatible with the additional symmetry, symplecticity and order conditions im-

posed. Therefore in what follows we combine the (K = −1, P = 0) case with either (K ′ = 1, P ′ = 0) or

(K ′ = −1, P ′ = 1).

Case (K ′ = 1, P ′ = 0)

The operators (9) and (10) are applied to the functions present in the occurring hybrid sets, taking into

account the structure of the Butcher tableau (20). Following equations arise with z = λh:

2b1 = 1 (22)

2b1 cosh(z/2) cosh(θz) =
sinh(z)

z
(23)

λ12 cosh(θz) = − sinh(θz)

z
(24)

λ12 sinh(θz) − cosh(θz)

z
= −γ1

z
cosh(z/2) (25)

resulting in the results

b1 = 1/2, θ =

arccosh

(

2 sinh(z/2)

z

)

z
, λ12 = − sinh(θz)

z cosh(θz)

γ1 =

(

sinh(θz)2

z cosh(θz)
+

cosh(θz)

z

)

z

cosh(z/2)
.
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The series expansions for these coefficients for small values of z are given by

θ =
√

3

(

1

6
+

1

2160
z2 − 1

403200
z4 +

1

145152000
z6 +

533

9656672256000
z8 − 2599

2789705318400000
z10 + . . .

)

,

λ12 =
√

3

(

−1

6
+

1

240
z2 − 137

1209600
z4 +

143

48384000
z6 − 81029

1072963584000
z8 +

16036667

8369115955200000
z10 + . . .

)

,

γ1 = 1 − 1

360
z4 +

11

30240
z6 − 71

1814400
z8 +

241

59875200
z10 + . . . ,

showing that for z → 0 the classical values are retrieved.

Case (K ′ = −1, P ′ = 1)

In this approach equations (23)-(25) remain unchanged and they deliver expressions for b1, γ1 and λ12 in

terms of θ. Only (22) is replaced by

b1(cosh(θz) (2 cosh(z/2) + z sinh(z/2)) + 2θz cosh(z/2) sinh(θz)) = cosh(z) (26)

By combining (23) and (26) one obtains an equation in θ and z, i.e.:

θ sinh(z) sinh(θz) = cosh(θz)

(

cosh(z) − sinh(z)

z
− sinh2(z/2)

)

It is not anymore possible to write down an analytical solution for θ, but iteratively a series expansion

can be derived. We give here those series expansions as obtained for the four unknowns

θ =
√

3

(

1

6
+

1

1080
z2 +

13

2721600
z4 − 1

7776000
z6 − 1481

1810626048000
z8 +

573509

63552974284800000
z10 + . . .

)

,

b1 =
1

2
− 1

8640
z4 +

1

1088640
z6 +

1

44789760
z8 − 149

775982592000
z10 + . . .

λ12 =
√

3

(

−1

6
+

1

270
z2 − 223

2721600
z4 +

17

9072000
z6 − 259513

5431878144000
z8 +

9791387

7944121785600000
z10 + . . .

)

,

γ1 = 1 − 1

480
z4 +

17

60480
z6 − 2629

87091200
z8 +

133603

43110144000
z10 + . . . .

5 Numerical experiments

In this section we report on some numerical experiments where we test the effectiveness of the new and

the previous [2, 12] (modified) Runge-Kutta methods when they are applied to the numerical solution

of several differential systems. All the considered codes have the same qualitative properties for the

Hamiltonian systems. In the figures we show the decimal logarithm of the maximum global error versus

the number of steps required by each code in logarithmic scale. All computations were carried out in

double precision and series expansions are used for the coefficients when |z| < 0.1.

Problem 1: Kepler’s plane problem defined by the Hamiltonian function

H(p, q) =
1

2
(p2

1
+ p2

2
) − (q2

1
+ q2

2
)−1/2 ,

with the initial conditions q1(0) = 1−e, q2(0) = 0, p1(0) = 0, p2(0) = ((1+e)/(1−e)) 1

2 , where e, (0 ≤ e < 1)

represents the eccentricity of the elliptic orbit. The exact solution of this IVP is a 2π-periodic elliptic

orbit in the (q1, q2)-plane with semimajor axis 1, corresponding the starting point to the pericenter of

this orbit. In the numerical experiments presented here we have chosen the same values as in [4], i.e.

e = 0.001, λ = iω with ω = (q2
1
+q2

2
)−

3

2 and the integration is carried out on the interval [0, 1000] with the

steps h = 1/2m,m = 1, . . . , 4. The numerical behaviour of the global error in the solution is presented in

9



figure 1. The results obtained by the four discussed methods (Calvo et al. (Calvo), Van de Vyver (Vyver),

the new methods with P = 0 and P = 1) and the classical Gauss method (class.) are represented. The

results for the four EFRK methods are approximately falling together. They are however more accurate

than the results of the classical Gauss method of the same order.
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Figure 1: Maximum global error in the solution of Problem 1.

Problem 2 A perturbed Kepler’s problem defined by the Hamiltonian function

H(p, q) =
1

2
(p2

1
+ p2

2
) − 1

(q2
1

+ q2
2
)1/2

− 2ǫ+ ǫ2

3(q2
1

+ q2
2
)3/2

,

with the initial conditions q1(0) = 1, q2(0) = 0, p1(0) = 0, p2(0) = 1 + ǫ , where ǫ is a small positive

parameter. The exact solution of this IVP is given by

q1(t) = cos(t+ ǫt), q2(t) = sin(t+ ǫt), pi(t) = q′i(t), i = 1, 2 .

As in [4] the numerical results are computed with the integration steps h = 1/2m,m = 1, . . . , 4. We take

the parameter ǫ = 10−3, λ = iω with ω = 1 and the problem is integrated up to tend = 1000.. The global

error in the solution is presented in figure 2. The methods of Van de Vyver with the constant nodes gives

the most accurate values. Our two new symmetric methods are more accurate that the one of Calvo et

al. All EFRK methods are more accurate than the classical Gauss method.

Problem 3 Euler’s equations that describe the motion of a rigid body under no forces

q̇ = f(q) = ((α− β)q2q3, (1 − α)q3q1, (β − 1)q1q2)
T ,

with the initial values q(0) = (0, 1, 1)T , and the parameter values α = 1 +
1√
1.51

and β = 1 − 0.51√
1.51

.

The exact solution of this IVP is given by

q(t) =
(√

1.51 sn(t, 0.51), cn(t, 0.51),dn(t, 0.51)
)T

,
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Figure 2: Maximum global error in the solution of Problem 2.

it is periodic with period T = 7.45056320933095, and sn, cn,dn stand for the elliptic Jacobi functions.

Figure 3 shows the numerical results obtained for the global error computed with the interation steps

h = 1/2m,m = 1, . . . , 4, on the interval [0, 1000], and respective λ-values λ = i2π/T (left) and λ = i/2

(right). In this problem the choice of the frequency is not so obvious and therefore the differentiation

between the classical and the EF methods is not so pronounced. For λ = i2π/T only the results of Calvo

et al. are more accurate that the classical Gauss results. For λ = i/2 all EFRK results are falling together

and are slightly more accurate than the classical results.

6 Conclusions

In this paper another approach for constructing symmetric symplectic modified EFRK methods based

upon the sixth-step procedure of [13] is presented. Two-stage fourth-order integrators of Gauss type

which are symmetric and symplectic and which preserve linear and quadratic invariants have been derived.

When the frequency used in the exponential fitting process is put to zero all considered integrators reduce

to the classical Gauss integrator of the same order. Some numerical experiments show the utility of these

new integrators for some oscillatory problems. The results obtained here are quite similar to the ones

obtained in [2] and [12], but they differ in some of the details. The introduced method can be extended

to EFRK with larger algebraic order.
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