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Abstract

The construction of symmetric and symplectic exponentially-fitted Runge-Kutta meth-
ods for the numerical integration of Hamiltonian systems with oscillatory solutions is
reconsidered. In previous papers fourth-order and sixth-order symplectic exponentially-
fitted integrators of Gauss type, either with fixed or variable nodes, have been derived. In
this paper new such integrators are constructed by making use of the six-step procedure
of Ixaru and Vanden Berghe (Exponential fitting, Kluwer Academic Publishers, 2004).
Numerical experiments for some oscillatory problems are presented and compared to the
results obtained by previous methods.
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1 Introduction

The construction of Runge-Kutta (RK) methods for the numerical solution of ODEs, which
have periodic or oscillating solutions has been considered extensively in the literature [1]-[12].
In this approach the available information on the solutions is used in order to derive more
accurate and/or efficient algorithms than the general purpose algorithms for such type of
problems. In [13] a particular six-step flow chart is proposed by which specific exponentially-
fitted algorithms can be constructed. Up to now this procedure has not yet been applied in
all its aspects for the construction of symplectic RK methods of Gauss type.
In principle the derivation of exponentially-fitted (EF) RK methods consists in selecting the
coefficients of the method such that it integrates exactly all functions of a particular given
linear space, i.e. the set of functions

{1, t, . . . , tK , exp(±λt), t exp(±λt), . . . , tP exp(±λt)} , (1)

where λ ∈ C is a prescribed frequency. In particular when λ = iω, ω ∈ R the couple
exp(±λt) is replaced by sin(ωt), cos(ωt). In all previous papers other set of functions have
been introduced.
On the other hand, oscillatory problems arise in different fields of applied sciences such
as celestial mechanics, astrophysics, chemistry, molecular dynamics and in many cases the
modelling gives rise to Hamiltonian systems. It has been widely recognized by several authors
[8, 12],[14]-[16] that symplectic integrators have some advantages for the preservation of
qualitative properties of the flow over the standard integrators when they are applied to
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Hamiltonian systems. In this sense it may be appropriate to consider symplectic EFRK
methods that preserve the structure of the original flow. In [12] the well-known theory of
symplectic RK methods is extended to modified (i.e. by introducing additional parameters)
EFRK methods, where the set of functions {exp(±λt)} has been introduced, giving sufficient
conditions on the coefficients of the method so that symplecticness for general Hamiltonian
systems is preserved. Van de Vyver [12] was able to derive a two-stage fourth-order symplectic
modified EFRK method of Gauss type. Calvo et al. [2]-[4] have studied two-stage as well
as three-stage methods. In their applications they consider pure EFRK methods as well
as modified EFRK methods. Their set of functions is the trigonometric polynomial one
consisting essentially of the functions exp(±λt) combined with exp(±2λt) and sometimes
exp(±3λt) or a kind of mixed set type where exp(±λt) is combined with 1, t and t2. In all cases
they constructed fourth-order (two-stage case) and sixth-order (three-stage case) methods of
Gauss type with fixed or frequency dependent knot points. On the other hand Vanden
Berghe et al. have constructed a two-stage EFRK method of fourth-order integrating the set
of functions (1) with (K = 2, P = 0) and (K = 0, P = 1), but unfortunately these methods
are not symplectic. In addition it has been pointed out in [14] that symmetric methods show
a better long time behaviour than non-symmetric ones when applied to reversible differential
systems.
In this paper we investigate the construction of two-stage (fourth-order) and three-stage
(sixth-order) symmetric and symplectic modified EFRK methods which integrate exactly
first-order differential systems whose solutions can be expressed as linear combinations of
functions present in the set (1). Our purpose consists in deriving accurate and efficient mod-
ified EF geometric integrators based on the combination of the EF approach, followed from
the six-step flow chart by Ixaru and Vanden Berghe[13], and symmetry and symplecticness
conditions. A sketch of this six-step flow is given in Section 2. The paper is organized as
follows. In Section 2 we present the notations and definitions used in the rest of the paper
as well as some properties of symplectic and symmetric methods also described in [4]. In
Section 3 we derive a class of new two-stage symplectic modified EFRK integrators with fre-
quency dependent nodes and in Section 4 we consider the analogous class of new three-stages
method. In Section 5 we present some numerical experiments for sixth-order methods with
oscillatory Hamiltonian systems and we compare them with the results obtained by other
symplectic (EF)RK Gauss integrators given in [4, 14].

2 Notations and definitions

We consider initial value problems for first-order differential systems

y′(t) = f(t, y(t)), y(t0) = y0 ∈ R
m . (2)

In case of Hamiltonian systems m = 2d and there exits a scalar Hamiltonian function H =
H(t, y), so that f(y) = −J∇yH(t, y), where J is the 2d-dimensional skew symmetric matrix

J =

(

0d Id
−Id 0d

)

, J−1 = −J ,

and where ∇yH(t, y) is the column vector of the derivatives of H(t, y) with respect to the
components of y = (y1, y2, . . . , y2d)

T . The Hamiltonian system can then be written as

y′(t) = −J∇yH(t, y(t)), y(t0) = y0 ∈ R
2d . (3)
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For each fixed t0 the flow map of (2) will be denoted by φh : Rm → R
m so that φh(y0) =

y(t0+h; t0, y0). In particular, in the case of Hamiltonian systems, φh is a symplectic map for
all h in its domain of definition, i.e. the Jacobian matrix of φh(y0) satisfies

φ′h(y0)Jφ
′
h(y0)

T = J .

A desirable property of a numerical method ψh for the numerical integration of a Hamiltonian
system is to preserve qualitative properties of the original flow φh such as the symplecticness,
in addition to provide an accurate approximation of the exact φh.

Definition 2.1
A numerical method defined by the flow map ψh is called symplectic if for all Hamiltonian
systems (3) it satisfies the condition

ψ′
h(y0)Jψ

′
h(y0)

T = J . (4)

One of the well-known examples of symplectic numerical methods is the s-stage RK Gauss
methods which possess order 2s. In this paper we shall deal with so-called modified implicit
RK-methods, introduced for the first time to obtain explicit EFRK methods [9] and re-used
by Van de Vyver [12] for the construction of two-stage symplectic RK methods.

Definition 2.2
A s-stage modified RK method for solving the initial value problems (1) is a one step method
defined by

y1 = ψh(y0) = y0 + h
s

∑

i=1

bif(t0 + cih, Yi) , (5)

Yi = γiy0 + h
s

∑

i=1

aijf(t0 + cjh, Yj), i = 1, . . . , s , (6)

where the real parameters ci and bi are respectively the nodes and the weights of the method.
The parameters γi make the method modified with repect to the classical RK method, where
γi = 1, i = 1, . . . , s. The s-stage modified RK-method (5)-(6) can also be represented by
means of its Butcher’s tableau

c1 γ1 a11 . . . a1s
c2 γ2 a21 . . . a2s
... . . .

...
. . .

...
cs γs as1 . . . ass

b1 . . . bs

(7)

or equivalently by the quartet (c, γ, A, b).
The conditions for a modified RK method to be symplectic have been obtained by Van de
Vyver [12] and they are given in the following theorem.

Theorem 2.3
A modified RK-method (5)-(6) for solving the Hamiltonian system (3) is symplectic if the
following conditions are satisfied

mij ≡ bibj −
bi
γi
aij −

bj
γj
aji = 0, 1 ≤ i, j ≤ s . (8)
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In [2] it is shown that a modified RK-method not only preserves the linear invariants but also
quadratic invariants if its coefficients satisfy conditions (8).

Definition 2.4
The adjoint method ψ∗

h of a numerical method ψh is the inverse map of the original method
with reverse time step −h, i.e. ψ∗

h := ψ−1

−h. In other words, y1 = ψ∗
h(y0) is implicitly defined

by ψ−h(y1) = y0. A method for which ψ∗
h = ψh is called symmetric.

One of the properties of a symmetric method ψ∗
h = ψh is that its accuracy order is even.

For s-stage modified RK methods whose coefficients are h-dependent, as it is the case of EF
methods, it is easy to see that the coefficients of ψh and ψ∗

h are related by

c(h) = e−Sc∗(−h), b(h) = Sb∗(−h), γ(h) = Sγ∗(−h), A(h) = Sγ∗(−h)bT (h)−SA(−h)S,

where

e = (1, ..., 1)T ∈ R
s and S = (sij) ∈ R

s×s with sij =

{

1, if i+ j = s+ 1,
0, if i+ j 6= s+ 1.

It has been remarked by Hairer et al. [14] that symmetric numerical methods show a better
long time behaviour than nonsymmetric ones when applied to reversible differential equations,
as it is the case of conservative mechanical systems. In [3] it is observed that for modified
RK methods whose coefficients are even functions of h the symmetry conditions are given by

c(h) + Sc(h) = e, b(h) = Sb(h), γ(h) = Sγ(h), SA(h) +A(h)S = γ(h)bT (h) . (9)

Since for symmetric EFRK methods the coefficients contain only even powers of h, the sym-
metry conditions can be written in a more convenient form by putting [3]

c(h) =
1

2
e+ θ(h), A(h) =

1

2
γ(h)bT (h) + Λ(h) , (10)

d(h) = (θ1, . . . , θs)
T ∈ R

s and Λ = (λij) ∈ R
s×s .

Therefore, for a symmetric EFRK method whose coefficients aij are defined by

aij =
1

2
γibj + λij , 1 ≤ i, j ≤ s ,

the symplecticness condtions (8) reduce to

µij ≡
bi
γi
λij +

bj
γj
λji = 0, 1 ≤ i, j,≤ s . (11)

The idea of constructing symplectic EFRK taking into account the six-step procedure [13] is
new. We briefly shall survey this procedure and suggest some adaptation in order to make
the comparison with previous work more easy.
In step (i) we define the appropriate form of an operator related to the discussed problem.
Each of the s internal stages (6) and the final stage (5) can be regarded as being a generalized
linear multistep method on a non-uniform grid; we can associated with each of them a linear
functional , i.e.

Li[h,a]y(t) = y(t+ cih)− γiy(t)− h
s

∑

j=1

aijy
′(t+ cjh), i = 1, 2, . . . s . (12)
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and

L[h,b]y(t) = y(t+ h)− y(t)− h
s

∑

i=1

biy
′(t+ cih) . (13)

We further construct the so-called moments which are for Gauss methods the expressions for
Li,j(h,a) = Li[h,a]t

j , j = 0, . . . , s − 1 and Li(h,b) = L[h,b]tj , j = 0, . . . , 2s − 1 at t = 0,
respectively.
In step (ii) the linear systems

Lij(h,a) = 0, i = 1, . . . , s, j = 0, 1, . . . , s− 1 ,

Li(h,b) = 0, i = 0, 1, . . . , 2s− 1 .

are solved to reproduce the classical Gauss RK collocation methods, showing the maximum
number of functions which can be annihilated by each of the operators.
The steps (iii) and (iv) can be combined in the present context. First of all we have to define
all reference sets of s and 2s functions which are appropriate for the internal and final stages
respectively. These sets are in general hybrid sets of the following form

1, t, t2, . . . , tK or tK
′

exp(±λt), t exp(±λt), . . . , tP exp(±λt) or tP ′

exp(±λt) ,

where for the internal stages K+2P = s−3 and for the final stage K ′+2P ′ = 2s−3. The set
in which there is no classical component is identified by K = −1 and K ′ = −1, while the set
in which there is no exponential fitting component is identified by P = −1 or P ′ = −1. It is
important to note that such reference sets should contain all successive functions inbetween.
Lacunary sets are in principle not allowed.
Once the sets chosen the operators (12)-(13) are applied to the members of the sets, in
this particular case by taking into account the symmetry and the symplecticness conditions
described above. The obtained independent expressions are put to zero and in step (v) the
available linear systems are solved. Detailed examples of these technique follow in Sections
3 and 4. The numerical values for λij(h), bi(h), γi(h) and θi(h) are expressed for real values
of λ (the pure exponential case) or for pure imaginary λ = i ω (oscillatory case). In order to
make the comparison with previous work transparable we have opted to denote the results
for real λ-values.
After the coefficients in the Butcher tableau have been filled in, the principal term of the local
truncation error can be written down (step (vi)). Essentially, we know [11] that the algebraic
order of the EFRK methods remains the same as the one of the classical Gauss method when
this six-step procedure is followed, in other words the algebraic order is O(h2s), while the
stage order is O(hs). Explicit expressions for this local truncation error will not be discussed
here.

3 Two-stage methods

In this section we analyze the construction of symmetric and symplectic EFRK Gauss meth-
ods with s = 2 stages whose coefficients are even functions of h. These EFRK methods have
stage order 2 and algebraic order 4. From the symmetry conditions (9), taking into account
(10) it follows that the nodes cj = cj(h) and weights bj = bj(h) satisfy

c1 =
1

2
− θ, c2 =

1

2
+ θ, b1 = b2 ,

5



θ being a real parameter, and the coefficients aij = aij(h) and γi(h) satisfy:

a11 + a22 = γ1b1, a21 + a12 = γ2b1 .

The symplecticness conditions (8) or (11) are equivalent to

a11 = γ1b1/2,
a12
γ1

+
a21
γ2

= b1, a22 = γ2b2/2 ,

which results in
γ1 = γ2, λ21 = −λ12 .

Taking into account the above relations the Butcher tableau can be expressed in terms of the
unknowns θ, γ1, λ12 and b1 :

1

2
− θ γ1

γ1b1
2

γ1b1
2

+ λ12

1

2
+ θ γ1

γ1b1
2

− λ12
γ1b1
2

b1 b1

(14)

For the internal stages, the relation K + 2P = −1 results in the respective (K,P )-values:

• (K = 1, P = −1) (the classical polynomial case with set {1, t}), and

• (K = −1, P = 0) (the full exponential case with set {exp(λt), exp(−λt)}).

For the outer stage, we have K ′ + 2P ′ = 1, resulting in the respective (K ′, P ′)-values:

• (K ′ = 3, P ′ = −1) (the classical polynomial case with set {1, t, t2, t3}),

• (K ′ = 1, P ′ = 0) (mixed case with hybrid set {1, t, exp(±λt)) and

• (K ′ = −1, P ′ = 1)( the full exponential case with set {exp(±λt), t exp(±λt)}.

The hybrid sets (K = 1, P = −1) and (K ′ = 3, P ′ = −1) are related to the polynomial case,
giving rise to the well-known RK order conditions and to the fourth order Gauss method [17]

1

2
−

√
3

6
1 1

4

1

4
−

√
3

6

1

2
+

√
3

6
1 1

4
+

√
3

6

1

4

1

2

1

2

Let us remark that considering the (K = 1, P = −1) set for the internal stages gives rise
to γ1 = 1, a value which is not compatible with the additional symmetry, symplecticity and
order conditions imposed. Therefore in what follows we combine the (K = −1, P = 0) case
with either (K ′ = 1, P ′ = 0) or (K ′ = −1, P ′ = 1).

Case (K ′ = 1, P ′ = 0)

The operators (12) and (13) are applied to the functions present in the occurring hybrid sets,
taking into account the structure of the Butcher tableau (14). Following equations arise with
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z = λh:

2b1 = 1 , (15)

2b1 cosh(z/2) cosh(θz) =
sinh(z)

z
, (16)

λ12 cosh(θz) = −sinh(θz)

z
, (17)

λ12 sinh(θz)−
cosh(θz)

z
= −γ1

z
cosh(z/2) , (18)

resulting in

b1 = 1/2, θ =

arccosh

(

2 sinh(z/2)

z

)

z
, λ12 = − sinh(θz)

z cosh(θz)

γ1 =

(

sinh(θz)2

z cosh(θz)
+

cosh(θz)

z

)

z

cosh(z/2)
.

The series expansions for these coefficients for small values of z are given by

θ =
√
3(
1

6
+

1

2160
z2 − 1

403200
z4 +

1

145152000
z6 +

533

9656672256000
z8 − 2599

2789705318400000
z10 + . . .) ,

λ12 =
√
3(−1

6
+

1

240
z2 − 137

1209600
z4 +

143

48384000
z6 − 81029

1072963584000
z8 +

16036667

8369115955200000
z10 + . . .) ,

γ1 = 1− 1

360
z4 +

11

30240
z6 − 71

1814400
z8 +

241

59875200
z10 + . . . ,

showing that for z → 0 the classical values are retrieved.

Case (K ′ = −1, P ′ = 1)

In this approach equations (16)-(18) remain unchanged and they deliver expressions for b1, γ1
and λ12 in terms of θ. Only (15) is replaced by

b1(cosh(θz) (2 cosh(z/2) + z sinh(z/2)) + 2θz cosh(z/2) sinh(θz)) = cosh(z) (19)

By combining (16) and (19) one obtains an equation in θ and z, i.e.:

θ sinh(z) sinh(θz) = cosh(θz)

(

cosh(z)− sinh(z)

z
− sinh2(z/2)

)

.

It is not anymore possible to write down an analytical solution for θ, but iteratively a series
expansion can be derived. We give here those series expansions as obtained for the four
unknowns

θ =
√
3(
1

6
+

1

1080
z2 +

13

2721600
z4 − 1

7776000
z6 − 1481

1810626048000
z8 +

573509

63552974284800000
z10 + . . .) ,

b1 =
1

2
− 1

8640
z4 +

1

1088640
z6 +

1

44789760
z8 − 149

775982592000
z10 + . . .

λ12 =
√
3(−1

6
+

1

270
z2 − 223

2721600
z4 +

17

9072000
z6 − 259513

5431878144000
z8 +

9791387

7944121785600000
z10 + . . .) ,

γ1 = 1− 1

480
z4 +

17

60480
z6 − 2629

87091200
z8 +

133603

43110144000
z10 + . . . .
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4 Three-stage methods

The Gauss methods with s = 3 stages have been analyzed in detail by Calvo et al. [3, 4].
We just shall report here the final results they have obtained by taking into account the
symmetry and symplecticity conditions:

c1 =
1

2
− θ, c2 =

1

2
, c3 =

1

2
+ θ, b3 = b1, γ3 = γ1

Λ =





0 −α2 −α3

−α4 0 α4

α3 α2 0





and
b1
γ1
α2 +

b2
γ2
α4 = 0 . (20)

The three-stage modified RK-methods are given by the following tableau in terms of the
unknowns θ, γ1, γ2, α2, α3, α4, b1 and b2:

1

2
− θ γ1

γ1b1
2

γ1b2
2

− α2

γ1b1
2

− α3

1

2
γ2

γ2b1
2

− α4

γ2b2
2

γ2b1
2

+ α4

1

2
+ θ γ1

γ1b1
2

+ α3

γ1b2
2

+ α2

γ1b1
2

b1 b2 b1

For the internal stages the relation K + 2P = 0 results in the respective (K,P )-values:

• (K = 2, P = −1) (the classical polynomial case with set {1, t, t2}) and

• (K = 0, P = 0) ( with hybrid set {1, exp(±λt)}).

For the final state we have K ′ + 2P ′ = 3, resulting in the respective (K ′, P ′)-values:

• (K ′ = 5, P ′ = −1)(the classical polynomial case with set {1, t, t2, t3, t4, t5}),

• (K ′ = 3, P ′ = 0)(with hybrid set {1, t, t2, t3, exp(±λt)}),

• (K ′ = 1, P ′ = 1)(with hybrid set {1, t, exp(±λt), t exp(±λt)}),

• (K ′ = −1, P ′ = 2)( the full exponential case with set {exp(±λt), t exp(±λt), t2 exp(±λt)}).

The sets (K = 2, P = −1) and (K ′ = 5, P ′ = −1) related to the polynomial case gives rise
to the order conditions for the three-stage Gauss method of order six [17]

1

2
−

√
15

10
1 5

36

2

9
−

√
15

15

5

36
−

√
15

30

1

2
1 5

36
+

√
15

24

2

9

5

36
−

√
15

24

1

2
+

√
15

10
1 5

36
+

√
15

30

2

9
+

√
15

15

5

36

5

18

4

9

5

18

Following the ideas developed in this paper it should be obvious that we combine the (K =
0, P = 0) case with the three non-polynomial cases for the final stage. However keeping
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the 1 in the hybrid set for (K = 0, P = 0) delivers in γ1 = γ2 = 1, a result which is not
compatible with the symplecticity condition (20). Therefore we choose for the internal stages
the hybrid set {exp(±λt)}, omitting the constant 1; in other words we accept exceptionally
a lacunary set, what is principally not allowed by the six-step procedure [13]. Under these
conditions, and taking into account the symmetry conditions the αi, (i = 2, 3, 4) parameters
are the solutions in terms of θ, γ1 and γ2 of the following three equations [4]:

1− γ2 cosh(z/2)− 2zα4 sinh(θz) = 0 ,

cosh(θz)− γ1 cosh(z/2) + zα3 sinh(θz) = 0 , (21)

sinh(θz)− zα3 cosh(θz)− zα2 = 0 ,

thus giving::

α2 =
cosh(2θz)− γ1 cosh(z/2) cosh(θz)

z sinh(θz)
,

α3 =
γ1 cosh(z/2)− cosh(θz)

z sinh(θz)
, α4 =

1− γ2 cosh(z/2)

2z sinh(θz)
. (22)

For small values of z series expansions are introduced for these expressions (see also next
paragraphs). The solution for the other parameters depends essentially on the chosen values
of K ′ and P ′.

Case (K ′ = 3, P ′ = 0)

The operators (12) and (13) are applied to the functions present in the ocurrring hybrid set,
taking into account the symmetry conditions; we derive three independent equations in b1, b2
and θ, i.e.

2b1 + b2 = 1 , (23)

b1θ
2 =

1

24
, (24)

b2 + 2b1 cosh(θz) =
2 sinh(z/2)

z
, (25)

Taking into account (23) and (25) b1 and b2 can be expressed in terms of θ:

b1 =
z − 2 sinh(z/2)

2z(1− cosh(θz))
, b2 =

2 sinh(z/2)− z cosh(θz)

z(1− cosh(θz))
.

These expressions combined with (24) results in the following equation for θ:

θ2 − z(1− cosh(θz))

12(z − 2 sinh(z/2))
= 0 .

If now the symplecticness condition (20) is imposed, the parameter γ1 is determined by

γ1 =
γ2(2 sinh(z/2)− z) cosh(2θz)

2 sinh(z/2)− γ2 sinh(z) + (γ2 sinh(z)− z) cosh(θz)
.

The obtained parameters define a familiy of EFRK methods which are symmetric and sym-
plectic for all γ2 ∈ R. Following [4] we choose from now on γ2 = 1.
Now it is easy to give the series expansions for all the coefficients for small values of z:
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θ =
√
15(

1

10
+

1

21000
z2 − 131

1058400000
z4 +

13487

48898080000000
z6

− 1175117

3203802201600000000
z8 − 505147

915372057600000000000
z10 + . . .)

γ1 = 1− 3

70000
z6 +

13651

1176000000
z8 − 2452531

862400000000
z10 + . . .

b1 =
5

18
− 1

3780
z2 +

167

190512000
z4 − 23189

8801654400000
z6 +

7508803

1153368792576000000
z8

− 87474851

8073581548032000000000
z10 + . . .

b2 =
4

9
+

1

1890
z2 − 167

95256000
z4 +

23189

4400827200000
z6 − 7508803

576684396288000000
z8

+
87474851

4036790774016000000000
z10 + . . .

α2 =
√
15(

1

15
− 1

6000
z2 +

11623

3175200000
z4 − 213648613

73347120000000
z6 +

1669816359863

2135868134400000000
z8

− 409429160306437

2135868134400000000000
z10 + . . .)

α3 =
√
15(

1

30
+

3

14000
z2 − 24739

793800000
z4 +

14753813

2993760000000
z6 − 7187933379103

6407604403200000000
z8

+
48242846122937

177989011200000000000
z10 + . . .)

α4 =
√
15(− 1

24
+

13

67200
z2 − 37

12700800
z4 +

19922401

469421568000000
z6 − 733072729

1220496076800000000
z8

+
1539941201

183074411520000000000
z10 + . . .) .

Case (K ′ = 1, P ′ = 1)

The equations (23) and (25) remain unchanged. Equation (24) is replaced by the equation
obtained by applying the operator (13) with s = 3 on t exp(±λt) resulting in:

2b1z
2θ sinh(θz) = z cosh(z/2)− 2 sinh(z/2) . (26)

Taking into account (25) and (26) b1 and b2 can be expressed in terms of θ:

b1 =
z cosh(z/2)− 2 sinh(z/2)

2z2θ sinh(θz)
(27)

b2 =
− cosh(θz)z cosh(z/2) + 2 cosh(θz) sinh(z/2) + 2 sinh(z/2)zθ sinh(θz)

z2θ sinh(θz)
(28)

Introducing these results for b1 and b2 into (23) provides an equation for θ:

(1− cosh(θz)) (z cosh(z/2)− 2 sinh(z/2)) + zθ sinh(θz) (2 sinh(z/2)− z)

z2θ sinh(θz)
= 0 .

From the symplecticness condition (20) an expression for γ1 follows:

γ1 =
γ2 cosh(2θz)(z cosh(z/2)− 2 sinh(z/2))

cosh(θz)(z cosh(z/2)− 2 sinh(z/2))− 2 sinh(z/2)zθ sinh(θz)(1− γ2 cosh(z/2))
. (29)
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Again we choose γ2 = 1. The series expansions for the different parameters now follow
immediately:

θ =
√
15(

1

10
+

1

10500
z2 − 31

117600000
z4 +

2869

5433120000000
z6 − 332933

355978022400000000
z8

+
1792783

711956044800000000000
z10 + . . .)

γ1 = 1− 9

280000
z6 +

6861

784000000
z8 − 3685091

1724800000000
z10 + . . .

b1 =
5

18
− 1

1890
z2 − 23

21168000
z4 +

3383

244490400000
z6 − 6186473

128152088064000000
z8

+
6259951

448532308224000000000
z10 + . . .

b2 =
4

9
+

1

945
z2 +

23

10584000
z4 − 3383

122245200000
z6 +

6186473

64076044032000000
z8

− 6259951

224266154112000000000
z10 + . . .

α2 =
√
15(

1

15
− 1

18000
z2 +

1063

352800000
z4 − 4445759

2037420000000
z6 +

1250913246151

2135868134400000000
z8

− 305480839860709

2135868134400000000000
z10 + . . .)

α3 =
√
15(

1

30
+

19

126000
z2 − 2179

88200000
z4 +

8735197

2328480000000
z6 − 1798803442789

2135868134400000000
z8

+
216068604952379

1067934067200000000000
z10 + . . .)

α4 =
√
15(− 1

24
+

43

201600
z2 − 59

28224000
z4 +

1419377

52157952000000
z6 − 431537179

1220496076800000000
z8

+
237023071

53396703360000000000
z10 + . . .) .

Case (K ′ = −1, P ′ = 2)
The equations (25) and (26) remain unchanged. A third equation is added which follows
from the application of the operator (13) with s = 3 on t2 exp(±λt), i.e.:

b1 cosh(zθ)

(

2 cosh(z/2) +
1

2
z sinh(z/2) + 2zθ2 sinh(z/2)

)

− cosh(z)

+2b1 sinh(zθ) (2θ sinh(z/2) + zθ cosh(z/2)) + b2

(

cosh(z/2) +
1

4
z sinh(z/2)

)

= 0 .(30)

The formal expression for b1 and b2 remain respectively (27) and (28). Introducing these
expression for b1 and b2 into (30) gives us an equation for θ. From the symplecticness
condition (20) again the expression (29) for γ1 follows. Again by chosing γ2 = 1, the series
expansion of the different parameters follow:
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θ =
√
15(

1

10
+

1

7000
z2 − 37

88200000
z4 − 2323

679140000000
z6 +

466717

8899450560000000
z8

− 15014807

66745879200000000000
z10 + . . . )

γ1 = 1− 27

1120000
z6 +

41379

6272000000
z8 − 22149861

13798400000000
z10 + . . .

b1 =
5

18
− 1

1260
z2 − 187

31752000
z4 +

11887

91683900000
z6 − 14932867

16019011008000000
z8

− 16262011

28033269264000000000
z10 + . . .

b2 =
4

9
+

1

630
z2 +

187

15876000
z4 +

173633

733471200000
z6 − 52835987

32038022016000000
z8

+
817009801

224266154112000000000
z10 + . . .

α2 =
√
15(

1

15
+

1

18000
z2 +

719

176400000
z4 − 157253603

97796160000000
z6 +

468408965117

1067934067200000000
z8

− 76002203332597

711956044800000000000
z10 + . . .)

α3 =
√
15(

1

30
+

11

126000
z2 − 3523

176400000
z4 +

40063763

13970880000000
z6 − 675385487507

1067934067200000000
z8

+
322656693230117

2135868134400000000000
z10 + . . .)

α4 =
√
15(− 1

24
+

47

201600
z2 − 73

56448000
z4 +

1520789

156473856000000
z6 − 220181869

1220496076800000000
z8 +

47152907

14063329280000000000
z10 + . . .) .

Remark:
Sixth-order symmetric and symplectic modified Runge-Kutta methods of Gauss type have
been contructed by others. In [3] the authors constructed such methods by making use of a
basic set consisting of {exp(±λt), exp(±2λt), exp(±3λt)} with fixed θ-values and frequency
dependent θ-values. In [4] analogous constructions are discussed based on a reference set
{t, t2, exp(±λt)}, again with fixed and frequency dependent θ-values. In both cases the results
are in a sense comparable with ours and in the numerical experiments we shall compare the
results of [4] with the ones we have obtained.

5 Numerical experiments

In this section we report on some numerical experiments where we test the effectiveness
of the new and the previous [4] modified Runge-Kutta methods when they are applied to
the numerical solution of several differential systems. All the considered codes have the
same qualitative properties for the Hamiltonian systems. In the figures we show the decimal
logarithm of the maximum global error versus the number of steps required by each code in
logarithmic scale. All computations were carried out in double precision and series expansions
are used for the coefficients when |z| < 0.1. In all further displayed figures following results
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are shown: the method of Calvo et al. with constant nodes (const) and with variable nodes
(var), the classical Gauss results (class) and the results obtained with the new methods with
P = 0 (P0), P = 1 (P1) and P = 2 (P2).

Problem 1: Kepler’s plane problem defined by the Hamiltonian function

H(p, q) =
1

2
(p21 + p22)− (q21 + q22)

−1/2 ,

with the initial conditions q1(0) = 1−e, q2(0) = 0, p1(0) = 0, p2(0) = ((1+e)/(1−e)) 1

2 , where
e, (0 ≤ e < 1) represents the eccentricity of the elliptic orbit. The exact solution of this IVP
is a 2π-periodoc elliptic orbit in the (q1, q2)-plane with semimajor axis 1, corresponding the
starting point to the pericenter of this orbit. In the numerical experiments presented here we
have chosen the same values as in [4], i.e. e = 0.001, λ = iω with ω = (q2

1
+ q2

2
)−

3

2 and the
integration is carried out on the interval [0, 1000] with the steps h = 1/2m,m = 1, . . . , 4. The
numerical behaviour of the global error in the solution is presented in figure 1. The results
obtained by the three new constructed methods are falling together. One cannot distinguish
the results. They are comparable to the ones obtained by Calvo and more accurate than the
results of the classical Gauss method of the same order. Remark that e has been kept small
as it was the case in previous papers. We have however observed that increasing e does not
changed the conclusions reached.
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Figure 1: Maximum global error in the solution of Problem 1. In the left figure the results
obtained by the methods of Calvo et al. [4] are displayed. In the right figure the results
obtained with the methods of order six derived in this paper are shown.

Problem 2 A perturbed Kepler’s problem defined by the Hamiltonian function

H(p, q) =
1

2
(p21 + p22)−

1

(q2
1
+ q2

2
)1/2

− 2ǫ+ ǫ2

3(q2
1
+ q2

2
)3/2

,

with the initial conditions q1(0) = 1, q2(0) = 0, p1(0) = 0, p2(0) = 1 + ǫ , where ǫ is a small
positive parameter. The exact solution of this IVP is given by

q1(t) = cos(t+ ǫt), q2(t) = sin(t+ ǫt), pi(t) = q′i(t), i = 1, 2 .
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As in [4] the numerical results are computed with the integration steps h = 1/2m,m =
1, . . . , 4. We take the parameter ǫ = 10−3, λ = iω with ω = 1 and the problem is integrated
up to tend = 1000.. The global error in the solution is presented in figure 2. For our methods
we have the same conclusions as for the Problem 1. On the contrary for the results of Calvo
the results obtained with fixed θ-values are more accurate than the ones obtained by variable
θ-values.
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Figure 2: Maximum global error in the solution of Problem 2. In the left figure the results
obtained by the methods of Calvo et al. [4] are displayed. In the right figure the results
obtained with the methods of order six derived in this paper are shown.

Problem 3 Euler’s equations that describe the motion of a rigid body under no forces

q̇ = f(q) = ((α− β)q2q3, (1− α)q3q1, (β − 1)q1q2)
T ,

with the initial values q(0) = (0, 1, 1)T , and the parameter values α = 1 +
1√
1.51

and

β = 1− 0.51√
1.51

. The exact solution of this IVP is given by

q(t) =
(√

1.51 sn(t, 0.51), cn(t, 0.51), dn(t, 0.51)
)T

,

it is periodic with period T = 7.45056320933095, and sn, cn, dn stand for the elliptic Jacobi
functions. Figure 3 shows the numerical results obtained for the global error computed with
the interation steps h = 1/2m,m = 1, . . . , 4, on the interval [0, 1000], and λ = i2π/T . The
results of Calvo et al are all of the same accuracy while in our approach the EF methods are
still more accurate than the classical one. In this problem the choice of the frequency is not
so obvious and therefore the differentiation between the classical and the EF methods is not
so pronounced.

6 Conclusions

In this paper another approach for constructing symmetric symplectic modified EFRK meth-
ods based upon the sixth-step procedure of [13] is presented. Two-stage fourth-order and
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Figure 3: Maximum global error in the solution of Problem 3. In the left figure the results
obtained by the methods of Calvo et al. [4] are displayed. In the right figure the results
obtained with the methods of order six derived in this paper are shown.

three-stage sixth-order integrators of Gauss type which are symmetric and symplectic and
which preserve linear and quadratic invariants have been derived. When the frequency used
in the exponential fitting process is put to zero all considered integrators reduce to the classi-
cal Gauss integrator of the same order. Some numerical experiments show the utility of these
new integrators for some oscillatory problems. The results obtained here are quite similar to
the ones obtained in [4], but they differ in some of the details. The introduced method can
be extended to EFRK with larger algebraic order.
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