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Time-Varying Effects of Oil Supply Shocks 
on the US Economy†

By Christiane Baumeister and Gert Peersman*

Using time-varying BVARs, we find a substantial decline in the short-
run price elasticity of oil demand since the mid-1980s. This finding 
helps explain why an oil production shortfall of the same magnitude 
is associated with a stronger response of oil prices and more severe 
macroeconomic consequences over time, while a similar oil price 
increase is associated with smaller output effects. Oil supply shocks 
also account for a smaller fraction of real oil price variability in 
more recent periods, in contrast to oil demand shocks. The overall 
effects of oil supply disruptions on the US economy have, however, 
been modest. (JEL E31, E32, Q41, Q43)

This paper studies the relationship between oil prices and US macroeconomic 
performance since 1974. There is considerable evidence that this relation-

ship has been unstable over time (see, e.g., Edelstein and Kilian 2009; Herrera and 
Pesavento 2009; Blanchard and Galí 2010; Ramey and Vine 2011). In particular, 
several researchers have noted a substantial decline in the macroeconomic conse-
quences of oil price shocks. One of the reasons for this temporal instability is the 
fact that oil price shocks are merely symptoms of underlying oil supply and oil 
demand shocks. As the composition of these structural oil supply and oil demand 
shocks evolves, so does the dynamic correlation between the US economy and the 
real price of oil (see, e.g., Peersman and Van Robays 2009; Kilian 2009a).

Even if we distinguish between oil demand and oil supply shocks, however, there 
are additional reasons why the response of the US economy to these shocks may 
have changed over time. Such time-varying effects may come about, for example, 
because of variation in the oil intensity of economic activity, because of changes 
in the regulation of energy markets, or because of changes in the composition of 
automobile production and the overall importance of the US automobile sector 
(see, e.g., Edelstein and Kilian 2009; Ramey and Vine 2011). Likewise, changes in 
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capacity utilization rates in crude oil production and the transition toward a market-
based system of oil trading in the 1980s may account for additional instabilities in the 
responses to oil supply shocks (see, e.g., Hubbard 1986). Indeed, there is a consensus 
in the literature that the short-run price elasticity of oil demand has declined since the 
mid-1980s, although the extent of these changes has proved hard to pin down (see, 
e.g., Hughes, Knittel, and Sperling 2008; Dargay and Gately 1994, 2010).

Time-varying responses are not allowed for in the existing literature on the effects 
of oil supply shocks on US macroeconomic aggregates. It is by now well understood 
that oil price shocks are not the same as oil supply shocks (see Kilian 2008a). As 
a result, in recent years, considerable work has been done to explicitly identify oil 
supply shocks and to understand their effect on the real price of oil and on the US 
economy. Hamilton (1983) first remarked on the coincidence of oil supply disrup-
tions and subsequent oil price surges during 1948–1972. Building on this insight, 
Hamilton (2003) developed a quantitative dummy measure based on physical oil 
supply disruptions associated with major political crises in oil-producing countries 
and investigated its predictive power for changes in the price of oil and for US 
real GDP.1 Kilian (2008b,c) proposed an alternative measure of exogenous oil sup-
ply shocks obtained by constructing explicit counterfactuals for all major oil pro-
ducers, and studied the responses of inflation and real output in major industrial 
economies to this measure of oil supply shocks. Yet another approach developed by 
Kilian (2009a) has relied on exclusion restrictions in structural vector autoregres-
sive (VAR) models of the global oil market to identify oil supply shocks.

A common feature of all these empirical studies is that they rely on time- invariant 
regressions. Implicitly, it is assumed that the effect of oil supply shocks on the real 
price of oil and on macroeconomic aggregates has not changed over time. This 
observation raises the question of how reliable existing estimates of the effects of 
oil supply shocks are.

In this paper, we use a time-varying parameter structural VAR model to inves-
tigate how the effects of oil supply shocks on the US economy have changed over 
time. Our analysis incorporates several innovations relative to the previous litera-
ture. First, rather than imposing an arbitrary sample split, as some previous studies 
have done, we let all model coefficients evolve continuously, allowing the data to 
tell us when and how any changes may have occurred. Second, we identify oil sup-
ply shocks not based on contemporaneous exclusion restrictions but, instead, based 
on the sign restrictions that an oil supply shock moves oil prices and oil production 
in opposite directions. Ours is the first application of this identification approach 
in the context of the global oil market.2 Third, we allow for time-varying hetero-
skedasticity in the VAR innovations that accounts for changes in the magnitude of 
structural shocks and their immediate impact. This feature is particularly impor-
tant in the present setting given the observed increase in oil price volatility and 
the reduction in macroeconomic volatility during the Great Moderation. Fourth, in 

1 This quantitative dummy variable takes the value of the amount of oil production lost in the affected countries, 
expressed as a percentage of world oil production, at the time of an historical episode, and zero otherwise.

2 Sign restrictions for modeling oil market dynamics have subsequently been adopted by Peersman and Van 
Robays (2009, 2012), Baumeister and Peersman (forthcoming), Kilian and Murphy (2012, forthcoming), and Lippi 
and Nobili (2012), among others.
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addition to shedding light on time variation in the responses of US real GDP and 
consumer prices to oil supply shocks, our analysis also allows us to obtain estimates 
of changes over time in the short-run price elasticity of oil demand, complementing 
the existing literature. By construction, this demand elasticity corresponds to the 
ratio of the impact response of world oil production to the real price of oil triggered 
by an unanticipated shift in the world oil supply curve along the contemporaneous 
oil demand curve.

Our analysis yields several intriguing results. First, we find that even though the 
effect on economic aggregates of an oil supply disruption associated with a 1 percent 
decrease in world oil production has increased over time, the effect on US real GDP 
of an oil supply disruption associated with a 10 percent increase in the real price of 
oil has declined over time. We show that this evidence cannot be explained merely 
by changes in the variance of oil supply shocks. Rather, it requires a decline in the 
price elasticity of oil demand over time, such that a given decrease in the quantity 
of oil supplied on impact is associated with a larger increase in the real price of oil 
on impact, and/or suitable changes over time in the dynamic responses of all model 
variables to an oil supply shock. Second, the contribution of oil supply shocks to the 
variability of the real price of oil has moderately declined over time, indicating a 
larger role for oil demand shocks. It is reassuring that accounting for time variation 
does not overturn this important insight from the recent literature. Third, although 
the contribution of oil supply shocks to the variance of macroeconomic aggregates 
is nonnegligible, they explain only a small part of the recessions since the 1970s and 
of the “Great Inflation.”

The remainder of the paper is organized as follows. Section I outlines the 
econometric methodology and describes the identification strategy in more detail. 
Section II presents the main empirical results and evaluates the robustness of our 
findings. In Section III, we discuss some potential explanations for a less price-
elastic oil demand curve since the second half of the 1980s. Section IV contains the 
concluding remarks.

I. Empirical Methodology

The apparent instabilities in the oil-macro relationship suggest that modeling the 
transmission of oil supply shocks adequately requires an empirical framework that 
can account for changes over time. The anecdotal evidence presented in the intro-
duction points toward a gradual evolution of the interaction between the oil market 
and the US economy. The idea of a slow-moving but continuous adjustment is also 
in line with the adaptive behavior of economic agents that results from an ongoing 
learning process. For example, Primiceri (2005) makes the case that the aggregation 
among agents’ assessments tends to be reflected in smooth changes since not all 
agents would be expected to update their beliefs at the same time. This line of rea-
soning suggests that the appropriate modeling approach is a time-varying parameter 
model (TVP-VAR) featuring smoothly evolving coefficients and heteroskedasticity 
in the innovations.

Although the possibility of abrupt breaks cannot be excluded a priori, it can be 
shown that a time-varying parameter model is capable of capturing such  discrete 
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shifts should they occur. As the Monte Carlo study in section 1 of the online 
Appendix illustrates, drifting coefficient models in practice can successfully track 
processes subject to structural breaks or regime shifts. In contrast, models of dis-
crete shifts cannot accommodate smooth structural change.

A. A VAR with Time-Varying Parameters and Stochastic Volatility

We model the joint behavior of global oil production, the real US refiners’ acqui-
sition cost of imported crude oil (obtained by deflating the nominal price by US 
CPI), US real GDP, and US consumer prices as a VAR( p) with time-varying param-
eters and stochastic volatility:

(1)  y t  =  c t  +  B 1, t   y t−1  + ⋯ +  B p, t  y   t−p  +  u t  ≡  X  t  ′   θ t  +  u t    ,

where  y t  ≡  [ Δ q  t  oil , Δ p  t  oil , Δgd p t , Δcp i t  ] ′ and Δ denotes the first difference operator.3 
All variables were transformed to nonannualized quarter-on-quarter rates of growth 
by taking the first difference of their natural logarithm. The time-varying intercepts  
c t  and the matrices of time-varying coefficients  B 1, t...p, t  are stacked in  θ t   , and  X t  is 
a matrix including lags of  y t  and a constant to obtain the state-space representation 
of the model. The data frequency is quarterly. The overall sample covers the period 
1947:I–2011:I, but the first 25 years of data are used as a training sample to generate 
the priors for estimation over the actual sample period, which starts in 1974:I. This is 
the earliest possible starting date given that before 1974 the oil price was regulated, 
which impairs the use of standard time-series models of the oil market even when 
time variation is allowed for (see, e.g., Alquist, Kilian, and Vigfusson 2013). The lag 
length is set to p = 4 to allow for sufficient dynamics in the system and to capture 
lags in the transmission of oil shocks (see, e.g., Hamilton and Herrera 2004). The  u t  
in the observation equation is an unconditionally heteroskedastic disturbance term 
that is normally distributed with a zero mean and a time-varying covariance matrix  
Ω t  that can be decomposed in the following way:

(2)  Ω t  =  A  t  −1   H t  (  A  t  −1  ) ′ .

 A   t  is a lower triangular matrix that models the contemporaneous interactions 
among the endogenous variables and  H   t  is a diagonal matrix that contains the sto-
chastic volatilities

(3)  A   t  =

1 0 0 0

 H   t  =

 h 1, t 0 0 0

 .
 α 21, t 1 0 0 0  h 2, t 0 0

 α 31, t  α 32, t 1 0 0 0  h 3, t 0

 α 41, t  α 42, t  α 43, t 1 0 0 0  h 4, t 

3 A detailed description of the data used in this paper can be found in Appendix A.
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The drifting coefficients are meant to capture possible nonlinearities or time vari-
ation in the lag structure of the model. The multivariate time-varying variance cova-
riance matrix allows for heteroskedasticity of the shocks and time variation in the 
simultaneous relationships between the variables in the system. Allowing for time 
variation in both the coefficients and the variance covariance matrix leaves it up to 
the data to determine whether the time variation of the linear structure comes from 
changes in the size of the shock and its contemporaneous impact or from changes in the 
propagation mechanism. Let  α t  =  [  α 21, t   ,  α 31, t   ,  α 32, t   ,  α 41, t   ,  α 42, t   ,  α 43, t  ] ′ be the vec-
tor of nonzero and nonone elements of the matrix  A  t  , and  h  t  =  [  h 1, t  ,  h 2, t  ,  h 3, t  ,  h 4, t  ] ′ 
be the vector containing the diagonal elements of  H  t   . Following Primiceri (2005), 
the three driving processes of the system are postulated to evolve as follows:

(4)  θ t  =   θ t−1  +  ν t    ν t  ∼ n ( 0, Q )  

(5)  α t  =   α t−1  +  ζ t    ζ t  ∼ n(0, S)

(6) ln   h i, t  = ln   h i, t−1  +  σ i   η i, t    η i, t  ∼ n(0, 1) .

The time-varying parameters  θ t  and  α t  are modeled as driftless random walks. 
We impose a stability constraint on the evolution of the time-varying parameters  
θ t  to enforce stationarity of the VAR system. Specifically, we include an indicator 
function that selects only stable draws i.e., the indicator function i( θ t ) = 0 if the 
roots of the associated VAR polynomial are inside the unit circle, as in e.g., Cogley 
and Sargent (2005). The elements of the vector of volatilities  h t  are assumed to 
evolve as geometric random walks, independent of each other. The error terms of 
the three transition equations are independent of each other and of the innovations 
of the observation equation. In addition, we postulate a block-diagonal structure for 
S of the following form:

(7) S ≡ Var  (  ζ  t  )  =
 S 1  0 1x2  0 1x3 

 , 0 2x1  S 2  0 2x3 

 0 3x1  0 3x2  S 3 

with  S 1  ≡ Var (  ζ 21, t  ) ,  S 2  ≡ Var (  [  ζ 31, t   ,  ζ 32, t  ] ′ ) , and  S 3  ≡ Var (  [  ζ 41, t   ,  ζ 42, t   ,  ζ 43, t  ] ′ ) ,  
which implies that the nonzero and nonone elements of  A t  belonging to different 
rows evolve independently. Thus, the shocks to the coefficients of the contempo-
raneous relations among the endogenous variables are assumed to be correlated 
within equations, but uncorrelated across equations. As pointed out by Primiceri 
(2005), this block-diagonal structure has the desirable property of simplifying infer-
ence and increasing the efficiency of the estimation algorithm in an already highly- 
parameterized model since it permits to estimate the covariance states equation by 
equation. We estimate this model using Bayesian methods described in Kim and 
Nelson (1999). An overview of the prior specifications and the estimation strategy 
(Markov Chain Monte Carlo algorithm) is provided in Appendix B.
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B. identification of Oil Supply Shocks

It is now widely accepted that oil prices are not only determined by supply-side 
factors but also driven by demand conditions (see Barsky and Kilian 2002, 2004; 
Peersman 2005; Kilian 2008a; Hamilton 2009a,b; Kilian 2009a,b). Innovations in 
the oil price equation of a VAR model are not an adequate measure of exogenous 
variation in oil supply because they also capture shifts in the demand for crude oil. 
The resulting estimates of macroeconomic effects only represent the consequences 
of an average oil price shock determined by a combination of supply and demand 
factors. Blanchard and Galí (2010), among others, make the case that this distinction 
does not matter because an oil price shock triggered by increased demand for oil in 
one country can still be experienced as a supply shock by the remaining countries. 
This presumption is, however, very stringent in light of the results of Peersman and 
Van Robays (2009) and Kilian (2009a) who show that there exist important differ-
ences in the responses of macroeconomic aggregates depending on the underlying 
source of the oil price shock. Intuitively it is clear that an increase in the real price 
of oil induced by favorable global economic conditions exerts a different influence 
on the macroeconomic performance than one due to oil supply disruptions resulting 
from a war (see Kilian 2009a; Rotemberg 2010).

Kilian (2009a) disentangles oil supply from oil demand shocks based on contem-
poraneous exclusion restrictions in a monthly vector autoregression that includes 
world oil production and the real price of crude oil. An oil supply shock is identified 
as the sole disturbance that has an immediate influence on the level of oil production. 
Accordingly, global oil production does not respond instantaneously to oil demand 
shocks, which implies that the short-run oil supply curve is vertical. This assump-
tion, while arguably tenable at the monthly frequency, is, however, less appropriate 
when quarterly data are used, as in our study.4

Therefore, we propose a new approach to identifying structural oil supply shocks 
that involves sign restrictions on the estimated time-varying impulse responses. 
This approach builds on other applications of sign restrictions including the work of 
Faust (1998), Davis and Haltiwanger (1999), Canova and De Nicoló (2002), Uhlig 
(2005), and Peersman (2005), among others. Related work on time-varying param-
eter VAR models with sign restrictions includes Benati and Mumtaz (2007); Canova 
and Gambetti (2009); and Hofmann, Peersman, and Straub (2012). Our identifying 
restrictions are based on insights derived from a basic supply and demand model 
for the global oil market, which is represented by world oil production and the real 
price of crude oil. An oil supply shock is identified as a disturbance that shifts the 
upward-sloping oil supply curve along the downward-sloping oil demand curve and 
hence, results in an opposite movement in oil production and in the real price of oil. 
The identifying assumptions are that after a negative oil supply shock, world oil 
production declines and the real price of oil increases. No constraints are imposed 

4 An alternative approach in the literature has been to quantify oil supply shocks directly through suitable 
counterfactual thought experiments. Hamilton (2003) and Kilian (2008b,c) have developed measures of oil supply 
shocks based on physical oil supply disruptions in the wake of major exogenous political events in oil-producing 
countries. The advantage of defining oil supply shocks within a structural VAR model is that it also captures endog-
enous production responses among oil producers to exogenous oil supply disruptions.
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on the responses of US real output and of consumer prices. The reactions of these 
variables will be determined by the data. The sign restrictions are imposed to hold 
for four quarters following the shock, consistent with widely held beliefs about oil 
price dynamics in the literature (Hamilton 2003; Kilian 2008c). As a consequence of 
these inequality constraints, our identification scheme does not deliver exact identi-
fication (see, e.g., Fry and Pagan 2011).

Also note that the model is only partially identified in the sense that only the oil 
supply shock is explicitly identified and the conglomerate of residual oil demand 
shocks has no structural interpretation, which is in line with the focus of this paper, as 
outlined in the introduction. In Baumeister and Peersman (forthcoming), we extend 
the present identification strategy to explore, in more detail, changes in global oil 
price dynamics. Notably, we include a measure of global real economic activity, 
which enables us to differentiate between oil demand shocks driven by the global 
business cycle and oil-specific demand shocks. While Baumeister and Peersman 
(forthcoming) study the time-varying dynamics of the real price of oil as a function 
of all three types of oil market shocks, here we are concerned with understanding the 
transmission of oil supply shocks to the US economy.

II. Results

We begin our analysis with a discussion of the impulse response estimates in 
Section IIA. The computation of the time-varying generalized impulse response func-
tions and the implementation of the sign restrictions are described in Appendix C. 
In Section IIB, we assess the quantitative importance of oil supply shocks and in 
Section IIC, we conduct several sensitivity analyses.

A. Responses to an Oil Supply Shock

In structural VAR models, it is conventional to report the responses of the endog-
enous variables to one standard deviation shocks. The problem in time-varying 
structural VAR models is that a one standard deviation shock corresponds to a 
different-sized shock at each point in time, which in turn may affect the scale of 
the impulse response functions. This fact complicates the analysis of the dynamic 
effects of an oil supply shock on the macroeconomy as we move across time. In 
order to compare the economic consequences across episodes, it is necessary to 
establish a benchmark scenario against which the time-varying responses can be 
assessed. Since oil supply shocks are characterized by the joint response of oil pro-
duction and the real price of oil, both variables are suitable candidates for such a 
benchmark scenario. Granting that in a time-varying parameter model one cannot 
make the nature of an oil supply shock identical over time, one can consider the 
less ambitious thought experiment of making these shocks comparable along one of 
those dimensions at a time.

normalization on Oil Quantity.—For example, the oil supply shock can be nor-
malized on the quantity of oil supplied, which helps relate our analysis to the previ-
ous literature on oil supply shocks that has focused on physical disruptions in the 
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production of crude oil (see Hamilton 2003; Kilian 2008b,c). The dynamic effects 
of exogenous oil supply shocks, normalized so that they correspond to a 1 percent 
decrease in global oil production on impact at each point in time, are shown in 
panel A of Figure 1 for the median responses together with the sixteenth and eighty-
fourth percentiles of the posterior distribution. We plot the reaction of the real price 
of oil for the quarter in which the shock occurs. For the macroeconomic variables 
instead, we depict the responses four quarters after the shock. This convention is 
adopted throughout the paper. The reason for this choice is that the greatest effect on 
real GDP is expected to occur with a delay of about one year (see Hamilton 2008). 
With regard to consumer prices, our objective is not so much to capture the direct 
effects of oil supply shocks, but to gauge the pass-through over time. Peersman and 
Van Robays (2009), Herrera and Pesavento (2009), and Clark and Terry (2010) 
show that the greatest effect of an oil price shock occurs after about three to four 
quarters. Notice, however, that our conclusions are robust for alternative horizons. 
The estimated responses have been accumulated and are shown in levels. The impact 
response of the real price of crude oil with respect to a 1 percent shortfall in world 
oil production increases substantially over time, from an average value of 3 percent 
in the 1970s and 1980s to 8 percent in the 1990s, up to 15 percent in the 2000s, with 
a spike of 28 percent in 2008. The oil price increases triggered by a given reduction 
in oil production on impact are in turn more disruptive to the economy in the second 
part of the sample. The accumulated loss in real GDP growth is about twice as big 
in the 1990s and almost three times as big in the 2000s as it is in the 1970s. The 
responses of consumer prices get more pronounced from the mid-1990s onward, 
and climb considerably in the 2000s. This evidence underscores the importance of 
allowing for time variation in studying the dynamic effects of physical oil produc-
tion shortfalls.

normalization on Oil Price.—Given that the focus of much previous research has 
been on the effects of an unanticipated increase in the price of oil, we now consider 
alternatively the effect of an oil supply shock normalized so that it raises the real 
price of oil by 10 percent on impact at each point in time. The latter thought experi-
ment is used by Blanchard and Galí (2010) as a benchmark for their intertemporal 
comparison. The normalized time-varying impulse responses are shown in panel B 
of Figure 1. For this scenario, we find a more muted reaction of economic activity 
in the latter part of the sample. This finding complies well with existing empiri-
cal evidence on the time-varying effects of oil price shocks (e.g., Edelstein and 
Kilian 2007; Herrera and Pesavento 2009; Blanchard and Galí 2010; Ramey and 
Vine 2011). This experiment shows that a 10 percent rise in the real price of oil is 
currently accompanied by an oil production shortfall of 0.5 to 1.5 percent on impact. 
To elicit the same oil price move in the 1970s, a decline in the physical supply of 
crude oil of up to 12 percent is required.5

5 To gain a better idea about the extent of time variation over the sample period, we also examined the joint 
posterior distribution of impulse responses for all models across selected pairs of representative dates following 
the approach proposed by Cogley, Primiceri, and Sargent (2010). The results of these bilateral diagnostics, which 
are relegated to section 2.1 of the online Appendix, largely confirm the pattern of time variation described for both 
normalizations.
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How can we interpret the decrease in the response of global oil production to a 
given rise in the real price of oil over time? The simple supply-and-demand diagram 
of the oil market displayed in Figure 2 illustrates the implications of this finding. A 
shift of the oil supply curve along a given demand curve implies that the ratio of the 
quantity response over the price response is invariant to the extent to which the oil 
supply curve is shifted exogenously, i.e., the ratio ΔQ/ΔP is the same for moving 
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Responses of Macroeconomic Variables Four Quarters after the Shock to a Negative Oil 

Supply Shock, Where Shaded Areas Indicate 68 percent Posterior Credible Sets 
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from  S 1  to  S 2  and from  S 1  to  S  2,  ′   as shown in panel A. This means that a change in 
the size of oil supply shocks alone cannot explain the fact that the impact responses 
of world oil production decrease from  Q 2  to  Q  2  ′   over time for a given increase in the 
real price of crude oil. This result can only be explained by a steepening of the oil 
demand curve as illustrated in panel B. To obtain an equilibrium outcome character-
ized by the intersection of the oil supply and demand curves at  P 2  and  Q  2  ′   , it is not 
enough for the supply curve to shift by less, but we need the slope of the demand 
curve to steepen. In particular, the intersection of  S  2  ′   with D is not consistent with 
the equilibrium solution.

While we cannot exclude the possibility that the variability of the underlying oil 
supply shocks has changed over time, only a steepening of the oil demand curve 
(which is equivalent to a decline in the short-run price elasticity of oil demand over 
time) can reconcile the fact that the impact quantity response is smaller for a given 
impact price increase. This is indeed what we find in the data. While the average 
value of the price elasticity is around −0.6 in the early part of the sample with the 
exception of the 1979–1980 episode, that elasticity declines considerably starting 
in the mid-1980s, and reaches a low of −0.1 toward the end of the sample. In other 
words, it now takes a smaller exogenous reduction in world oil production to push 
up the price of oil by the same amount. Note that by construction variations in the 
expected time path of future oil production are reflected in the impact price and 
quantity responses in our model, which underlie the short-run price elasticity of oil 
demand.

In sum, we can reproduce the findings of other researchers that a given supply-
driven oil price increase is associated with a decreasing effect on real economic 
activity later in the sample, and we show that this finding is consistent with the result 
that a given reduction in oil production leads to a greater decline in real GDP over 
time, once we take the steepening of the oil demand curve into account and allow for 
time-varying dynamics in the propagation of the oil supply shock.
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B. Quantitative importance of Oil Supply Shocks

Impulse responses are only informative of the transmission of a one-time oil sup-
ply shock but do not tell us how important oil supply shocks have been on average, 
nor do they tell us how much of the historical variation in oil market and macroeco-
nomic variables is due to oil supply shocks. To shed some light on these questions, we 
now examine the forecast error variance decompositions and the historical decom-
positions based on our TVP-VAR model. As in the case of the impulse responses, 
we allow the parameters used in computing these decompositions to evolve over 
time to account for changes in the structure of the economy. In other words, these 
parameters do not remain fixed at their value in the impact period but evolve with 
the horizon according to their law of motion.

Variance Decomposition.—Figure 3 displays the evolution of the median of the 
contribution of oil supply shocks to the forecast error variance after 20 quarters, 
along with the sixteenth and eighty-fourth percentiles of the posterior distribution. 
The contribution of oil supply disturbances to the variance of US real GDP growth 
and CPI inflation consistently ranges between 15 and 20 percent. The share of output 
volatility attributable to oil supply shocks oscillates moderately over time, whereas 
the fraction of movements in consumer price inflation induced by oil supply shocks 
gradually increased since the early 2000s. The latter finding is not surprising given 
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Figure 3. Median of the Contribution of Oil Supply Shocks to the Forecast Error 
Variance of all Four Endogenous Variables after 20 Quarters with Sixteenth  

and Eighty-fourth Percentiles of the Posterior Distribution
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that the volatility of consumer price inflation has decreased over time, while the 
impact of oil supply shocks on inflation has increased slightly. We conclude that oil 
supply shocks are still relevant for macroeconomic fluctuations.

The fraction of the variance of global crude oil production growth explained by 
oil supply shocks fluctuates between 25 and 35 percent in the early part of the sam-
ple, but has stabilized since the early 1990s at around 30 percent with the exception 
of a sharp drop in 2008. Figure 3 also shows that the contribution of oil supply 
shocks to the variability of changes in the real price of oil declines from around 
30 to 35 percent in the first half of the sample to around 20 to 25 percent in the 
second half.

These estimates indicate that oil supply shocks have become a less important 
source of oil price movements in recent years. Although we do not identify specific 
oil demand shocks, we can view all shocks other than the oil supply shock collec-
tively as an oil demand shock. While the contribution of these oil demand shocks to 
the variability in world oil production has remained relatively stable over time, they 
are responsible for a substantial share of the volatility in the real oil price, which 
has increased notably since the early 1990s. This evidence is consistent with the 
empirical results of Kilian (2008a, 2009a), reflected in the conventional wisdom 
that “demand increases rather than supply reductions have been the primary factor 
driving oil prices over the last several years” (Hamilton 2008, 175).

Historical Decomposition.—The historical contribution of oil supply distur-
bances to the four endogenous variables is presented in Figure 4. The dashed line 
shows the actual time series relative to its baseline forecast and the solid line shows 
the cumulative effect of the estimated oil supply shocks on the evolution of each 
variable. The difference between the actual data and the cumulative contribution of 
oil supply shocks can be interpreted as the cumulative contribution of the composite 
of oil demand shocks.6

The overall cumulative effect of oil supply disruptions on the US economy 
has been modest. Oil supply shocks contributed to the 1991 recession and slowed 
the economic boom of 1999–2000 when OPEC and non-OPEC countries jointly 
decided to cut oil production, but they appear not to be crucial for other US reces-
sions according to the historical decomposition of real GDP growth. With regard 
to inflation, Figure 4 reveals that oil supply shocks also explain little of the Great 
Inflation. Despite the fact that there is some contribution, the bulk of the inflation in 
the 1970s and early 1980s is explained by other shocks. While this insight is appar-
ently in contrast with popular perception, it is consistent with related evidence in 

6 Note that historical decompositions are computed on the basis of historical shocks and estimates of the time-
varying impulse response coefficients. In line with the existing literature on time-varying parameters models (e.g., 
Benati and Mumtaz 2007; Canova and Gambetti 2009), we condition on the entire history to date, as we move 
through time, when computing impulse responses to an oil supply shock. In particular, the impulse response func-
tions are defined as the difference between two conditional expectations, where both conditioning information 
sets contain everything that has happened up to that point in time. The impulse responses thus trace out the future 
path of the endogenous variables conditional upon that history which reflects the effects of all previous shocks. 
Accordingly, the dynamic effects of oil supply shocks could potentially also be affected by earlier demand shocks, 
whereas the effects of oil demand shocks could be affected by earlier supply shocks. Such indirect effects of oil 
supply shocks on the evolution of the variables over time are hence not captured by the solid lines in Figure 4.
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the literature. In particular, Barsky and Kilian (2002, 2004) showed that shifts in 
monetary policy regimes associated with demand shifts in the oil market were the 
source of the stagflationary experience of the 1970s.

The contribution of the estimated oil supply shocks to the evolution of the real 
price of crude oil changes from episode to episode. We find an important role for 
oil supply shocks to explain the oil price increases in 1987, 1989, and particularly 
the oil price spike after Iraq’s invasion of Kuwait in August 1990. Oil supply shocks 
also played a big role in 1999. On the other hand, we find a dominant role for shocks 
at the demand side of the oil market during the events of 1979, which is consistent 
with the conjecture in Barsky and Kilian (2002), who argue that oil supply shocks 
were never the sole driving force behind the fluctuations in the real price of crude oil 
in 1979. The latter also matches the empirical evidence in Kilian (2009a). Similarly, 
oil demand shocks made a considerable contribution to the oil price collapse in 
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Figure 4. Historical Decomposition of World Oil Production Growth, Changes  
in the Real Price of Oil, Real GDP Growth, and CPI Inflation

notes: The vertical lines indicate major events in the crude oil market, in particular the outbreak 
of the Iranian revolution in 1978:III and of the Iran-Iraq war in 1980:III, the collapse of OPEC in 
1985:IV, the invasion of Kuwait in 1990:III, the coordinated supply cut of OPEC and non-OPEC 
countries in 1999:I, and the Iraq war in 2003:I. The grey bars indicate NBER recessions. “Actual 
data demeaned” indicates that the data have been adjusted for the baseline forecast.
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1986 and to oil price movements since 2002. This implies that the oil price surge 
in 2007–2008 and the subsequent dramatic collapse were predominantly driven 
by oil demand shocks, a finding which is consistent with Hamilton (2009b) and 
Kilian (2009a). It is noteworthy that notwithstanding the striking differences in 
impulse response dynamics over time, the historical decomposition of the real 
price of crude oil is broadly similar to results from a time-invariant model in 
Kilian (2009b).

C. Sensitivity Analysis

Alternative Models of Time Variation.—In the benchmark model we postu-
lated a drifting coefficient model. We now illustrate the importance of allowing for 
smooth time variation as opposed to a one-time break in 1986. Figure 5, panel A 
displays the median responses of the four endogenous variables, after an oil supply 
shock  identified with sign restrictions and normalized to a 1 percent decrease in 
oil production in a fixed-coefficient VAR model estimated over the two subperiods 
1974:I–1985:IV and 1986:I–2011:I, together with the sixteenth and eighty-fourth 
percentiles. It turns out that the impact response of the real price of oil is much larger 
in the second subsample, reaffirming our substantive finding of a less price-elastic 
oil demand curve. In contrast to our baseline results, however, there is no compel-
ling evidence for time variation in the impulse response functions of real GDP and 
consumer prices across subsamples given that the posterior intervals overlap. This 
analysis highlights that one would not have been able to uncover the same changes 
in the macroeconomic consequences of oil supply shocks by imposing a one-time 
break in the oil-macro relationship.

Alternative identifying Assumptions.— Our second methodological contribution 
was the identification of oil supply shocks based on sign restrictions. An alternative 
assumption would have been to impose a vertical short-run oil supply curve that 
implies three exclusion restrictions on the first row of the structural impact multi-
plier matrix. This corresponds to a simplified version of the monthly oil market VAR 
model proposed by Kilian (2009a). Although these identifying restrictions were not 
intended for quarterly data, it is useful to compare the results to our baseline model. 
Unlike Kilian (2009a), we implement this procedure allowing for time variation in 
the parameters. Figure 5, panel B presents the time-varying median responses of 
the real price of oil and of the macroeconomic aggregates to an oil supply shock 
identified by exclusion restrictions to a 1 percent oil production shortfall, together 
with the sixteenth and eighty-fourth percentiles. Although there is some evidence 
of time variation in the response of the real price of oil, the posterior intervals are 
so wide to leave open the possibility that the responses remained unchanged. In 
contrast, the time-varying estimates in our baseline model cannot be explained by 
estimation uncertainty only. Moreover, a puzzling finding in Figure 5, panel B is that 
the median real GDP response to a negative oil supply shock is positive, especially 
toward the end of the sample. This counterintuitive result suggests that the recursive 
identification scheme is inappropriate at the quarterly frequency and highlights the 
potential benefits of using sign restrictions.
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Figure 5. Posterior Median Responses after an Oil Supply Shock Normalized to a 1 Percent Decrease  
in Oil Production, Where Shaded Areas Indicate 68 percent Posterior Credible Sets

notes: Panel A: Identification based on sign restrictions in a fixed-coefficient VAR estimated over two subsamples, 
1974:I–1985:IV and 1986:I–2011:I. Panel B: Identification based on exclusion restrictions in a time-varying VAR.
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Other Model Specifications.—We also investigated the sensitivity of our results 
to changes in the variables included in the benchmark model. When US unemploy-
ment instead of real GDP is used as the indicator of real economic activity, we 
find a substantial rise in unemployment following a negative oil supply shock again 
normalized on oil production. The strength of this response increases notably in the 
most recent past. When we replace the consumer price index with the implicit GDP 
deflator as a measure of inflation, we observe a somewhat more subdued increase in 
the price level after a negative oil supply shock that corresponds to a 1 percent oil 
production shortfall, but a similar pattern of time variation emerges. Likewise, using 
different oil price measures, such as the real refiners’ acquisition cost of composite 
crude oil or the West Texas Intermediate spot oil price, does not affect our conclu-
sions. Finally, augmenting our model by the federal funds rate, as is common in 
the literature on monetary policy, does not change our findings about the dynamic 
response of the US economy to oil supply shocks and the structural change in the 
crude oil market.

Timing of the Sign Restrictions.—Since in the early part of our sample the nomi-
nal oil price was constrained by long-term bilateral agreements that were subject 
to revision only periodically, an obvious concern arises with regard to the timing 
of the sign restrictions imposed in the baseline model. When nominal oil prices 
are sluggish, a positive demand shock in the US economy, which raises world oil 
production and the consumer price level, causes a fall in the real price of oil, unless 
nominal contracts are renegotiated timely to reflect the new macroeconomic condi-
tions. The resulting opposite movement in world oil production and in the real price 
of oil would imply that this demand shock is erroneously identified as a positive oil 
supply shock. One way of addressing this problem is to impose that the sign restric-
tions are only binding from the fourth quarter after the shock onward, such that the 
immediate reaction of oil production and of the real price of oil is unconstrained. It 
can be shown that our findings are not sensitive to this change in the timing of the 
identification restrictions. For further details the reader is referred to section 2.2 of 
the online Appendix.

III. Reasons for the Steepening of the Oil Demand Curve

In this section, we consider developments in the economy and in the crude oil 
market that might explain the substantial reduction of the short-run price elastic-
ity of oil demand we documented earlier. These developments include a decline in 
the oil intensity of US real output, fuel switching, shifts in the composition of total 
oil demand, and variation in the global spare capacity of oil production. We do not 
preclude that other factors contributed to the steepening of the oil demand curve.

Energy Efficiency and Sectoral Shifts.—Following the oil price surges of the 
1970s, the extent to which the US economy and other industrialized countries rely 
on oil has changed substantially since the mid-1980s. Industries gradually switched 
away from oil to alternative sources of energy, developed more energy-efficient 
technologies and improved energy conservation. These efforts were supported by 
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government policies aimed at reducing oil usage and increasing energy awareness. 
This transition together with service-biased growth in the United States caused oil 
intensity in aggregate economic activity to fall steadily, reflected in a reduction in 
the use of oil input per unit of output as shown in Figure 6, panel A. This develop-
ment helps account for the decline of the short-run price elasticity of oil demand 
(see, e.g., Ryan and Plourde 2002; Hughes, Knittel, and Sperling 2008; Dargay and 
Gately 2010).7

In addition, the composition of total oil demand has changed over time with oil 
consumption now being concentrated in sectors such as transportation, which tradi-
tionally were characterized by a low own-price elasticity of demand due to the lack 
of substitutes for transportation fuels. The increased share of transportation in total 
oil demand has also contributed to a steepening of the oil demand curve (see Dargay 
and Gately 2010; Ramey and Vine 2011).

Finally, industrialized countries have increasingly outsourced their industrial pro-
duction to emerging economies. Emerging economies typically rely heavily on oil 
as an input factor. Their oil demand tends to be less sensitive to changes in oil prices 
than advanced economies. In addition, it has been suggested that governments in 
developing economies have used fuel subsidies to shield consumers from the impact 
of rising global oil prices thereby stimulating oil consumption and making con-
sumer demand unresponsive to international price signals.8 Given the larger share of 
emerging economies in global oil demand over time, this observation is consistent 
with the view that the elasticity of oil demand in global markets has declined.

capacity constraints in crude Oil Production.—Yet another possible explana-
tion is that in the presence of capacity constraints in crude oil production, the com-
position of oil demand is likely to change in favor of less elastic speculative or 
precautionary buying. At times of low spare capacity, even small supply disruptions 
can lead to large price increases because market participants anticipate that an unex-
pected loss in oil production cannot be replaced by other oil producers. In that sense, 
increasing capacity utilization signals some tightness in the market, which increases 
the willingness of oil consumers to pay a higher price for a barrel of oil at the margin 
that provides insurance against potential scarcity, i.e., they pay an insurance pre-
mium (see Alquist and Kilian 2010).9 Kilian (2008b) has documented that annual 
global capacity utilization rates in crude oil production have been steadily increasing 
from the mid-1980s to the early 1990s and stayed at levels close to full capacity ever 

7 Dargay and Gately (1994) attribute this phenomenon to the irreversibility of technical knowledge, the durabil-
ity of efficiency-improving investments and the nonabrogation of laws regarding energy-cost labeling and energy-
efficiency standards.

8 “Both wholesale and retail prices of oil products in the domestic market are lower than they are in the global 
market” as exemplified for China by Hang and Tu (2007, 2978). An estimate by Morgan Stanley shows that almost 
a quarter of the world’s petrol is sold at less than the market price (The Economist 2008).

9 As has been noted by Gately (1984, 1103), “aggravating the market tightness was an extended period of 
aggressive stockbuilding by the importing countries for much of 1979 and 1980. Such a stockbuilding “scram-
ble” during a disruption was certainly perverse. It undoubtedly drove the price higher than it would have gone 
 otherwise.” This aggressive hoarding behavior could hint at the increased importance of less elastic precautionary 
demand in total oil demand in a tightening market. In fact, Adelman (2002, 179) states that “when buyers fear 
damage from sudden dearth, there is also a precautionary motive; which may be joined to a speculative motive, to 
profit by buying sooner.”
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since (see Figure 6, panel B). This observation is in line with the gradual decline 
in the short-run price elasticity of oil demand uncovered in our empirical analysis.

IV. Conclusions

In this paper, we have analyzed the time-varying effects of oil supply shocks on 
the US economy and the oil market from 1974 onward. There are several a priori 
reasons to expect this relationship to have evolved over time. For example, the tran-
sition from a regime of administered oil prices to a market-based system, chang-
ing capacity utilization rates in crude oil production, and changes in the energy 
 dependence of the US economy all have implications for the effects of oil supply 
shocks on oil market variables and US macroeconomic aggregates.

Panel A. US oil intensity of production by year 

Panel B. Global capacity utilization rates in crude oil production by year 
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notes: US oil intensity of production has been computed as the annual petroleum consumption in British Thermal 
Units (BTU) by the industrial, commercial, and part of the transportation sector per dollar of US real GDP. The 
underlying data are obtained from the Department of Energy and from the International Monetary Fund. The spe-
cific data sources are further discussed in Appendix A.
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Our analysis combines a novel identification strategy for oil supply shocks based 
on inequality constraints with the estimation of a time-varying parameter VAR 
model. The first generation of structural oil market models has relied on exclu-
sion restrictions on the impact multiplier matrix that can be interpreted as a vertical 
short-run oil supply curve. Instead, we propose to identify oil supply shocks based 
on sign restrictions derived from a simple supply and demand model of the crude oil 
market. Specifically, we identify an oil supply shock as a disturbance in the global 
oil market that moves oil production and the real price of oil in opposite directions. 
This approach is particularly appealing when quarterly data are used, since tradi-
tional delay restrictions are credible only at the monthly frequency.

Until now, time variation in oil markets has been analyzed by splitting the sample 
or by estimating bivariate VARs on rolling windows. The split-sample approach 
is not appealing when dealing with smooth structural change. The rolling-window 
approach relies on short samples that would cause severe degrees-of-freedom prob-
lems when estimating the reduced form of our high-dimensional VAR model. An 
additional concern would be the ability of such a VAR model to identify the oil sup-
ply shocks on the basis of very short samples. We dealt with these two challenges by 
estimating a multivariate structural VAR with time-varying parameters and stochas-
tic volatility in the spirit of Cogley and Sargent (2005), Primiceri (2005), and Benati 
and Mumtaz (2007), among others.

We showed that when an exogenous oil supply shock in the time-varying param-
eter model is normalized to hold constant across time the implied change in the real 
price of oil on impact, the response of real GDP declines over time, which is consis-
tent with other recent evidence. When normalizing the shock to hold constant across 
time the implied change in global oil production on impact, however, the response of 
US output and inflation have become larger in magnitude in more recent years. We 
showed that these two findings can be reconciled by a combination of a decline in 
the short-run price elasticity of oil demand (such that a given shortfall in oil produc-
tion is associated with a greater price response on impact) and of changes over time 
in the response functions of all model variables. In particular, we documented that 
the oil demand curve is currently much steeper relative to the 1970s and early 1980s.

We further showed that the share of the volatility of the real price of oil explained 
by oil supply shocks has moderately decreased over time, indicating that oil supply 
shocks are not the primary driver of oil price movements in more recent periods. 
The contribution of oil supply shocks to the variability of real activity and inflation 
is economically relevant, ranging fairly steadily between 15 and 20 percent with the 
exception of 2008. Our analysis also reaffirmed that even allowing for time varia-
tion, the Great Inflation of the 1970s and early 1980s cannot be accounted for by 
negative oil supply shocks. Nor have the recessionary effects of oil supply shocks 
been very pronounced. We found that oil supply disruptions mattered for real eco-
nomic activity mainly during two episodes. They contributed to the 1991 recession 
and they slowed the ongoing boom at the end of the millennium. There is little or no 
evidence that oil supply shocks mattered much for the recessions of the early 1980s 
and for the downturns in 2001 and in 2008.

Our analysis adds to a growing literature on endogenous oil prices and their impli-
cations for the macroeconomy, including Baumeister and Peersman (forthcoming). 
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One key difference between our analysis in this paper and that in the other paper is that 
here we focused on studying and understanding the responses of US macroeconomic 
aggregates, whereas Baumeister and Peersman (forthcoming) focus on explaining oil 
price dynamics. A second key difference is that in this paper we were solely concerned 
with the effects of oil supply shocks without taking a stand on the difficult problem of 
disentangling different oil demand shocks. Indeed, trying to address both of these prob-
lems at the same time in a TVP-VAR framework would cause a  degrees-of-freedom 
problem. Thus, the analysis in these two papers is complementary.

Appendix A: Data Description

Monthly world oil production data measured in thousands of barrels of oil 
per day were obtained from the US Energy Information Administration’s (EIA) 
Monthly Energy Review starting in January 1973. Monthly data for global produc-
tion of crude oil for the period 1953:4 to 1972:12 were taken from the weekly Oil 
& Gas Journal (issue of the first week of each month). For the period 1947:1 to 
1953:3, monthly data were constructed by interpolation of yearly world oil produc-
tion data by means of the Litterman (1983) methodology using US monthly oil 
production data from the EIA as an indicator variable.10 Annual oil production data 
were obtained from World Petroleum (1947–1954), the Oil & Gas Journal (end-
of-year issues, 1954  –1960), and the EIA’s Annual Energy Review (1960–2010). 
Consistency between these different data sources was checked at each of the over-
lapping periods. Quarterly data are averages of monthly observations.

The nominal US refiners’ acquisition cost of imported crude oil was taken from 
the Monthly Energy Review.11 Since this series is only available from January 1974 
onward, it was backcast until 1947:I with the quarterly growth rate of the producer 
price index (PPI) for crude oil retrieved from the Bureau of Labor Statistics (BLS) 
database (WPU0561). Data were converted to quarterly frequency before backcast-
ing by averaging over months. For the robustness checks with regard to the choice 
of the oil price variable, we use the quarterly average of the West Texas Intermediate 
(WTI) spot oil price obtained from the Federal Reserve Economic Data (FRED) 
database maintained by the St. Louis FED (OILPRICE) and of the nominal US 
refiners’ acquisition cost of composite12 crude oil from the Monthly Energy Review. 
The latter was adjusted for price controls on domestic oil production for the period 
1971:III to 1974:I as described in Mork (1989) and reconstructed backward to 
1947:I in the same way as the imported refiners’ acquisition cost series.

Quarterly seasonally adjusted series for US real GDP (GDPC96: real gross 
domestic product, billions of chained 2005 dollars) and for the US GDP deflator 
(GDPDEF: gross domestic product implicit price deflator) were obtained from 

10 Since this part of the data is only needed for the training sample to calibrate the priors based on the estimation 
of a fixed-coefficient VAR, the use of interpolated data as opposed to actual ones is of minor consequence.

11 The refiners’ acquisition cost of crude oil imports (IRAC) is a volume-weighted average price of all kinds of 
crude oil imported into the US over a specified period. Since the US imports more types of crude oil than any other 
country, it may represent the best proxy for a true “world oil price” among all published crude oil prices. The IRAC 
is also similar to the OPEC basket price.

12 The entitlement system in force during the 1970s in the United States required buyers to purchase foreign 
and domestic oil in fixed proportions so that the aggregate price was a weighted average of these two kinds of oil.
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the FRED database. Monthly seasonally adjusted data for US industrial produc-
tion (INDPRO: industrial production index, index 2007 = 100), for the US con-
sumer price index (CPIAUCSL: consumer price index for all urban consumers: 
all items, index 1982–1984 = 100), for the civilian unemployment rate, 16 years 
and older, seasonally adjusted (UNRATE), and for the effective federal funds rate 
(FEDFUNDS) were taken from the FRED database, where the latter three were 
converted to quarterly frequency by taking averages.

Data on annual energy consumption by sector measured in billions of British Thermal 
Units (BTU) were obtained from the Annual Energy Review (Tables 2.1c–2.1 f ) for 
the period 1974 –2010. Primary and secondary uses of petroleum in the industrial, 
commercial and part of the transportation sector (buses and heavy trucks) were 
aggregated to obtain a measure of total petroleum consumption in the production 
process. Data on highway transportation energy consumption by mode (1970–2009) 
were taken from the Transportation Energy Data Book (Table 2.7).

Annual data on global spare capacity of oil production for the period 1974 –2010 
were taken from the IMF World Economic Outlook and updated with the EIA’s 
Short-Term Energy Outlook. Spare capacity refers to production capacity that can be 
brought online within 30 days and sustained for 90 days. Global capacity utilization 
rates are calculated as a percentage of total potential annual world oil production, 
which is the sum of available spare capacity and actual oil production taken from 
the Annual Energy Review.

Appendix B: Bayesian Estimation of a VAR  
with Time-Varying Parameters and Stochastic Volatility

Consider the time-varying vector autoregression model with stochastic volatility 
described by equations (1) to (7) in the main text.

A. Prior Distributions and Starting Values

The priors for the initial states of the drifting coefficients, the covariances and the 
log volatilities, p (  θ 0  ) , p (  α 0  )  and p ( ln   h 0  ) , respectively, are assumed to be normally 
distributed, independent of each other and independent of the hyperparameters, 
which are the elements of Q, S and the  σ  i  2  for i = 1, … , 4. The priors are calibrated 
on the point estimates of a constant-coefficient VAR (4) estimated over the period 
1947:II–1972:II.

The unrestricted prior for the VAR coefficients is set to

(8)  θ 0  ∼ n [     θ  OLS   ,     P  OLS  ] ,

where     θ  OLS  corresponds to the OLS point estimates of the training sample and 
    P  OLS  to four times the covariance matrix    V  (     θ  OLS  ) .

With regard to the prior specification of  α 0  and  h 0   , we follow Primiceri (2005) 
and Benati and Mumtaz (2007). Let P = A D 1/2  be the Choleski factor of the 
 time-invariant variance covariance matrix     Σ  OLS  of the reduced-form innovations 
from the estimation of the fixed-coefficient VAR (4), where A is a lower triangular 
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matrix with ones on the diagonal, and  D 1/2  denotes a diagonal matrix whose ele-
ments are the standard deviations of the residuals. The prior for the log volatilities 
is as follows:

(9) ln   h 0  ∼ n ( ln   μ  0 , 10 ×  I   4  ) ,

where  μ   0  is a vector that contains the diagonal elements of  D 1/2  squared, and the 
variance covariance matrix is arbitrarily set to ten times the identity matrix to make 
the prior only weakly informative. The prior for the contemporaneous interrelations 
is set to

(10)  α 0  ∼ n  [    ̃  α  0 ,   ̃ V  (    ̃  α  0  )  ] ,

where the prior mean for  α 0  is obtained by taking the inverse of A and stacking 
the elements below the diagonal row by row in a vector in the following way: 
   ̃  α  0  =  [    ̃  α  0, 21 ,    ̃  α  0, 31 ,    ̃  α  0, 32 ,    ̃  α  0, 41 ,    ̃  α  0, 42 ,    ̃  α  0, 43  ] ′. The covariance matrix,   ̃  V  (    ̃  α  0  ) , is 
assumed to be diagonal, and each diagonal element is set to ten times the absolute 
value of the corresponding element in    ̃  α  0 . While this scaling is obviously arbitrary, 
it accounts for the relative magnitude of the elements in    ̃  α  0  as pointed out by Benati 
and Mumtaz (2007).

With regard to the hyperparameters, we make the following assumptions along 
the lines of Benati and Mumtaz (2007). We postulate that Q follows an inverse-
Wishart distribution:

(11) Q ∼ iW (   
_
 Q    −1 ,  T 0  ) ,

where  T 0  is the prior degrees of freedom, which is set equal to the length of the 
training sample, which is sufficiently long (25 years of quarterly data) to guarantee 
a proper prior. Following Primiceri (2005), we adopt a relatively conservative 
prior for the time variation in the parameters in setting the scale matrix to 
 
_
 Q   = (0.01)2 ·    V  (     θ  OLS  )  multiplied by the prior degrees of freedom. This is a weakly 

informative prior, and the particular choice for its starting value is not expected 
to influence the results substantially since the prior is dominated by the sample 
information as time progresses. We experimented with different initial conditions 
inducing a different amount of time variation in the coefficients to test whether our 
results were sensitive to the choice of the prior specification. We follow Cogley and 
Sargent (2005) in setting the prior degrees of freedom alternatively to the minimum 
value allowed for the prior to be proper,  T 0  =  dim  (  θ t  )  + 1, together with a smaller 
value of the scale matrix,  

_
 Q   = 3.5 e −4  ·    V  (     θ  OLS  ) , which together put little weight on 

our prior belief about the drift in  θ t . Our results are not materially affected by the 
different choices for this prior.

The three blocks of S are assumed to follow inverse-Wishart distributions, with 
the prior degrees of freedom set equal to the minimum value required for the prior 
to be proper:

(12)  S i  ∼ iW (   
_
 S    i  −1 , i + 1 ) ,
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where i = 1, 2, 3 indexes the blocks of S. The scale matrices are calibrated on the abso-
lute values of the respective elements in    ̃  α  0 , as in Benati and Mumtaz (2007). Speci-
fically,   

_
 S   i  is a diagonal matrix with the relevant elements of    ̃  α  0  multiplied by 1 0 −3 .

Given the univariate feature of the laws of motion of the stochastic volatilities, 
the variances of the innovations to the univariate stochastic volatility equations are 
drawn from an inverse-Gamma distribution as in Cogley and Sargent (2005):

(13)  σ  i  2  ∼ iG  (   1 0 −4  _ 
2
  ,   1 _ 

2
   )  .

This distribution is proper and has fat tails.

B. Markov chain Monte carlo Algorithm for Simulating the Posterior Distribution

Since sampling from the joint posterior is complicated, we simulate the poste-
rior distribution by sequentially drawing from the conditional posterior of the four 
blocks of parameters: the coefficients  θ T ; the simultaneous relations  A T ; the vari-
ances  H T , where the superscript T refers to the whole sample; and the hyperparam-
eters—the elements of Q, S and the  σ  i  2  for i = 1, … , 4—   collectively referred to as 
M. Posteriors for each block of the Gibbs sampler are conditional on the observed 
data  Y T  and the rest of the parameters drawn at previous steps.

Step 1: Drawing coefficient states
Conditional on  A T ,  H T , M, and  Y T , the measurement equation is linear and has 

Gaussian innovations with known variance. Therefore, the conditional posterior is 
a product of Gaussian densities, and  θ T  can be drawn using a standard simulation 
smoother (see Carter and Kohn 1994; Cogley and Sargent 2002), which produces a 
trajectory of parameters:

(14)  p (  θ T  |  Y T ,  A T ,  H T  )  = p (  θ T  |  Y T ,  A T ,  H T    )    ∏  
t=1

   
T−1

  p (  θ t  |  θ t+1 ,  Y T ,  A T ,  H T  )  .

From the terminal state of the forward Kalman filter, the backward recursions 
produce the required smoothed draws that take the information of the whole sample 
into account. More specifically, the last iteration of the filter provides the conditional 
mean  θ T | T  and conditional variance  P T | T  of the posterior distribution. A draw from 
this distribution provides the input for the backward recursion at T − 1, T − 2 and 
so on until the beginning of the sample according to

(15)  θ t | t+1  =   θ t | t  +  P t | t   P  t+1 | t  −1
    (  θ t+1  −  θ t  ) 

(16)  P t | t+1  =   P t | t  −  P t | t   P  t+1 | t  −1
    P t | t  .

Step 2: Drawing covariance states
Similarly, the posterior of  A T  conditional on  θ T ,  H T , and  Y T  is a product of nor-

mal densities and can be calculated by applying the same algorithm as in step 1 as 
a consequence of the block diagonal structure of the variance covariance matrix 
S. More specifically, a system of unrelated regressions based on the relation 
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 A t   u t  =  ε t   , where  ε t  are orthogonalized innovations with known time-varying vari-
ance  H t  and  u   t  =  y t  −  X  t  ′   θ t  are observable residuals, can be estimated to recover  
A T  according to the following transformed equations, where the residuals are inde-
pendent standard normal:

(17)  u 1, t  =  ε 1, t 

(18)  (  h  2, t  
−   1 _ 2    u 2, t  )  = − α 2, 1  (  h  2, t  

−   1 _ 2    u 1, t  )  +  (  h  2, t  
−   1 _ 2    ε 2, t  ) 

(19)  (  h  3, t  
−   1 _ 2    u 3, t  )  = − α 3, 1  (  h  3, t  

−   1 _ 2    u 1, t  )  −  α 3, 2  (  h  3, t  
−   1 _ 2    u 2, t  )  +  (  h  3, t  

−   1 _ 2    ε 3, t  ) 

(20)  (  h  4, t  
−   1 _ 2    u 4, t  )  = − α 4, 1  (  h  4, t  

−   1 _ 2    u 1, t  )  −  α 4, 2  (  h  4, t  
−   1 _ 2    u 2, t  )  −  α 4, 3  (  h  4, t  

−   1 _ 2    u 3, t  )  +  (  h  4, t  
−   1 _ 2    ε 4, t  ) .

Step 3: Drawing volatility states
Conditional on  θ T ,  A T , and  Y T , the orthogonalized innovations  ε t  ≡  A t  (  y t  −  X  t  ′   θ t  )  

with Var (  ε t  )  =  H t  are observable. However, drawing from the conditional posterior 
of  H T  is more involved because the conditional state-space representation for ln  h i, t  
is not Gaussian. The log-normal prior on the volatility parameters is common in the 
stochastic volatility literature, but such a prior is not conjugate. Following Cogley 
and Sargent (2005, Appendix B.2.5) and Benati and Mumtaz (2007), we apply the 
univariate algorithm by Jacquier, Polson, and Rossi (1994) that draws the volatility 
states  h i, t  one at a time.

Step 4: Drawing hyperparameters
The hyperparameters M of the model can be drawn directly from their respective 

posterior distributions since the disturbance terms of the transition equations are 
observable given  θ T ,  A T ,  H T , and  Y T .

We perform 100, 000 iterations of the Gibbs sampler and discard the first 
50, 000 draws as “burn-in.” The remaining sequence of draws from the conditional 
posteriors of the four blocks form a sample from the joint posterior distribution 
p (  θ T ,  A T ,  H T , M |  Y T  ) . We keep only every tenth draw in order to mitigate the auto-
correlation among the draws. Following Primiceri (2005) and Benati and Mumtaz 
(2007), we ascertain that our Markov chain has converged to the ergodic distribution 
by computing the draws’ inefficiency factors, which are the inverse of the relative 
numerical efficiency measure (RNE) introduced by Geweke (1992),

(21) RnE = (2π ) −1    1 _ 
S(0)

    ∫  
−π

  
π
   S(ω)d ω ,

where S(ω) is the spectral density of the retained draws from the Gibbs sampling 
replications for each set of parameters at frequency ω.13 Figure 1A in the online 

13 See Benati and Mumtaz (2007) for details on the implementation.
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Appendix displays the inefficiency factors for the states and the hyperparameters 
of the model, which are all far below the value of 20 designated as an upper bound 
by Primiceri (2005). Thus, the autocorrelation across draws is modest for all ele-
ments, which provides evidence of convergence to the ergodic distribution. In total, 
we collect 5, 000 simulated values from the Gibbs chain on which we base our 
structural analysis.

Appendix C: Generalized Impulse Responses and Sign Restrictions

Here we describe the Monte Carlo integration procedure that we use to compute 
the nonlinear impulse response functions to a structural oil supply shock. In the 
spirit of Koop, Pesaran, and Potter (1996), we compute the generalized impulse 
responses as the difference between the conditional expectations with and without 
the exogenous shock:

(22) iR F t+k  = E [  y t+k  |  ε t   ,  ω t  ]  − E [  y t+k  |  ω t  ] ,

where  y t+k  contains the forecasts of the endogenous variables at horizon k;  ω t  represents 
the current information set that captures the entire history up to that point in time, 
and  ε t  is the current disturbance term. At each point in time, the information set upon 
which we condition the forecasts contains the actual values of the lagged endogenous 
variables and a random draw of the model parameters and hyperparameters. More 
specifically, in order to calculate the conditional expectations, we simulate the 
model in the following way. We randomly draw from the Gibbs sampler output 
one possible state of the economy at time t represented by the time-varying lagged 
coefficients and the elements of the variance covariance matrix. Starting from this 
random draw from the joint posterior that includes the hyperparameters, we employ 
the transition laws and stochastically simulate the future paths of the coefficient 
vector and the components of the variance covariance matrix for up to 20 quarters 
into the future. By projecting the evolution of the system in this way, we account 
for all the potential sources of uncertainty deriving from the additive innovations, 
variations in the lagged coefficients and changes in the contemporaneous relations 
among the variables in the system.

To obtain the time-varying structural impact matrix  B 0, t   , we implement the pro-
cedure proposed by Rubio-Ramírez, Waggoner, and Zha (2010). Given the current 
state of the economy, let  Ω t  =  P t   D t   P  t  ′  be the eigenvalue-eigenvector decomposi-
tion of the VAR’s time-varying variance covariance matrix  Ω t  at time t. We draw 
an n × n matrix, K, from the n ( 0, 1 )  distribution, take the QR decomposition 
of K, where R is a diagonal matrix whose elements are normalized to be positive, 
and Q is a rotation matrix the columns of which are orthogonal to each other, and 
compute the time-varying structural impact matrix as  B 0, t  =  P t   D  t  

  1 _ 2    Q′. Given this 
 contemporaneous impact matrix, we compute the reduced-form innovations based 
on the relationship  u t  =  B 0, t   ε t   , where  ε t  contains four structural shocks drawn from 
a standard normal distribution. Impulse responses are then computed by comparing 
the effects of a shock on the evolution of the endogenous variables to the bench-
mark case without a shock, where in the former case the shock is set to  ε i, t  + 1, 
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while in the latter we only consider  ε i, t   . The reason for this is to allow the system to 
be impacted by other disturbances during the propagation of the shock of interest. 
From the set of impulse responses derived in this way, we select only those impulse 
responses that at horizons t + k, k = 0, 1, … , 4, satisfy the sign restrictions, i.e., the 
responses of the endogenous variables are consistent with the structural shock we 
wish to identify; all others are discarded.

We repeat this procedure until 100 iterations have fulfilled the sign restrictions for 
a given simulated future path of the economy, and then calculate the mean responses 
of the four endogenous variables over the accepted rotations. For each point in time, 
we randomly draw 500 current states of the economy that provide the distribution 
of impulse responses taking into account possible developments of the structure of 
the economy. The representative impulse response function for each variable at each 
date is the median of this distribution.
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