# The Economic Consequences of Oil Shocks Differences Across Countries and Time

Christiane Baumeister, Gert Peersman and Ine Van Robays



**Inflation Challenges in an Era of Relative Price Shocks** 

Sydney, 17 -18 August 2009

# **Analysis in this paper**

- Economic consequences of oil shocks across a set of very diverse industrialised countries
  - Oil and energy-importing: US, Euro area, Japan and Switzerland
  - Oil and other forms of energy-exporters: Norway and Canada
  - Oil-exporter but importer of other forms of energy: UK
  - Oil-importer but exporter of other forms of energy: Australia
- Three different perspectives
  - 1. Cross-country effects of different types of oil shocks
  - A closer look at the oil transmission mechanism
  - 3. Has the impact **changed over time**? (see paper)

Estimation of a benchmark SVAR model

$$Y_t = c + A(L)Y_{t-1} + u_t$$

#### Oil market variables

- > Global oil production
- > World crude oil price
- > World economic activity

#### **Country-specific** variables

- > Real GDP
- > Consumer prices
- > Nominal interest rate
- > Nominal effective exchange rate

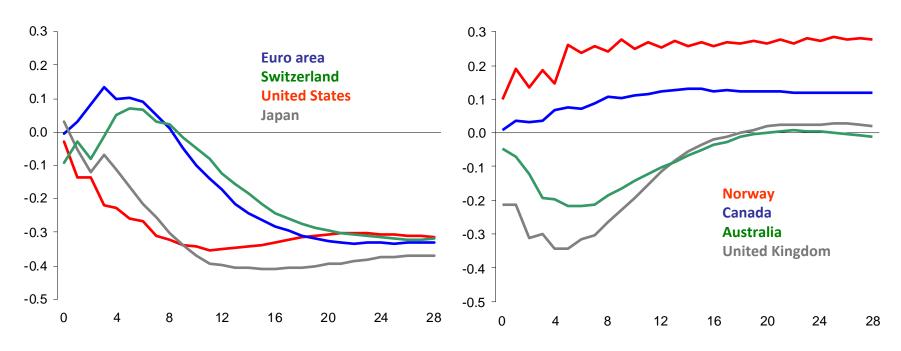
Sample period 1986Q1-2008Q1 with 3 lags

- Not all oil shocks are alike: we disentangle three types of oil shocks using sign restrictions
  - Oil supply shocks (e.g. production disruptions in oil-exporting countries)

|                  | Q <sub>oil</sub> | P <sub>oil</sub> | Y <sub>wd</sub> | Y <sub>j</sub> | P <sub>j</sub> | i <sub>j</sub> | S <sub>j</sub> |
|------------------|------------------|------------------|-----------------|----------------|----------------|----------------|----------------|
| Oil supply shock | <0               | >0               | ≤0              |                |                |                |                |
|                  |                  |                  |                 |                |                |                |                |
|                  |                  |                  |                 |                |                |                |                |

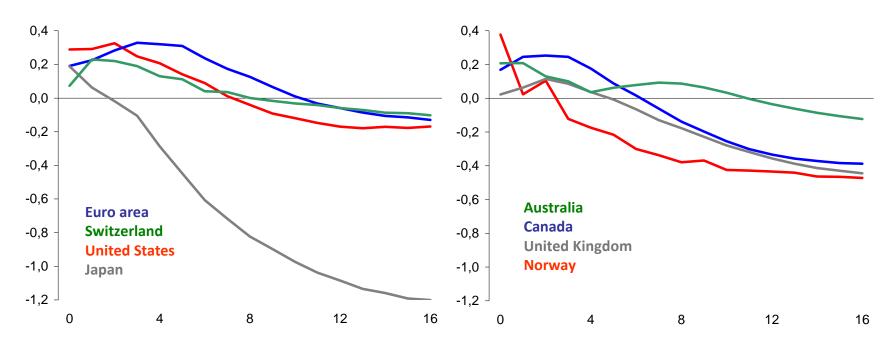
- Not all oil shocks are alike: we disentangle three types of oil shocks using sign restrictions
  - Oil supply shocks (e.g. production disruptions in oil-exporting countries)
  - Oil demand shocks driven by economic activity (e.g. China)

|                                | Q <sub>oil</sub> | P <sub>oil</sub> | Y <sub>wd</sub> | Y <sub>j</sub> | P <sub>j</sub> | i <sub>j</sub> | S <sub>j</sub> |
|--------------------------------|------------------|------------------|-----------------|----------------|----------------|----------------|----------------|
| Oil supply shock               | <0               | >0               | ≤0              |                |                |                |                |
| Global economic activity shock | >0               | >0               | >0              |                |                |                |                |
|                                |                  |                  |                 |                |                |                |                |


- Not all oil shocks are alike: we disentangle three types of oil shocks using sign restrictions
  - Oil supply shocks (e.g. production disruptions in oil-exporting countries)
  - Oil demand shocks driven by economic activity (e.g. China)
  - Oil-specific demand shocks (e.g. shifts in precautionary or speculative oil demand)

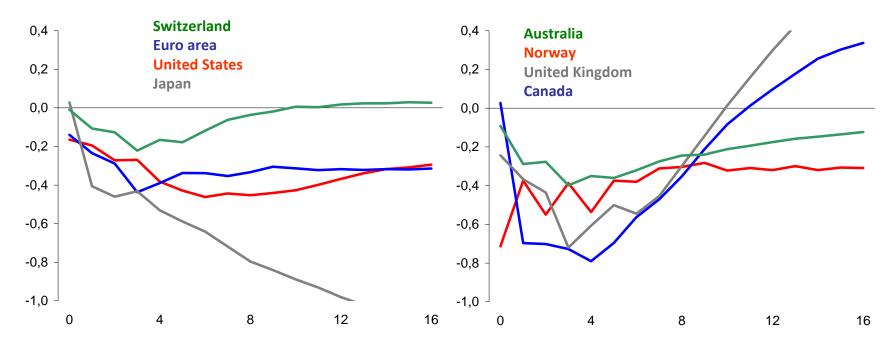
|                                | Q <sub>oil</sub> | P <sub>oil</sub> | Y <sub>wd</sub> | Y <sub>j</sub> | P <sub>j</sub> | i <sub>j</sub> | S <sub>j</sub> |
|--------------------------------|------------------|------------------|-----------------|----------------|----------------|----------------|----------------|
| Oil supply shock               | <0               | >0               | ≤0              |                |                |                |                |
| Global economic activity shock | >0               | >0               | >0              |                |                |                |                |
| Oil-specific demand shock      | >0               | >0               | ≤0              |                |                |                |                |

- Not all oil shocks are alike: we disentangle three types of oil shocks using sign restrictions
  - Oil supply shocks (e.g. production disruptions in oil-exporting countries)
  - Oil demand shocks driven by economic activity (e.g. China)
  - Oil-specific demand shocks (e.g. shifts in precautionary or speculative oil demand)
- No restrictions on country-specific variables


|                                | Q <sub>oil</sub> | P <sub>oil</sub> | Y <sub>wd</sub> | Y <sub>j</sub> | P <sub>j</sub> | i <sub>j</sub> | S <sub>j</sub> |
|--------------------------------|------------------|------------------|-----------------|----------------|----------------|----------------|----------------|
| Oil supply shock               | <0               | >0               | ≤0              | ?              | ?              | ?              | ?              |
| Global economic activity shock | >0               | >0               | >0              | ?              | ?              | ?              | ?              |
| Oil-specific demand shock      | >0               | >0               | ≤0              | ?              | ?              | ?              | ?              |

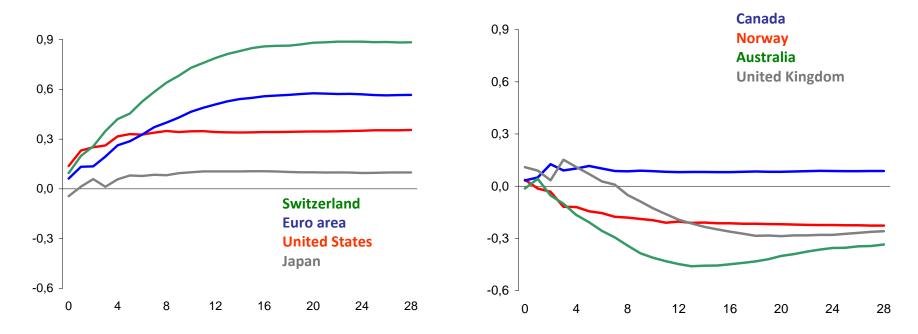
• Impact of 10% oil supply shock on output




- Permanent and significant fall in oil and energy-importing countries
  - Very sluggish reaction in Euro area and Switzerland compared to a quick fall in US and Japan
- Permanent increase in countries that export both oil and other forms of energy: Norway and Canada
- Only a temporary decline in countries exporting oil or other forms of energy:
   Australia and UK

• Impact of 10% global activity shock on output

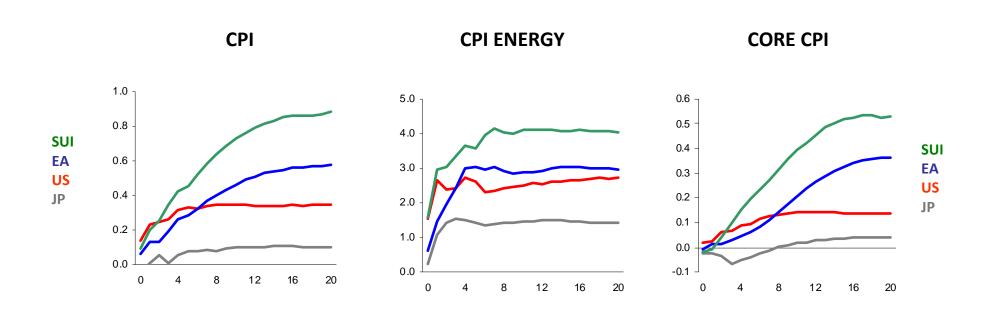



- Significant transitory increase of real GDP in all countries
  - Role of oil and energy in the economy does not matter for differences
  - Not surprising: even output in oil-importing countries could rise because country itself is in a boom or indirectly gains from trade with the rest of the world (cfr. oil price increase due to worldwide economic activity)

• Impact of 10% oil-specific demand shock on output

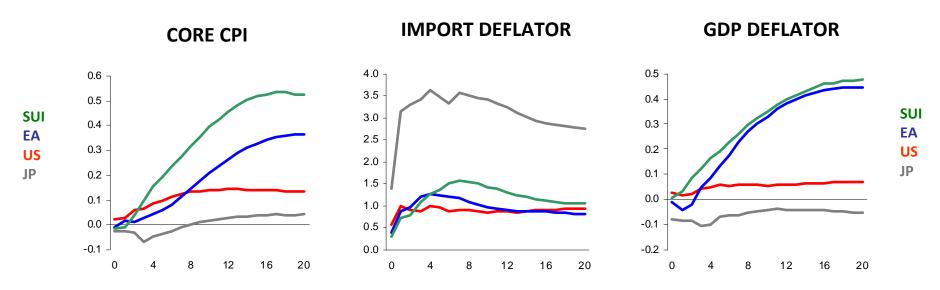


- Significant temporary decline of real GDP in all countries
  - Role of oil and energy in the economy does again not matter for differences

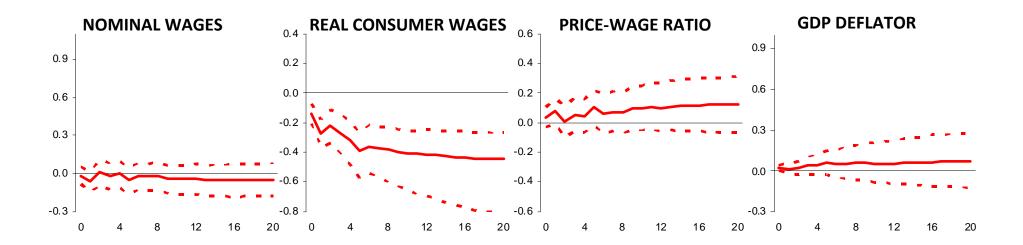

- Extend the benchmark SVARs with additional variables one by one
- Focus on oil supply shocks and oil-importing countries



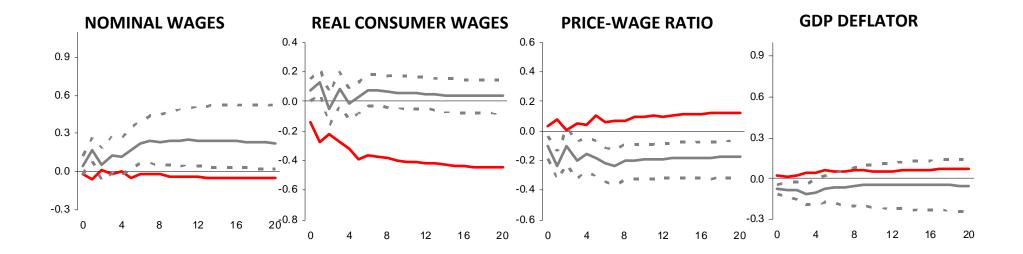
- Significant inflationary effects in oil and energy-importing countries
  - Considerable cross-country differences of magnitude
  - Speed of pass-through: US and Japan versus Euro area and Switzerland
- No significant impact on consumer prices in oil and/or energy-exporting countries (could be explained by an appreciation of effective exchange rate)


#### Direct effects

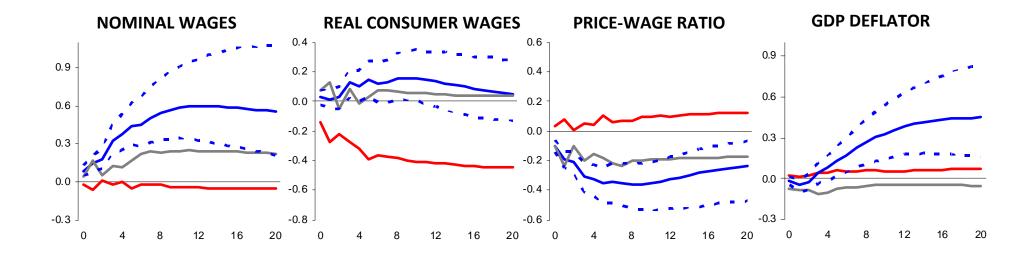
- Oil supply shock has a direct effect on consumer prices because oil (energy) is part of the index
  - **CPI energy** reacts significantly in all countries
- If only direct effects are relevant, core CPI should not react
  - Is only the case in Japan



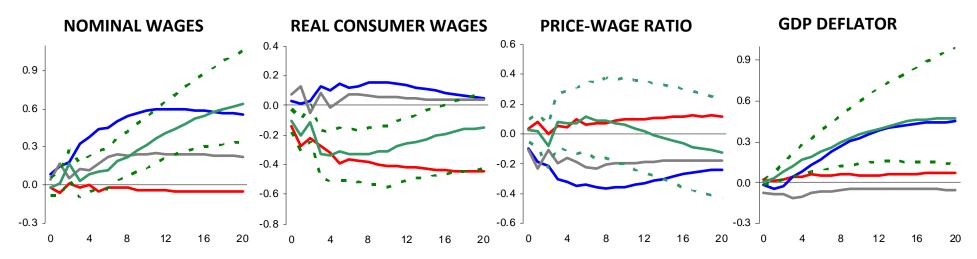

#### Cost effects


- Production costs of firms increase, which are passed on to prices of non-energy goods and services
- For oil-importing countries: should only affect the import deflator and not the GDP deflator (domestic value added)
  - Significant impact on import deflator in all countries
  - US and Japan: no reaction of GDP deflator
  - Euro area and Switzerland: considerable rise of GDP deflator




- GDP deflator positively affected by second-round effects
  - Employees demand higher wages, which are passed on to prices
- GDP deflator negatively influenced by a fall in aggregate demand (see later)
- Consider nominal wages, real consumer wages and price-wage ratio
  - **US**: loss in purchasing power entirely borne by employees




- GDP deflator positively affected by second-round effects
  - Employees demand higher wages, which are passed on to prices
- GDP deflator negatively influenced by a fall in aggregate demand
- Consider nominal wages, real consumer wages and price-wage ratio
  - **US**: loss in purchasing power entirely borne by employees
  - Japan: loss borne by producers, fall in price-wage ratio equal to wage rise



- GDP deflator positively affected by second-round effects
  - Employees demand higher wages, which are passed on to prices
- GDP deflator negatively influenced by a fall in aggregate demand
- Consider nominal wages, real consumer wages and price-wage ratio
  - **US**: loss in purchasing power entirely borne by employees
  - Japan: loss borne by producers, fall in price-wage ratio equal to wage rise
  - **Euro area**: purchasing power of employees constant, loss transferred to producers and higher prices (**second-round effects**)



- GDP deflator positively affected by second-round effects
  - Employees demand higher wages, which are passed on to prices
- GDP deflator negatively influenced by a fall in aggregate demand
- Consider nominal wages, real consumer wages and price-wage ratio
  - **US**: loss in purchasing power entirely borne by employees
  - Japan: loss borne by producers, fall in price-wage ratio equal to wage rise
  - **Euro area**: purchasing power of employees constant, loss transferred to producers and higher prices (**second-round effects**)
  - **Switzerland**: price-wage ratio constant but considerable increase of nominal wages (**second-round effects**)



Demand effects and impact on economic activity

To shed some light on these effects, we evaluated the response of **GDP**, **consumption**, **investment and the interest rate**.

- Japan: lack of interest rate reaction and absence of a loss in purchasing power in the long-run for consumers, results in insignificant reaction of private consumption and investment
- US: immediate fall in consumption (income and precautionary savings effect), but no significant reaction of investment and no interest rate response
- Euro Area and Switzerland: consumption and investment decline with a considerable delay, which can be explained by the strong and significant interest rate tightening (monetary policy effect)

# 3. Time-varying effects of oil shocks

- Has the impact changed over time?
  - Macroeconomic structure has changed
  - Structural changes in the oil market: Baumeister and Peersman (2008) document a considerably steeper or less elastic oil demand curve over time, which distorts comparisons over time
- However, cross-country dimension avoids this normalisation problem by comparing relative changes:

If the role and share of oil and energy in the economy is important for time variation: changes in effects over time should be more favourable for countries that improved their net oil and energy position the most over time

→ Is indeed the case

#### **Conclusions**

- Economic consequences of oil shocks and associated monetary policy implications depend on the source of oil price shift
  - Oil supply shock: permanent fall of GDP in energy-importing countries, insignificant or even positive response in energy-exporting countries
  - Oil demand shock driven by economic activity: temporary increase of output in all countries
  - Oil-specific demand shock: transitory decline of output
- Pass-through to consumer prices very different across countries
  - No inflationary effects in energy exporters because of exchange rate appreciation
  - US and Japan: fast pass-through which is a combination of direct and cost effects
  - Euro area and Switzerland: slow and stronger pass-through because of the existence of second-round effects, strong monetary policy response
- Has the impact changed over time?
  - Countries that improved their net energy position the most over time became also relatively less vulnerable to oil supply shocks compared to other countries