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TECHNOLOGY SHOCKS AND ROBUST SIGN RESTRICTIONS
IN A EURO AREA SVAR∗

BY GERT PEERSMAN AND ROLAND STRAUB1

Ghent University, Belgium; European Central Bank, Germany

We use a model-based identification strategy to estimate the impact of tech-
nology shocks on hours worked and employment in the euro area. The sign re-
strictions applied in the vector autoregression (VAR) analysis are consistent with
a large class of dynamic stochastic general equilibrium (DSGE) models and are
robust to parameter uncertainty. The results are in line with the conventional Real
Business Cycle (RBC) interpretation that hours worked rise as a result of a posi-
tive technology shock. By comparing the sign restrictions method to the long-run
restriction approach of Galı́ (Quaterly Journal of Economics (1992) 709–38), we
show that the results do not depend on the stochastic specification of the hours
worked series or the data sample but only on the identification scheme.

1. INTRODUCTION

The direction and the magnitude of the response of hours worked and employ-
ment following a technology shock are subject to an active controversy in the
academic literature. The debate has its origin in the Real Business Cycle (RBC)
research program. The workhorse of this program, as introduced in the seminal
paper by Kydland and Prescott (1982), has been a flexible-price, dynamic general
equilibrium model with optimizing agents. The motivation behind this approach
was to explain aggregate fluctuations in actual economies using the RBC model
subject to stochastic technology shocks. In the RBC framework, technology shocks
act as labor demand shifters and have a positive impact on both per capita hours
worked and output.

This prediction of the RBC model has been challenged by Galı́ (1999). Using
a structural vector autoregression (VAR) with long-run restrictions, Galı́ (1999)
provides empirical evidence that hours worked fall as a result of a positive tech-
nology shock in the United States. Furthermore, Galı́ (1999) demonstrates that
the latter result is in line with the prediction of a standard New Keynesian (NK)
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model with sticky prices. Price rigidities in combination with an active monetary
policy rule imply that aggregate demand cannot change immediately following a
positive technology shock, forcing firms to contract employment.2 Similar results
are presented in Shea (1998), Basu et al. (2006), Francis and Ramey (2005), and
Francis et al. (2003).

Recent studies, however, argue that the results provided in Galı́ (1999) are not
robust to certain modifications. First, in Galı́’s setup, only technology shocks have
a long-run impact on labor productivity. Uhlig (2004) shows, however, that capital
income taxation shocks or long-run shifts in the social attitudes to the workplace
can also be a source of changes in long-run labor productivity. Second, Faust and
Leeper (1997) demonstrate that using long-run restrictions substantial distortions
are possible because of small sample biases and measurement errors. Furthermore,
in a similar framework as Galı́ (1999), Christiano et al. (2003) test the sensitivity of
the results to the stochastic specification of the hours worked series. Interestingly,
if per capita hours worked is modeled as a difference stationary process, the results
confirm that hours worked will fall following a positive technology shock. But in
case the system is estimated using the level of the hours worked series, the impulse
responses are in line with the predictions of the RBC model. Other papers casting
doubts on the robustness of Galı́’s results are Bils (1998) and Chang and Hong
(2006). A comprehensive overview of the empirical and theoretical debate on the
effects of technology shocks is presented in Galı́ and Rabanal (2004).

In this article, we propose an alternative, model-based identification strategy
to estimate the effects of technology shocks on hours worked and employment in
the euro area. In particular, we utilize conditional moments of dynamic stochastic
general equilibrium (DSGE) models, which hold under both flexible and sticky
prices/wages and a given sensible range of structural parameter values, as sign
restrictions in a structural VAR (SVAR). In order to identify the shocks, how-
ever, we use only a minimum set of sign restrictions that are robust to model and
parameter uncertainty. Since we are mainly interested in the response of hours
worked following a technology shock, we do not apply any restriction on its re-
sponse. Hence, the estimated reaction of hours worked in our VAR allows us to
discriminate between the NK and the RBC models. As an identification approach,
sign restrictions were first used by Faust (1998), Canova and De Nicoló (2002),
and Uhlig (2005) to identify monetary policy shocks. Peersman (2005) showed
how they can be used to also identify aggregate supply, demand, and oil price
shocks.

In line with the RBC hypothesis, we find a significant increase in hours worked
following a positive technology shock. The results are robust whether we estimate
the model in levels or first differences or when we use total employment instead
of hours. Interestingly, when using long-run restrictions, as defined in Galı́ (1999),
to identify technology shocks in our data set, hours worked fall on impact. This

2 The ability to hold inventory might change the nature of firms’ response to technology shocks
even under sticky prices. Chang et al. (2004) demonstrate that even when the prices are fixed, firms
may want to produce more, hire workers, and build up inventories for future sales in response to a
favorable technology shock.
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indicates that our results do not depend on the chosen data set or the stochastic
specification of hours worked but rather on the identification scheme3. However,
although our results assign a more important role for technology shocks in ex-
plaining variations in output and hours worked as compared with the results by
Galı́ (1999), they do still question the original RBC hypothesis that technology
shocks are the main source of business cycle fluctuations. In particular, technology
shocks can only explain less than 25% of variations in output and hours worked
in a five-year horizon.

In related work, Dedola and Neri (2007) also find a positive impact of tech-
nology shocks on hours worked by applying sign restrictions in a VAR for the
United States and Germany. Their identification scheme relies, however, on re-
strictions on labor productivity, output, investment, consumption, and real wages
and is therefore more restrictive than our approach. Furthermore, the restrictions
in Dedola and Neri (2007) are not sufficient to disentangle productivity shocks
from government spending shocks in the NK models with limited asset market
participation (see, e.g., Galı́ et al., 2007). Note that these types of NK models gen-
erate positive effects on consumption following a government spending shock in
line with the empirical evidence, as discussed, for instance, in Fatás and Mihov
(2001) and Coenen and Straub (2005).

The rest of this article is organized as follows. In Section 2, we describe our
model-based identification strategy. First, we set up a baseline DSGE model that
nests both an NK sticky price/wage model and an RBC model as a special case
and utilize the impulse responses of the models to derive a minimum set of sign
restrictions that are robust to model and parameter uncertainty. In Section 3, we
present the results of the SVAR, provide robustness analysis, and identify the
underlying cause for our contrasting results. We also discuss the importance of
technology shocks for the euro area business cycle. Finally, Section 4 concludes
the analysis.

2. IDENTIFICATION

In this section, we present the equilibrium conditions of a standard DSGE model
that are utilized to derive the sign restrictions imposed in the empirical exercise.
As we will discuss in the next section, the model presented below nests both an
NK sticky price/wage model and an RBC model as a special case.

2.1. Households. In the first step, we present the optimization problem of a
representative household denoted by h. The household maximizes lifetime utility
by choosing consumption Ch,t , financial wealth in form of bonds Bh,t+1, and the
next period’s capital stock Kh,t+1:

max E0

∞∑
t=0

β t
{

1
1 − σ

C1−σ
h,t − εn

t

1 + ζ
N1+ζ

h,t

}
,(1)

3 Canova et al. (2005) and Peersman and Straub (2006) also confirm a rise of hours using sign
restrictions in more recent work.
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where β is the discount factor, σ denotes the coefficient of relative risk aversion,
and ζ is the inverse of the elasticity of work effort with respect to the real wage.
The household’s utility depends positively on the level of consumption, Ch,t , and
negatively on hours worked, Nh,t . We denote a serially correlated shock to la-
bor supply with εn

t .4 The intertemporal budget constraint of the representative
household is given by

Ch,t + Ih,t + R−1
t

Bh,t+1

Pt

= Wh,t

Pt
Nh,t + RK

t Kh,t + Dh,t + Th,t + Bh,t

Pt
,

(2)

and the capital accumulation process by

Kh,t+1 = (1 − δ)Kh,t + Ih,t .(3)

Here, Rt is the nominal interest rate, RK
t is the rate of return to capital, Wh,t is the

nominal wage, Kh,t is the capital stock, Th,t are lump-sum taxes paid to the fiscal
authority, Pt is the price level, and Dh,t is the dividend income. In the following
sections, we will assume the existence of state-contingent securities that are traded
among households in order to insure households against variations in household-
specific wage income. As a result, where possible, we neglect the indexation of
individual households.

The maximization of the objective function with respect to consumption, bond
holding, and next period’s capital stock can be summarized by the following two
standard Euler equations:

β Rt Et

[
Ct

σ

Ct+1
σ

Pt

Pt+1

]
= 1(4)

and

1 = βEt

[
Ct

σ

Ct+1
σ

(
1 − δ + RK

t+1

)]
.(5)

2.2. Firms. There are two types of firms, a continuum of monopolistically
competitive firms indexed by f ∈ [ 0, 1 ], each of which produces a single-
differentiated intermediate good, Yf,t , and a distinct set of perfectly competitive
firms, which combine all the intermediate goods into a single final good, Yt.

4 Recent literature presents empirical evidence for the importance of labor supply shifts in explain-
ing business cycle fluctuation. Chang and Schorfheide (2003), for example, show that labor supply
shocks account for about 30% of the cyclical fluctuation in the U.S. hours worked series. Smets and
Wouters (2003) report that after two-and-a-half years, about 33% of the variation of euro area output
is caused by labor supply shocks.
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2.2.1. Final-good firms. The final-good-producing firms combine the differ-
entiated intermediate goods Yf,t using a standard Dixit–Stiglitz aggregator

Yt =
(∫ 1

0
Y

1
1+λp

f,t d f

)1+λp

,(6)

where λp is a parameter determining the degree of imperfect competition in the
goods market. Minimizing the cost of production subject to the aggregation con-
straint (Equation (6)) results in demand for the differentiated intermediate goods
as a function of their price Pf,t relative to the price of the final good Pt,

Yf,t =
(

Pf,t

Pt

)− 1+λp
λp

Yt ,(7)

where the price of the final good Pt is determined by the following index:

Pt =
(∫ 1

0
P

− 1
λp

f,t d f

)−λp

.

2.2.2. Intermediate-goods firms. Each intermediate-goods firm f produces its
differentiated output using a production function of a standard Cobb–Douglas
form:

Yf,t = At Nf,t
1−α Kα

f,t ,(8)

where At is a technology shock and α the capital share of output in the steady
state. Taking the rental cost of capital, Rk

t , and the aggregate wage index, Wt,
as given, cost minimization subject to the production technology (Equation (8))
yields first-order conditions for the inputs that can be expressed as relative factor
demands and nominal marginal cost MCt:

Kf,t

Nf,t
=

(
α

1 − α

)
Wt

Rk
t

and

MCt = 1
At αα(1 − α)(1−α)

W(1−α)
t

(
Rk

t

)α
.

2.2.3. Price setting. Following Calvo (1983), intermediate-goods-producing
firms receive permission to optimally reset their price in a given period t with
probability 1 − θp. All firms that receive permission to reset their price choose
the same price P∗

f,t . Each firm f receiving permission to optimally reset its price
in period t maximizes the discounted sum of expected nominal profits,

Et

[ ∞∑
k=0

θk
p χt,t+k Df,t+k

]
,
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subject to the demand for its output (Equation (7)), where χ t,t+k is the stochastic
discount factor of the households owing the firm and

Df,t = Pf,t Yf,t − MCt Yf,t

are period-t nominal profits that are distributed as dividends to the households.
Hence, we obtain the following first-order condition for the firm’s optimal price-

setting decision in period t:

P∗
f,t Yf,t − (1 + λp) MCt Yf,t + Et

[ ∞∑
k=1

θk
p χt,t+k Yf,t+k

(
P∗

f,t − (1 + λp) MCt+k
)]= 0.

(9)

With the intermediate-goods prices Pf,t set according to Equation (9), the evo-
lution of the aggregate price index is then determined by the following expression:

Pt = (
(1 − θp)

(
P∗

f,t

)− 1
λp + θp (Pf,t−1)− 1

λp
)−λp

.

2.3. Wage Setting. There is a continuum of monopolistically competitive
unions indexed over the same range as the households, h ∈ [ 0, 1 ], which act as
wage setters for the differentiated labor services supplied by the households, tak-
ing the aggregate nominal wage rate Wt and aggregate labor demand Nt as given.
Following Calvo (1983), unions receive permission to optimally reset their nomi-
nal wage rate in a given period t with probability 1 − θw. All unions that receive
permission to reset their wage rate choose the same wage rate W∗

h,t . Each union h
that receives permission to optimally reset its wage rate in period t maximizes the
household’s lifetime utility function (Equation (1)), subject to its intertemporal
budget constraint (Equation (2)) and the demand for labor services of variety h,
the latter being given by

Nh,t =
(

Wh,t

Wt

)− 1+λw
λw

Nt ,

where λw is a parameter determining the degree of imperfect competition in the
labor market. As a result, we obtain the following first-order condition for the
union’s optimal wage-setting decision in period t:

W∗
h,t

Pt
− (1 + λw) εn

t MRSt + Et

∞∑
k=1

θk
w βk

[
W∗

h,t

Pt+k
− (1 + λw) εn

t+k MRSt+k

]
= 0,

(10)

where MRSt+k stands for the marginal rate of substitution

MRSt = Nh,t
ζ Ch,t

σ .
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The aggregate labor demand, Nt, and the aggregate nominal wage rate, Wt, are
determined by the following Dixit–Stiglitz indices:

Nt =
(∫ 1

0
(Nh,t )

1
1+λw dh

)1+λw

and

Wt =
(∫ 1

0
(Wh,t )

− 1
λw dh

)−λw

.

With the labor-specific wage rates Wh,t set according to Equation (10), the evo-
lution of the aggregate nominal wage rate is then determined by the following
expression:

Wt = (
(1 − θw)

(
W∗

h,t

)− 1
λw + θw(Wh,t−1)− 1

λw

)−λw
.

2.4. Market Clearing and Shock Processes. The labor market is in equilib-
rium when the demand for the index of labor services by the intermediate-goods
firms equals the differentiated labor services supplied by households at the wage
rates set by unions. Similarly, the market for physical capital is in equilibrium
when the demand for capital services by the intermediate-goods firms equals the
capital services supplied by households at the market rental rate. Finally, the final-
good market is in equilibrium when the supply by the final-good firms equals the
demand by households

Yt = Ct + It + Gt ,

where Gt is an aggregate demand shock, for example, a shock to government
spending. The model is simulated in its log-linearized form, that is, small letters
will characterize in the following percentage deviations from the steady state.
The exogenous technology, labor supply, and aggregate demand shocks follow an
AR(1) process described by the following equations:

at = ρaat−1 + ηa
t ,

εn
t = ρnεn

t−1 + ηn
t ,

(11)

and
gt = ρggt−1 + η

g
t .

Finally, monetary policy follows a standard log-linearized Taylor rule:

rt = ρr rt−1 + (1 − ρr )
(
φy yt + φππt

) + ηr
t ,(12)

where ρr is a parameter determining the degree of interest rate smoothing, ηr
t is a

white noise monetary policy shock, and φy and φπ represent the elasticity of the
interest rate to output and inflation, respectively.
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2.5. Sign Restrictions and Robustness Analysis. For testing the models, one
could estimate the RBC and the NK model using, for example, Bayesian methods
and thereby computing the odds of the respective models. Such a strategy is chosen,
for example, in Galı́ and Rabanal (2004). However, the prototype RBC and NK
model are likely to be too stylized to be taken directly to the data. Hence, we will
utilize the models only to derive a set of robust sign restrictions and will base the
empirical analysis on a more flexible VAR specification. In this section, we will
discuss the derivation of the sign restrictions from the impulse response functions
of the theoretical model. First, note that when prices and wages are perfectly
flexible, that is, θ p = 0 and θw = 0, the equilibrium conditions in the goods and
the labor market converge to

Pt = (1 + λp) MCt

and

Wt

Pt
= (1 + λw) εn

t MRSt .

We will simulate the model under both scenarios, assuming that the economy is
subject to nominal and real rigidities, as in the NK case, as well as to flexible prices
and wages and perfect competition in goods and labor market (i.e., λp = 0 and
λw = 0), as in the standard RBC model.

In order to test whether a flexible-price RBC model or an NK model with
nominal and real rigidities is better in matching the dynamics present in the data,
we use the methodology discussed, for example, in Canova (2002), Pappa (2004),
and Peersman (2005). In the first step, we identify robust implications in each of the
two models that are not sensitive to variations of structural parameters. In order to
do so, we define a range for each of the structural parameters by conducting a brief
survey of the related empirical literature. Papers such as Smets and Wouters (2003)
use the Bayesian methods to estimate medium-scale DSGE models providing the
corresponding posterior distribution of the structural parameters. Similar models
using alternative estimation techniques have been analyzed by Christiano et al.
(2005), Altig et al. (2005), Onatski and Williams (2004), Rabanal and Rubio-
Ramirez (2005), and Coenen and Straub (2005).

We use the estimated posterior distribution of structural parameters in these
models as a benchmark but have extended the ranges beyond the 90% interval.
For example, the preference parameter driving the labor supply utility ζ is allowed
to vary in the interval [0, 10], the risk-averse coefficient σ ∈ [1, 10], and the Calvo
parameters determining the degree of nominal wage and price rigidities θp and
θw are both allowed to vary in the interval [0.01, 0.95].

For the monetary policy rule, we delimit the range of parameters to cover the
values generally discussed in the Taylor rule literature. In order to ensure de-
terminacy of the model, we restrict the inflation response to the range between
[1, 3], whereas the output response and the degree of interest rate smoothing are
allowed to vary in the interval [0, 1].

We set the range for the subjective discount rate β between [0.985, 0.995], im-
plying an annual steady-state real interest rate between 2% and 6%. The interval
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TABLE 1
PARAMETER VALUES AND RANGES

Parameter Description Range

β Discount factor [0.985, 0.995]
σ Risk-aversion coefficient [1, 10]
ζ Preference parameter [0, 10]
λp Degree of monopolistic competition in the goods market [0, 0.5]
λw Degree of monopolistic competition in the labor market [0, 0.5]
θp Degree of nominal rigidities in the goods market [0.01, 0.95]
θw Degree of nominal rigidities in the labor market [0.01, 0.95]
α Capital share [0.2, 0.5]
δ Depreciation rate [0.01, 0.05]
φy Coefficient on output in the monetary policy rule [0, 1]
φπ Coefficient on inflation in the monetary policy rule [1, 3]
ρr Degree of interest rate smoothing [0, 1]
ρa Persistence of technology shocks [0.5, 0.99]
ρn Persistence of labor supply shocks [0.5, 0.99]
ρg Persistence of aggregate demand shocks [0.5, 0.99]

NOTE: In the RBC model, θp = 0, θw = 0, λp = 0, and λw = 0.

determining the capital share in the Cobb–Douglas production function α is set
between [0.2, 0.5], including a steady-state share of capital income of 30% usually
assumed in the literature. We also allow for variation in the depreciation rate δ ∈
[0.01, 0.05], price mark-up λp ∈ [0, 0.5], and the wage mark-up λw ∈ [0, 0.5]. Finally,
and in line with the empirical literature, we restrict the persistence of the shocks
to the interval [0.5, 0.99]. The intervals for all parameter values are reported in
Table 1.

After defining a sensible range for the parameter values, we proceed with the
simulation exercise. First, we assume that the parameters are uniformly distributed
over the selected parameter range. Second, we draw a random value for each
parameter from the presented intervals and calculate the corresponding impulse
response functions of the model. This exercise is repeated for 500,000 simulations.
The median and the 10th and 90th percentiles of all the conditional responses are
shown in Figure 1.

The impulse responses of both models are in line with the well-known results in
the literature. In the RBC model, technology shocks act as labor demand shifters
and result in an increase of the equilibrium real wage, output, hours worked, and
interest rate. In contrast, an exogenous shock to labor supply has a negative impact
on real wages but a positive impact on output and interest rate. Government
spending shocks generate a negative wealth effect, leading to an increase in hours
worked and a corresponding fall of the real wage.

In the NK model, positive technology shocks have a negative impact on hours
worked but, similarly to the RBC model, a positive impact on real wages. On
the other hand, the sign of the impulse response functions to labor supply shocks
appears to be insensitive to the existence of nominal rigidities, implying a positive
response of output and a negative response of prices and real wages. As labor
supply shocks and technology shocks have asymmetric effects on real wages, a
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TABLE 2
SIGN RESTRICTIONS

Output Prices Interest Rate Hours Wages

Monetary policy ↑ ↑
Aggregate demand ↑ ↑
Technology ↑ ↓ ↑
Labor supply ↑ ↓ ↓

feature common in both RBC and NK models, we are able to use the latter as a
sign restriction in our VAR. In contrast to monetary and government spending
shocks, expansionary technology and labor supply shocks have a negative impact
on the price level. Therefore, we apply the latter restriction on prices to distinguish
technology shocks from expansionary monetary policy and aggregate demand
shocks in our empirical exercise.5 All sign restrictions that will be used to identify
a technology shock in our empirical VAR are summarized in Table 2.

In order to provide some further robustness checks of our selected sign re-
strictions, we trace out boundaries in the parameter space, beyond the predefined
ranges, across which the signs of the impact response of relevant variables, such
as the price level and real wages, are switching. The latter procedure gives us a
better hint than the multidimensional Monte Carlo analysis about which param-
eter constellations are crucial for the chosen identification scheme. The outcome
of this exercise is shown in Figures 2(a) and (b). We present the results in three-
dimensional figures by varying two crucial parameters at the same time, while
leaving the remaining set of parameters at the mean value of the parameter range
presented in Table 1. For reasons of legibility, the analysis only focuses on the sign
of the impact responses of the NK model.6

First, Figure 2(a) plots the impact response of the price level to a technology,
aggregate demand, and monetary policy shock. The response of the price level is
used to separate monetary policy and aggregate demand shocks from technology
shocks. For all possible combinations of parameter values, the response of prices
is always negative following a technology shock and always positive following a
monetary policy and aggregate demand shock. In the upper panel, for example,
we show that the sign of the price level response is insensitive for different com-
binations of nominal rigidities θp and intertemporal elasticity of substitution σ .
Similar results hold for other combinations of structural parameters.7

5 This is demonstrated in Figure 1 only for the NK case. In models with flexible prices and imperfect
competition, the aggregate price level is indeterminate and only relative prices are pinned down
in equilibrium. We generally allow, however, for a possible zero impact of shocks in our empirical
approach because restrictions are imposed as ≥ or ≤.

6 Note that in the RBC model, the sign of the response of real wages is not sensitive to variations in
structural parameters, as technology shocks act as labor demand and labor supply shocks act as labor
supply shifters.

7 We focus only on a subset of variables, but similar results hold for combinations of other structural
parameters. The latter results are available upon request.
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NOTES: The figure shows the impact of the price level by varying two structural parameter at the same
time, while leaving the remaining set of parameters at the mean value of the parameter range presented
in Table 1.

FIGURE 2A

FURTHER SENSITIVITY ANALYSIS/PRICE-LEVEL RESPONSE ON IMPACT
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NOTES: The figure shows the impact response of the real wage by varying two structural parameter the
same time, while leaving the remaining set of parameters at the mean value of the parameter range
presented in Table 1.

FIGURE 2B

FURTHER SENSITIVITY ANALYSIS/REAL WAGE RESPONSE ON IMPACT
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In Figure 2(b), we focus on the impact response of real wages to exogenous
increases in labor supply and technology. The real wage response is crucial to dif-
ferentiate labor supply shocks from technology shocks. As indicated in the right
column, the negative impact of labor supply shocks on real wages is always robust
to variations in key parameters. The response of real wages to a technology shock,
however, switches signs under certain parameter combinations. In particular, if
price rigidity θp is high, the real wage response can become negative.8 The latter is
reinforced by high intertemporal elasticity of substitution (denoted by the inverse
of σ ), high labor supply elasticity (denoted by the inverse of ζ ), and/or low wage
rigidity (denoted by θw). The rationale behind the results is as follows: In standard
NK models, technology shocks trigger generally an inward shift of both labor sup-
ply and labor demand curve, resulting in a fall in equilibrium hours worked. As
a result, real wages increase only if the shift in the labor supply curve (induced
by the positive wealth effect) is more pronounced than the shift in the labor de-
mand curve (as a result of the dampened response of real aggregate demand). As
indicated in the previous section, this is the case for a wide range of model param-
eters. However, high labor supply elasticity and/or high intertemporal elasticity of
substitution will dampen the relative importance of the wealth effect induced by
the technology shock. Also, higher price rigidity implies, ceteris paribus, a weaker
response of real aggregate demand to an exogenous increase in technology, re-
sulting in a more pronounced downward shift of the labor demand curve. In the
two lower panels of Figure 2(b), we also illustrate the sensitivity of the impact
response of real wages to variations in the persistence of the technology shock
ρa and to the interest rates elasticity with respect to inflation φπ. As indicated,
low shock persistence implies a weaker wealth effect on households, increasing
in combination with high price rigidity the probability of a negative real wage
response. Similarly, a weak response of policy rates to inflation is more conducive
with a negative reaction of real wages following an expansionary technology
shock.

In equilibrium, a combination of the discussed factors can induce a negative
response of real wages. The probability that this happens is, however, low in the
presented model, as is also indicated in the Monte Carlo exercise in the previous
section.

In order to summarize, the RBC and the NK models differ with regards to the
sign of the impulse response function of hours worked following a technology
shock but resemble in a number of other conditional moments, allowing us to
derive a sufficient set of sign restrictions that are fairly robust to model and pa-
rameter uncertainty. The corresponding sign restrictions for our empirical analysis
can be found in Table 2.

3. EMPIRICAL EVIDENCE

In this section, we present the results of the SVAR using euro area data for the
sample period 1982–1 to 2002–4. All data are taken from the area-wide model

8 The boundary is around θp = 0.9 and varies depending on the value of other key structural
parameters presented in Figure 2(b).
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TABLE 3
SUMMARY OF VAR SPECIFICATIONS

Variables Identification Impact on Hours Results

yt , pt , i t , ht , wt Sign restrictions Positive Figure 3, col. 1
yt , pt , i t , et , wt Sign restrictions Positive Figure 3, col. 2
d(yt − ht), dpt , i t , dht , dwt Long-run restrictions Negative Figure 4, col. 1
d(yt − ht), dpt , i t , dht , dwt Sign restrictions Positive Figure 4, col. 2
yt , pt , i t , ht , wt , poil

t Sign restrictions Positive Not reported

NOTE: yt = output; pt = prices; i t = interest rate; ht = hours; et = employment; poil
t = oil price.

(Fagan et al., 2001). Hours worked is a series constructed by the European Cen-
tral Bank (ECB) Euro Area Department. The latter is only available from 1981
onward, which determines our sample period. In Section 3.1, we present the base-
line results. The robustness of these results and the source of our findings are dis-
cussed in Sections 3.2 and 3.3. Section 3.4 analyzes the exogeneity of the identified
shocks and, finally, the importance of technology shocks for aggregate fluctuations
is investigated in Section 3.5. A summary of all the VAR specifications that are
considered in this section is reported in Table 3.

3.1. Baseline Results. Consider the following specification for a vector of
endogenous variables Yt:

Yt = c +
n∑

i=1

Ai Yt−i + Bεt ,(13)

where c is an (n × 2) matrix of constants and linear trends, Ai is an (n × n) matrix
of autoregressive coefficients, and εt is a vector of structural disturbances. The
endogenous variables, Yt, that we include in the VAR are real gross domestic
product (GDP) (Yt), the GDP deflator (pt), short-term nominal interest rate (i t),
hours worked (ht), and real wages (wt). We estimate this VAR model in log levels,
except the interest rate, which is included in percent. Lag length is determined by
standard likelihood ratio tests and Akaike’s information criterion (AIC), which
turns out to be three.9

Within this VAR, we only identify technology shocks. In order to identify
these shocks, we use the restrictions reported in Table 2.10 Specifically, a positive

9 By doing the analysis in levels, we allow for implicit cointegration relationships in the data and still
have consistent estimates of the parameters (Sims et al., 1990). In Section 3.3, we check the robustness
of our results when we use a first-difference specification of the VAR. We can, however, not reject the
hypothesis of the existence of a cointegration relation in the level specification when we perform the
tests on the reduced-form point estimates using the procedure of Johansen and Juselius in CATS. All
results reported in this article are, however, Bayesian. Including or excluding the time trend has no
qualitative impact on the results. Given our sample period (downward trend in inflation and interest
rate), a linear trend is appropriate for the first-difference specification. The results are also not sensitive
with respect to the number of lags.

10 For the estimation results of, respectively, the monetary policy, aggregate demand, and labor
supply shock, we refer to the ECB Working Paper no. 373 version of this article.
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technology shock is a shock with a nonnegative effect on output, prices do not rise,
and there is no decrease in real wages. These restrictions are sufficient to uniquely
disentangle them from, respectively, monetary policy, aggregate demand, and la-
bor supply shocks, as shown in the previous section. No restrictions are imposed
for the response of hours, which allows us to compare the theoretical responses
with the data and discriminate between an RBC and an NK model. Following
Uhlig (2005) and Peersman (2005), we set the time period over which the sign
restriction is binding equal to four quarters (k = 4). For the implementation of
the restrictions, we refer to Peersman (2005) or the Appendix of this article. All
restrictions are imposed as ≤ or ≥. Impulse responses are computed based on
50,000 draws from the posterior simulator. In all figures, we report the median
and the 90th and 10th percentiles of the posterior distribution.

The first column of Figure 3 shows the baseline results. By construction, there
is a rise of output and real wages after a positive technology shock and a fall
in prices. We also find a positive effect on the nominal interest rate, a response
that was unrestricted. Most important, there is a positive and significant reaction
on the impact of hours worked. This effect even lasts for more than three years
after the initial shock. This striking finding stands in contrast to the results of Galı́
(1999) and others and is in line with the prediction of the RBC model. In the next
sections, we discuss the exact source of our conflicting results with Galı́ (1999) and
the role of the stochastic specification of the hours worked series.

3.2. Robustness of Results. As a first robustness check, we re-estimate the
basic model, including employment instead of hours worked. The latter sensitivity
analysis was also conducted in Galı́ (1999). The results are reported in the right
column of Figure 3. The magnitude of the effect is slightly smaller for employment,
but there are no significant differences between the estimated impulse response
functions of the employment and the hours worked specification. Also, for other
alternative specifications (e.g., consumer price index instead of GDP deflator),
we always find a significant rise in hours worked following a positive technology
shock. Furthermore, our conclusions do not depend on the inclusion of a time
trend in the VAR, the number of lags, and the number of quarters for which the
sign restrictions are imposed.11

3.3. A Comparison with the Existing Literature. In the next step, we aim at
identifying whether our results are robust to certain modifications in the empirical
model, which has been intensively discussed in the related literature. There are
several reasons why our results can differ, for example, from Galı́ (1999). First,
the results might be data-driven; that is, they are dependent on the chosen sample
period and data set. Second, the results can be sensitive to the stochastic specifi-
cation of the hours worked series, as discussed in Christiano et al. (2003). Third,
the results might be simply driven by the choice of our new identification scheme.

11 All these results are available upon request. The results for a VAR with restrictions only imposed
for one lag after the shock (k = 1) are also shown in the working paper version of this article.
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NOTE: Median and 90th and 10th percentiles impulse responses based on the output of the posterior
simulator. Technology shock is identified using sign restrictions. Horizon is quarterly.

FIGURE 3

IMPULSE RESPONSES TO A TECHNOLOGY SHOCK
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In order to conduct the exercise, we first impose Galı́’s identification scheme
on our euro area VAR. Galı́ (1999) provides evidence for G7 countries using data
starting between 1948 (the United States) and 1970 (Italy) and ending in 1994.
The latter results are confirmed in Galı́ (2004) using data from 1970 to 2002 for the
euro area. Given the availability of the hours worked series, our sample starts only
in 1982. Moreover, the identification of a technology shock with sign restrictions
makes it necessary to add real wages into the VAR. Therefore, for comparison,
and following Galı́, we estimate a VAR including the first differences of labor
productivity d(yt − ht), prices (dpt), real wages (dwt ), hours worked (dht), and
the level of the interest rate (i t).12 A technology shock is identified as the only
shock that has a permanent effect on labor productivity. The results are shown
in the left column of Figure 4. Consistent with Galı́ (1999, 2004), we also find a
significant fall of hours worked, concluding that the choice of the data sample is
not the main driver of our contrasting results.

In order to evaluate the sensitivity of our results to the stochastic specification
of the VAR, as discussed in Christiano et al. (2003), we re-estimate the above
defined VAR including the first differences of labor productivity d(yt − ht), prices
(dpt), real wages (dwt ), hours worked (dht), and the level of the interest rate (i t)
but identify the impact of technology shocks on hours worked using our preferred
sign restrictions methodology. If, in the given setup, hours worked rise following
a technology shock, our contrasting results must be driven by the choice of the
identification strategy. On the other hand, if hours worked fall, we could argue that
our results are driven by the stochastic specification of the VAR, since the baseline
results were produced using a VAR in levels. Estimation results are presented in
the right column of Figure 4.13 In contrast to Christiano et al. (2003), it turns out
that the treatment of variables has no consequences for our baseline findings. We
still find a significant positive impact of technology shocks on hours worked. The
response of all other variables are in line with Galı́’s results. The impact on labor
productivity is somewhat lower and the reaction of real wages is stronger. In sum,
we find that the difference in the results is driven by the identification strategy
and not by the choice of data set or stochastic specification of hours worked.

3.4. Exogeneity of the Identified Technology Shocks. Francis and Ramey
(2005) argue that technology shocks identified in VARs are potentially corre-
lated with other shocks that are in fact not related to technology. They therefore
present a procedure for testing the exogeneity of the estimated technology shocks.
In particular, they regress the identified technology shock on three sets of dummy
variables: (i) monetary policy indicators, (ii) oil shock dummies, and (iii) war dates.
Given that we are able to disentangle technology from monetary policy shocks
with our identification strategy, there is, by construction, no correlation of the
latter with technology shocks. Furthermore, our sample period does not include

12 The results are similar also when the first difference of the interest rate is used instead of its level
in this specification.

13 An alternative exercise could be to estimate a Vector Error Correction Model (VECM) spec-
ification of the DSGE model and implement the long-run restrictions, in the spirit of Chang and
Schorfheide (2003), but this is out of the scope of this article.
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NOTE: Median and 90th and 10th percentiles impulse responses based on the output of the posterior
stimulator. Variables included are first differences of labor productivity, prices, hours, real wages, and
the level of the interest rate. Technology shock in the left panel is identified with Gali’s long-run
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FIGURE 4

IMPULSE RESPONSES TO A TECHNOLOGY SHOCK
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FIGURE 5

CONTRIBUTION OF TECHNOLOGY SHOCKS TO FORECAST VARIANCE

important war dates for the euro area. In order to check the potential correlation
with oil price shocks, we perform two robustness checks. First, we calculate a simple
correlation between the identified technology shocks and the pure oil price shocks
obtained from the study of Peersman (2005). This correlation varies between−0.17
and −0.20, depending on the specification, and is always insignificant. Second, we
re-estimate all VAR models, with oil prices (or commodity prices) as an additional
exogenous variable. For all specifications, we still find a significant positive impact
of technology shocks on hours worked.14

3.5. How Important Are Technology Shocks for Aggregate Fluctuations? In
Figure 5, we report the contribution of technology shocks to the forecast error
variance of output and hours worked series for the level and first-difference spec-
ification, respectively. In contrast to Galı́ (1999), who finds almost no role for
technology shocks in explaining business cycle fluctuations, we find an important
role for technology shocks in explaining variations in output and hours worked.
The error bands are, however, very wide, which is typical for this type of exercise.
On the basis of the median estimates, we find that between 20% and 25% of vari-
ations in hours worked and output can be explained by technology shock. The

14 These results are not reported but are available upon request.
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latter is, however, still significantly lower than the 40% reported by Christiano
et al. (2003). Hence, our results stand somewhat in contrast to the original RBC
hypothesis that technology shocks are the main drivers of business cycle fluctu-
ations, as they assign an important role for other structural shocks for business
cycle fluctuations.

4. CONCLUSIONS

In this article, we have provided empirical evidence on the impact of technology
shocks on hours worked using a VAR for the euro area. The structural shocks are
identified using sign restrictions derived from the DSGE models. The suggested
procedure utilizes, however, only a minimum set of restrictions that are robust to
model and parameter uncertainty. The results presented in this article are in favor
of the RBC hypothesis that hours worked increase following a positive shock to
technology. Although our results assign a more prominent role for technology
shocks in explaining variations in output and hours worked than Galı́ (1999), they
do stand, however, somewhat in contrast to the original RBC hypothesis that
technology shocks are the main source of business cycle fluctuations.

Furthermore, we show that our results are not sensitive (i) to different stochastic
specifications or (ii) if employment instead of hours worked is used in the VAR. In
addition, we argue by comparing our results to a VAR with long-run restrictions,
as in Galı́ (1999), that our results depend only on the chosen identification scheme
and not on the stochastic specification of hours worked and/or the data sample.

However, our findings do not necessarily imply that the NK models are gen-
erally not a good representation of the reality. But, the results indicate that the
NK models stand in contrast to the empirical evidence at least in one particular
aspect, namely, the transmission of technology shocks to the labor market. Hence,
reconsidering the transmission mechanism of technology shocks within the NK
framework might be a worthwhile exercise.15 Also, the structural shocks in our
empirical analysis are identified at a fairly aggregated level. Identifying additional
shocks, such as price and wage mark-up shocks, could potentially provide further
information. This is left for future research.

APPENDIX

A.1. Implementation of the sign restrictions. In this Appendix, we explain
how to implement the sign restrictions in our SVAR. For a detailed explanation, we
refer to Peersman (2005). Consider Equation (13) in Section 3. Since the shocks are
mutually orthogonal, E(εtε

′
t ) = I, the variance–covariance matrix of Equation (13)

is equal to � = BB′. For any possible orthogonal decomposition B, we can find an
infinite number of admissible decompositions of �, � = BQQ′ B′, where Q is any
orthonormal matrix, that is, QQ′ = I. Possible candidates for B are the Choleski

15 See also, on a similar issue, the discussion about the effects of government spending shocks on
private consumption in Galı́ et al. (2007) and Bilbiie and Straub (2004). As discussed in Chang et al.
(2004), introducing inventories into the standard NK model might be a promising first step.
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factor of � or the eigenvalue-eigenvector decomposition, � = PDP′ = BB′,
where P is a matrix of eigenvectors, D is a diagonal matrix with eigenvalues
on the main diagonal, and B = PD

1
2 . Following Canova and De Nicoló (2002)

and Peersman (2005), we start from the latter in our analysis. More specifically,
P = ∏

m,n Qm,n(θ), with Qm,n(θ) being rotation matrices of the form

Qm,n(θ) =




1 · · · 0 · · · 0 · · · 0

· · · . . . · · · · · · · · · · · · · · ·
0 · · · cos (θ) · · · − sin (θ) · · · 0

...
...

... 1
...

...
...

0 · · · sin (θ) · · · cos (θ) · · · 0

· · · · · · · · · · · · · · · . . . · · ·
0 · · · 0 · · · 0 · · · 1




.(A.1)

Since we have five variables in our model, there are 10 bivariate rotations of
different elements of the VAR, θ = θ1, . . . , θ10, and rows m and n are rotated by
the angle θ i in Equation (A.1). All possible rotations can be produced by varying
the 10 parameters θ i in the range [0, π ]. For the contemporaneous impact matrix
determined by each point in the grid, Bj, we generate the corresponding impulse
responses:

Rj ,t+k = A(L)−1 Bjεt .(A.2)

A sign restriction on the impulse response of variable p at lag k to a shock in q at
time t is of the form

Rpq
j,t+k ≷ 0.(A.3)

Following Uhlig (2005), Peersman (2005), and Farrant and Peersman (2006),
we use a Bayesian approach for estimation and inference. Our prior and posterior
belong to the normal-Wishart family used in the RATS manual for drawing error
bands. Because there are an infinite number of admissible decompositions for
each draw from the posterior when using sign restrictions, we use the following
procedure. In order to draw the “candidate truths” from the posterior, we take a
joint drawing from the posterior for the usual unrestricted normal-Wishart pos-
terior for the VAR parameters as well as a uniform distribution for the rotation
matrices. We then construct impulse response functions. If all the imposed con-
ditions of the impulse responses are satisfied, we keep the draw. Decompositions
that do not match the restrictions are rejected. This means that these drawings
receive zero prior weight. On the basis of the drawings kept, we calculate statistics
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and report the median of the posterior distribution, together with the 90th and
10th percentiles.
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——, AND G. DE NICOLÓ, “Monetary Disturbances Matter for Business Fluctuations in the
G-7,” Journal of Monetary Economics 49 (2002), 1131–59.

——, L. GAMBETTI, AND E. PAPPA, “Structural Dynamics of US Output and Inflation: What
Caused the Changes?” Journal of Money, Credit and Banking (forthcoming), latest
version 2005.

CHANG, Y., AND J. H. HONG, “Do Technological Improvements in the Manufacturing Sector
Raise or Lower Employment?” American Economic Review 96(1) (2006), 352–68.

——, AND F. SCHORFHEIDE, “Labor-Supply Shifts and Economic Fluctuations,” Journal of
Monetary Economics 50(8) (2003), 1751–68.

——, A. HORNSTEIN, AND P. D. SARTE, “On the Employment Effects of Productivity Shocks:
The Role of Inventories, Demand Elasticity, and Sticky Prices,” Journal of Monetary
Economics (2009), forthcoming.

CHRISTIANO, L. J., M. EICHENBAUM, AND C. EVANS, “Nominal Rigidities and the Dynamic
Effects of Monetary Policy,” Journal of Political Economy 113 (1) (2005), 1–45.

——, ——, AND R. VIGFUSSON, “What Happens after a Technology Shock?” International
Finance Discussion Papers No. 768, Board of Governors of the Federal Reserve Sys-
tem, 2003.

COENEN, G., AND R. STRAUB, “Does Government Spending Crowd in Private Consumption?
Theory and Empirical Evidence for the Euro Area,” International Finance 8(3) (2005),
435–70.

DEDOLA, L., AND S. NERI, “What Does a Technology Shock Do? A VAR Analysis with
Model-Based Sign Restrictions,” Journal of Monetary Economics 54(2) (2007), 512–
49.

FAGAN, G., J. HENRY, AND R. MESTRE, “An Area Wide Model (AWM) for the Euro Area,”
ECB Working Paper No. 42, 2001.

FARRANT, K., AND G. PEERSMAN, “Is the Exchange Rate a Shock Absorber or a Source of
Shocks? New Empirical Evidence,” Journal of Money, Credit and Banking 38 (2006),
939–62.
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