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Here we provide a detailed description of the data sources and of the construction of the

data series. We outline the estimation of the time-varying VAR model including the choice of

the priors and the steps of the Metropolis-within-Gibbs sampling algorithm to approximate

the joint posterior distribution. We explain the computation of the impulse responses and

the implementation of the sign restrictions to identify exogenous oil supply shocks. We

describe the setup and the results of a Monte Carlo simulation exercise that shows that

our econometric model is able to capture abrupt changes in a satisfactory manner. We

report on the signi�cance of time variation in the impact responses of the four endogenous

variables. We present evidence that the main �ndings of the paper are robust to changes

in the variables included in the model, to alternative model speci�cations, and to di¤erent

identi�cation assumptions.

A Data description

Monthly world oil production data measured in thousands of barrels of oil per day were

obtained from the U.S. Energy Information Administration�s (EIA) Monthly Energy Review

starting in January 1973. Monthly data for global production of crude oil for the period

1953M4 to 1972M12 were taken from the weekly Oil & Gas Journal (issue of the �rst week
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of each month). For the period 1947M1 to 1953M3, monthly data were constructed by inter-

polation of yearly world oil production data by means of the Litterman (1983) methodology

using U.S. monthly oil production data from the EIA as an indicator variable.1 Annual oil

production data were obtained fromWorld Petroleum (1947� 1954), the Oil & Gas Journal
(end-of-year issues, 1954� 1960) and the EIA�s Annual Energy Review (1960� 2010). Con-
sistency between these di¤erent data sources was checked at each of the overlapping periods.

Quarterly data are averages of monthly observations.

The nominal U.S. re�ners� acquisition cost of imported crude oil was taken from the

Monthly Energy Review.2 Since this series is only available from January 1974 onwards, it

was backcast until 1947Q1 with the quarterly growth rate of the producer price index (PPI)

for crude oil retrieved from the Bureau of Labor Statistics (BLS) database (WPU0561). Data

were converted to quarterly frequency before backcasting by averaging over months. For the

robustness checks with regard to the choice of the oil price variable, we use the quarterly

average of the West Texas Intermediate (WTI) spot oil price obtained from the Federal

Reserve Economic Data (FRED) database maintained by the St. Louis FED (OILPRICE)

and of the nominal U.S. re�ners�acquisition cost of composite3 crude oil from the Monthly

Energy Review. The latter was adjusted for price controls on domestic oil production for

the period 1971Q3 to 1974Q1 as described in Mork (1989) and reconstructed backwards to

1947Q1 in the same way as the imported re�ners�acquisition cost series.

Quarterly seasonally adjusted series for U.S. real GDP (GDPC96: real gross domestic

product, billions of chained 2005 dollars) and for the U.S. GDP de�ator (GDPDEF: gross

domestic product implicit price de�ator) were obtained from the FRED database. Monthly

seasonally adjusted data for U.S. industrial production (INDPRO: industrial production in-

dex, index 2007 = 100), for the U.S. consumer price index (CPIAUCSL: consumer price

index for all urban consumers: all items, index 1982 � 1984 = 100), for the civilian un-

employment rate, 16 years and older, seasonally adjusted (UNRATE), and for the e¤ective

1Since this part of the data is only needed for the training sample to calibrate the priors based on the

estimation of a �xed-coe¢ cient VAR, the use of interpolated data as opposed to actual ones is of minor

consequence.
2The re�ners�acquisition cost of crude oil imports (IRAC) is a volume-weighted average price of all kinds

of crude oil imported into the U.S. over a speci�ed period. Since the U.S. imports more types of crude oil

than any other country, it may represent the best proxy for a true "world oil price" among all published

crude oil prices. The IRAC is also similar to the OPEC basket price.
3The entitlement system in force during the 1970s in the U.S. required buyers to purchase foreign and

domestic oil in �xed proportions so that the aggregate price was a weighted average of these two kinds of

oil.
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federal funds rate (FEDFUNDS) were taken from the FRED database, where the latter three

were converted to quarterly frequency by taking averages.

Data on annual energy consumption by sector measured in billions of British Thermal

Units (BTU) were obtained from the Annual Energy Review (Tables 2:1c � 2:1f) for the
period 1974� 2010. Primary and secondary uses of petroleum in the industrial, commercial
and part of the transportation sector (buses and heavy trucks) were aggregated to obtain a

measure of total petroleum consumption in the production process. Data on highway trans-

portation energy consumption by mode (1970 � 2009) were taken from the Transportation

Energy Data Book (Table 2.7).

Annual data on global spare capacity of oil production for the period 1974 � 2010 were
taken from the IMF World Economic Outlook and updated with the EIA�s Short-Term

Energy Outlook. Spare capacity refers to production capacity that can be brought online

within 30 days and sustained for 90 days. Global capacity utilization rates are calculated

as a percentage of total potential annual world oil production, which is the sum of available

spare capacity and actual oil production taken from the Annual Energy Review.

B Bayesian estimation of a VAR with time-varying pa-

rameters and stochastic volatility

Consider the time-varying vector autoregression model with stochastic volatility described

by equations (1) to (7) in the main text.

B.1 Prior distributions and starting values

The priors for the initial states of the drifting coe¢ cients, the covariances and the log volatil-

ities, p (�0), p (�0) and p (lnh0) respectively, are assumed to be normally distributed, inde-

pendent of each other and independent of the hyperparameters, which are the elements of

Q, S and the �2i for i = 1; :::; 4. The priors are calibrated on the point estimates of a

constant-coe¢ cient VAR(4) estimated over the period 1947Q2� 1972Q2.

The unrestricted prior for the VAR coe¢ cients is set to

�0 � N
hb�OLS; bPOLSi (1)
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where b�OLS corresponds to the OLS point estimates of the training sample and bPOLS to four
times the covariance matrix bV �b�OLS�.
With regard to the prior speci�cation of �0 and h0, we follow Primiceri (2005) and Benati

and Mumtaz (2007). Let P = AD1=2 be the Choleski factor of the time-invariant variance

covariance matrix b�OLS of the reduced-form innovations from the estimation of the �xed-

coe¢ cient VAR(4) where A is a lower triangular matrix with ones on the diagonal, and D1=2

denotes a diagonal matrix whose elements are the standard deviations of the residuals. The

prior for the log volatilities is as follows:

lnh0 � N (ln�0; 10� I4) (2)

where �0 is a vector that contains the diagonal elements of D
1=2 squared, and the variance-

covariance matrix is arbitrarily set to ten times the identity matrix to make the prior only

weakly informative. The prior for the contemporaneous interrelations is set to

�0 � N
he�0; eV (e�0)i (3)

where the prior mean for �0 is obtained by taking the inverse of A and stacking the elements

below the diagonal row by row in a vector in the following way: e�0 = [e�0;21; e�0;31; e�0;32; e�0;41; e�0;42; e�0;43]0.
The covariance matrix, eV (e�0), is assumed to be diagonal, and each diagonal element is set
to ten times the absolute value of the corresponding element in e�0. While this scaling is
obviously arbitrary, it accounts for the relative magnitude of the elements in e�0 as pointed
out by Benati and Mumtaz (2007).

With regard to the hyperparameters, we make the following assumptions along the lines

of Benati and Mumtaz (2007). We postulate that Q follows an inverse-Wishart distribution:

Q � IW
�
Q
�1
; T0

�
(4)

where T0 is the prior degrees of freedom which is set equal to the length of the training

sample, which is su¢ ciently long (25 years of quarterly data) to guarantee a proper prior.

Following Primiceri (2005), we adopt a relatively conservative prior for the time variation

in the parameters in setting the scale matrix to Q = (0:01)2 � bV �b�OLS� multiplied by the
prior degrees of freedom. This is a weakly informative prior, and the particular choice for

its starting value is not expected to in�uence the results substantially since the prior is

dominated by the sample information as time progresses. We experimented with di¤erent

initial conditions inducing a di¤erent amount of time variation in the coe¢ cients to test

whether our results were sensitive to the choice of the prior speci�cation. We follow Cogley
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and Sargent (2005) in setting the prior degrees of freedom alternatively to the minimum

value allowed for the prior to be proper, T0 = dim (�t) + 1, together with a smaller value of

the scale matrix, Q = 3:5e�4 � bV �b�OLS�, which together put little weight on our prior belief
about the drift in �t. Our results are not materially a¤ected by the di¤erent choices for this

prior.

The three blocks of S are assumed to follow inverse-Wishart distributions, with the prior

degrees of freedom set equal to the minimum value required for the prior to be proper:

Si � IW
�
S
�1
i ; i+ 1

�
(5)

where i = 1; 2; 3 indexes the blocks of S. The scale matrices are calibrated on the absolute

values of the respective elements in e�0 as in Benati and Mumtaz (2007). Speci�cally, �Si is a
diagonal matrix with the relevant elements of e�0 multiplied by 10�3.
Given the univariate feature of the laws of motion of the stochastic volatilities, the vari-

ances of the innovations to the univariate stochastic volatility equations are drawn from an

inverse-Gamma distribution as in Cogley and Sargent (2005):

�2i � IG
�
10�4

2
;
1

2

�
(6)

This distribution is proper and has fat tails.

B.2 Markov Chain Monte Carlo algorithm for simulating the pos-

terior distribution

Since sampling from the joint posterior is complicated, we simulate the posterior distribution

by sequentially drawing from the conditional posterior of the four blocks of parameters: the

coe¢ cients �T , the simultaneous relations AT , the variances HT , where the superscript T

refers to the whole sample, and the hyperparameters �the elements of Q, S and the �2i for

i = 1; :::; 4 �collectively referred to as M . Posteriors for each block of the Gibbs sampler

are conditional on the observed data Y T and the rest of the parameters drawn at previous

steps.

Step 1: Drawing coe¢ cient states

Conditional on AT , HT ,M and Y T , the measurement equation is linear and has Gaussian

innovations with known variance. Therefore, the conditional posterior is a product of
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Gaussian densities, and �T can be drawn using a standard simulation smoother (see Carter

and Kohn 1994; Cogley and Sargent 2002) which produces a trajectory of parameters:

p
�
�T j Y T ; AT ; HT

�
= p

�
�T j Y T ; AT ; HT

� T�1Q
t=1

p
�
�t j �t+1; Y T ; AT ; HT

�
(7)

From the terminal state of the forward Kalman �lter, the backward recursions produce the

required smoothed draws that take the information of the whole sample into account. More

speci�cally, the last iteration of the �lter provides the conditional mean �T jT and conditional

variance PT jT of the posterior distribution. A draw from this distribution provides the input

for the backward recursion at T � 1, T � 2 and so on until the beginning of the sample
according to:

�tjt+1 = �tjt + PtjtP
�1
t+1jt (�t+1 � �t) (8)

Ptjt+1 = Ptjt � PtjtP�1t+1jtPtjt

Step 2: Drawing covariance states

Similarly, the posterior of AT conditional on �T , HT and Y T is a product of normal

densities and can be calculated by applying the same algorithm as in step 1 as a consquence

of the block diagonal structure of the variance-covariance matrix S. More speci�cally, a

system of unrelated regressions based on the relation Atut = "t, where "t are orthogonalized

innovations with known time-varying variance Ht and ut = yt�X 0
t�t are observable residuals,

can be estimated to recover AT according to the following transformed equations where the

residuals are independent standard normal:

u1;t = "1;t (9)�
h
� 1
2

2;t u2;t

�
= ��2;1

�
h
� 1
2

2;t u1;t

�
+
�
h
� 1
2

2;t "2;t

�
�
h
� 1
2

3;t u3;t

�
= ��3;1

�
h
� 1
2

3;t u1;t

�
� �3;2

�
h
� 1
2

3;t u2;t

�
+
�
h
� 1
2

3;t "3;t

�
�
h
� 1
2

4;t u4;t

�
= ��4;1

�
h
� 1
2

4;t u1;t

�
� �4;2

�
h
� 1
2

4;t u2;t

�
� �4;3

�
h
� 1
2

4;t u3;t

�
+
�
h
� 1
2

4;t "4;t

�
Step 3: Drawing volatility states

Conditional on �T , AT and Y T , the orthogonalized innovations "t � At (yt �X 0
t�t) with

V ar ("t) = Ht are observable. However, drawing from the conditional posterior ofHT is more

involved because the conditional state-space representation for lnhi;t is not Gaussian. The

log-normal prior on the volatility parameters is common in the stochastic volatility literature
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but such a prior is not conjugate. Following Cogley and Sargent (2005, Appendix B.2.5) and

Benati and Mumtaz (2007), we apply the univariate algorithm by Jacquier, Polson, and

Rossi (1994) that draws the volatility states hi;t one at a time.

Step 4: Drawing hyperparameters

The hyperparameters M of the model can be drawn directly from their respective pos-

terior distributions since the disturbance terms of the transition equations are observable

given �T , AT , HT and Y T .

We perform 100; 000 iterations of the Gibbs sampler and discard the �rst 50; 000 draws

as "burn-in". The remaining sequence of draws from the conditional posteriors of the four

blocks form a sample from the joint posterior distribution p
�
�T ; AT ; HT ;M j Y T

�
. We keep

only every 10th draw in order to mitigate the autocorrelation among the draws. Following

Primiceri (2005) and Benati and Mumtaz (2007), we ascertain that our Markov chain has

converged to the ergodic distribution by computing the draws�ine¢ ciency factors which are

the inverse of the relative numerical e¢ ciency measure (RNE) introduced by Geweke (1992),

RNE = (2�)�1
1

S(0)

Z �

��
S(!)d! (10)

where S(!) is the spectral density of the retained draws from the Gibbs sampling replications

for each set of parameters at frequency !.4 Figure 1A displays the ine¢ ciency factors for

the states and the hyperparameters of the model, which are all far below the value of 20

designated as an upper bound by Primiceri (2005). Thus, the autocorrelation across draws is

modest for all elements, which provides evidence of convergence to the ergodic distribution.

In total, we collect 5; 000 simulated values from the Gibbs chain on which we base our

structural analysis.

C Impulse responses and sign restrictions

Here we describe the Monte Carlo integration procedure that we use to compute the impulse

response functions to a structural oil supply shock. In the spirit of Koop, Pesaran, and

Potter (1996), we compute the generalized impulse responses as the di¤erence between the

conditional expectations with and without the exogenous shock:

IRFt+k = E [yt+k j "t; !t]� E [yt+k j !t] (11)

4See Benati and Mumtaz (2007) for details on the implementation.
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where yt+k contains the forecasts of the endogenous variables at horizon k; !t represents the

current information set, and "t is the current disturbance term. At each point in time, the

information set upon which we condition the forecasts contains the actual values of the lagged

endogenous variables and a random draw of the model parameters and hyperparameters.

More speci�cally, in order to calculate the conditional expectations we simulate the model in

the following way. We randomly draw from the Gibbs sampler output one possible state of

the economy at time t represented by the time-varying lagged coe¢ cients and the elements of

the variance-covariance matrix. Starting from this random draw from the joint posterior that

includes the hyperparameters, we employ the transition laws and stochastically simulate the

future paths of the coe¢ cient vector and the components of the variance-covariance matrix

for up to 20 quarters into the future. By projecting the evolution of the system in this way,

we account for all the potential sources of uncertainty deriving from the additive innovations,

variations in the lagged coe¢ cients and changes in the contemporaneous relations among the

variables in the system.

To obtain the time-varying structural impact matrix B0;t, we implement the procedure

proposed by Rubio-Ramírez, Waggoner, and Zha (2010). Given the current state of the

economy, let 
t = PtDtP
0
t be the eigenvalue-eigenvector decomposition of the VAR�s time-

varying variance covariance matrix 
t at time t. We draw an N � N matrix, K, from

the N (0; 1) distribution, take the QR decomposition of K, where R is a diagonal matrix

whose elements are normalized to be positive, and Q is a rotation matrix the columns of

which are orthogonal to each other, and compute the time-varying structural impact matrix

as B0;t = PtD
1
2
t Q

0. Given this contemporaneous impact matrix, we compute the reduced-

form innovations based on the relationship ut = B0;t"t, where "t contains four structural

shocks drawn from a standard normal distribution. Impulse responses are then computed

by comparing the e¤ects of a shock on the evolution of the endogenous variables to the

benchmark case without a shock, where in the former case the shock is set to "i;t + 1, while

in the latter we only consider "i;t. The reason for this is to allow the system to be impacted by

other disturbances during the propagation of the shock of interest. From the set of impulse

responses derived in this way, we select only those impulse responses that at horizons t+ k,

k = 0; 1; :::; 4, satisfy the sign restrictions, i.e., the responses of the endogenous variables are

consistent with the structural shock we wish to identify; all others are discarded.

We repeat this procedure until 100 iterations have ful�lled the sign restrictions for a given

simulated future path of the economy, and then calculate the mean responses of the four

endogenous variables over the accepted rotations. For each point in time, we randomly draw
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500 current states of the economy that provide the distribution of impulse responses taking

into account possible developments of the structure of the economy. The representative

impulse response function for each variable at each date is the median of this distribution.

D A Monte Carlo study

To explore whether our econometric model with smooth transitions is well suited to capture

abrupt changes in the data, we carry out a Monte Carlo exercise based on simulated data

where the underlying data-generating process is characterized by a one-time break. Given

that our benchmark model is too complex to be amenable to a Monte Carlo study, we assess

the performance of its main building blocks by conducting two separate experiments. We

generate data from (1) an AR(1) model with one exogenous regressor that features a one-o¤

regime shift in its coe¢ cients, and (2) a bivariate version of our benchmark VAR(4) model

with an abrupt break in the variance. These two simpler models provides a parsimonious

way to assess the appropriateness of modeling structural change in a smoothly evolving way

as opposed to a regime switch.

D.1 A regression model with a break in the coe¢ cients

To illustrate the e¤ects of incorrectly assuming a smooth process for the evolution of the

coe¢ cients, we simulate data from the following stationary AR(1) model with one exogenous

regressor, written in demeaned form:

yt = �iyt�1 + �ixt�1 + �t �t � N(0; 1) (12)

where we set �1 = 0:2 and �1 = 0:5 for the �rst half of the sample and �2 = 0:6 and �2 = 1:5

for the second half of the sample. For each sample generated with this parameterization,

we estimate a model that postulates that the coe¢ cient vector � = [� �]0 evolves smoothly

according to a driftless random walk process:

�t = �t�1 + �t �t � N(0; Q) (13)

We estimate the state-space model in equations (12) and (13) by Bayesian methods

described in Kim and Nelson (1999). The unrestricted prior for the initial state is Gaussian:

�0 � N(b�OLS; 4 � bV (b�OLS)) (14)
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where b�OLS and bV (b�OLS) are the OLS point estimate and asymptotic variance based on a
training sample as in our benchmark model. For the variance �2 in the observation equation,

we postulate an inverse-gamma distribution:

�2 � IG
�
�

2
;
�

2

�
(15)

with scale parameter � = 0:01 and degrees-of-freedom parameter � = 2. The prior for Q is

assumed to be inverse Wishart:

Q � IW
�
Q
�1
; �
�

(16)

where Q = 0:01 � � and � = 3. The starting values for the coe¢ cients are set to the OLS

estimates, �0 = 1, and Q0 = 0:1 � I2 where I2 is a 2 � 2 identity matrix. The time-varying
coe¢ cients are drawn using the Carter and Kohn (1994) algorithm outlined above. We

constrain �t to be less than one in absolute value at all dates t. The �rst 2; 000 draws in the

Gibbs simulation process are discarded to ensure convergence. The posterior mean of b�t is
computed based on the remaining 1; 000 generated values. To evaluate how well this model

can pick up the break imposed in the data-generating process, we also obtain an estimate

of b�dummyt from a model that includes a dummy variable that takes a value of 0 before the

break and 1 thereafter. In this way, we can construct error bands that capture the parameter

uncertainty in estimating the true model.

We construct sample sizes of T1 = 200 and T2 = 600 after discarding the �rst 1; 000

periods to remove the in�uence of initial values. A sample size of 200 can be considered the

equivalent of the typical sample length for quarterly time series available for the post-WWII

period and 600 is representative of such a dataset at monthly frequency. There are T=2 data

points on each side of the break date. We carry out 1; 000 Monte Carlo replications for each

model and sample size.

Figure 2A reports the mean of the estimates for the exogenous coe¢ cient and for the AR

coe¢ cient for the smooth-transition model and for the discrete-break model together with

the 68% and 90% posterior credible sets for the two sample sizes. The estimation results

show that the dri�ting coe¢ cient model locates the break in a satisfactory manner and moves

relatively swiftly to the new regime.
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D.2 A bivariate VAR model with a break in the variance

In the second experiment, the data-generating process is a bivariate VAR(4) model similar

to equation (1) in the main text:

yt = X
0
t� + "t (17)

where yt denotes a vector of variables; Xt is a matrix including four lags of yt and a constant;

� is a coe¢ cient matrix, and "t � N(0;
i), i = 1; 2 with the following variance-covariance
matrices for two subperiods:


1 =

"
20 5

5 30

#

2 =

"
1:5 �4
�4 300

#
(18)

To obtain a realistic parameterization for
1 and
2, we take guidance from the estimation

of a bivariate VARmodel for oil production and the real price of oil over two subsamples. The

data generated from this model mimic a speci�c feature of the observed oil production and

oil price series, namely a considerable decrease in oil production volatility and an increase

in oil price volatility after the break in the variance. Figure 3A, panel A illustrates this

behavior in one such random sample. The length of each sample generated from this model

is 750, and the initial 500 periods are removed to yield a sample similar in size to that used

in the empirical analysis.

For each sample, we estimate the time-varying VAR model with stochastic volatility

presented in section B. We retain the same priors as in the benchmark model and obtain

initial values from the estimation of a constant-coe¢ cient VAR(4) over a twenty��ve-year

training sample. This leaves us with 150 observations for the actual estimation, and the

regime switch occurs at t = 68. Given the greater complexity of this model, we can only

perform 250 Monte Carlo replications, and the results should consequently be viewed as

suggestive. It should, however, be su¢ cient to examine the speed of transition from one

regime to the other which is the main feature of interest.

Figure 3A, panel B displays the time pro�le of the average of the variance estimates

over the Monte Carlo simulations together with both the 16th and 84th and the 5th and 95th

percentiles of the posterior distribution. The results indicate that our approach has the

power to detect the regime shift to a satisfactory degree even in a relatively short sample.
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E Further analysis

E.1 Evidence for time variation

In assessing the relative importance of time variation over the sample, we consider the

joint posterior distribution of impulse responses across selected pairs of oil market episodes

presented in a scatterplot along the lines of Cogley, Primiceri, and Sargent (2010). Shifts of

this distribution away from the 45-degree line are indicative of a systematic change over time.

Figure 4A reports the joint posterior distributions of the impact response of oil production

and the cumulated responses of real GDP and CPI four quarters after an oil supply shock

normalized such that it raises the real price of oil by 10% on impact for pairs of representative

dates. Figure 5A reports the joint posterior distributions for the case when the oil supply

shock corresponds to a 1% shortfall in oil production on impact for the same combinations of

dates. Values for the earlier date are always plotted on the x-axis and those for the later date

on the y-axis so that the location of the joint distribution of positive (negative) responses

above the 45-degree line indicates an increase (decrease) over time and below the 45-degree

line a decrease (increase) over time.

The evidence for time variation is most compelling for world oil production. The joint

posterior draws for almost all combinations of dates are clustered above the dividing line,

pointing towards a systematic decrease in the responses to oil supply shocks as time pro-

gresses. The joint posterior distributions for the real price of oil indicate a systematic in-

crease in the magnitude of the impact of an oil supply shock. The exception is the pair

1979Q3 : 1986Q1 for which the pairwise draws are more scattered suggesting no signi�cant

di¤erence.

For real GDP, the points of the joint distribution are almost equally spread out around

the 45-degree line for pairs of dates that are not too far apart from each other for both

normalizations. This suggests the absence of a signi�cant change in the reaction of real

GDP to oil supply shocks. There is, however, some evidence for di¤erences between the

magnitudes of output responses during episodes that are more distant in time. In particular,

an oil supply shock normalized on oil production is more contractionary in the more recent

past compared to early periods since a considerable fraction of the pairwise draws lies below

the threshold. The opposite results emerges for the normalization based on the real price

of oil. While the dispersion of pairwise posterior draws for consumer prices implies similar

responses for pairs of dates in the early part of the sample, there appears to be a systematic
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increase in price responses in the last decade with the majority of draws lying above the diving

line for both normalizations. Overall, this provides strong evidence for sizeable changes in

the responses of oil market variables and some support for changes in the responses of the

aggregate economy over time.

E.2 Sensitivity analysis

We summarize the results for the alternative model speci�cations discussed in section 3.3 in

the main text and conduct two additional robustness checks. In what follows, an oil supply

shock is normalized to correspond to a 1% decrease in world oil production.

Figure 6A, panel A displays the time-varying median responses of the unemployment rate

(left) and the implicit GDP de�ator (right) which yield the same pattern of time variation as

real GDP and CPI. For ease of comparison, the dotted lines in panels B and C and in Figure

7A depict the median estimates obtained with the baseline model. Figure 6A, panel B, shows

that the time-varying responses obtained with di¤erent oil price measures are essentially

identical. Panel C presents the evolution of the responses for the model augmented by the

federal funds rate which exhibit a pattern remarkably similar to the baseline case. Figure

7A, panel A displays the time-varying responses when sign restrictions are imposed from

t = 4 to t = 8. As before, the time-varying responses closely track the dotted lines that

represent the benchmark model, demonstrating that our main conclusions are not sensitive

to the modi�ed identi�cation assumptions.

As pointed out by Fry and Pagan (2011), sign restrictions impose only weak information.

Building on this insight, Kilian and Murphy (2011) argue that the sign identi�cation strat-

egy needs to be complemented with additional information in order to derive economically

meaningful results in the context of oil market models. They propose the use of empirically

plausible boundary restrictions on the magnitudes of the implied short-run price elasticities

of oil demand and oil supply as auxiliary identi�cation criteria to eliminate those structural

models that are associated with implausibly high elasticities. To verify the robustness of

our �ndings, we follow Kilian and Murphy (2010) in imposing that the short-run price elas-

ticity for oil demand cannot exceed its long-run counterpart which may be inferred to be

about -0.8 using cross-sectional evidence from U.S. household surveys (see e.g. Hausman and

Newey 1995). Figure 7A, panel B shows that our baseline results are not a¤ected by this

additional identifying restriction. Even more stringent bounds on the impact price elasticity

of oil demand have little e¤ect on the time pro�le of the impulse responses.
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To explore the sensitivity of our results with regard to the data frequency, we estimate

a monthly VAR(12) model that includes the growth rates of world oil production, the real

re�ners�acquisition cost of crude oil imports, U.S. industrial production, and U.S. CPI over

two subsamples, 1974M1 � 1985M12 and 1986M1 � 2011M3.5 In line with the quarterly
model, the sign restrictions are postulated to hold over a horizon of 12 months after the

shock. Figure 8A displays the median responses of the four variables to an oil supply shock

together with the 16th and 84th percentiles of the posterior distribution. The results for the

monthly speci�cation paint much the same picture of time variation as in the quarterly split

sample model.
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Figure 1A: Assessing the convergence of the Markov chain: inefficiency factors for the draws from the ergodic distribution  
                  for the states and hyperparameters. 
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Figure 2A: Mean, 68% and 90% posterior credible sets of coefficient estimates from a  
                   smooth-transition model (solid line and shaded areas) and a discrete-break 
                   model (dashed and dotted lines) for 1,000 Monte Carlo replications. 
                   Panel A: Sample size T=200. 
                   Panel B: Sample size T=600. 
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Figure 3A: Panel A: Random sample generated from bivariate VAR(4) model with break 
                                  in variance at t=167 (vertical line). 
                   Panel B: Mean, 68% and 90% posterior credible sets of variance estimates for 
                                  250 Monte Carlo replications. 
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Figure 4A: Joint posterior distribution of the responses of the real price of oil, real GDP and consumer prices to an oil supply  
                  shock normalized such that it decreases world oil production by 1% on impact for selected pairs of dates. 
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Figure 5A: Joint posterior distribution of the responses of world oil production, real GDP and consumer prices to an oil supply  
                  shock normalized such that it raises the real price of oil by 10% on impact for selected pairs of dates. 
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Figure 6A: Panel A: Median responses of U.S. unemployment (left) and GDP deflator (right). 
                  Panel B: Median responses for model with WTI (dashed line) and composite refiners’ 
                                 acquisition cost (solid line) with 68% posterior credible set (shaded area). 
                  Panel C: Median responses for specification with federal funds rate. 
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Figure 7A: Panel A: Median responses with 16th and 84th percentiles when sign restrictions  
                                 are imposed from t=4 to t=8. 
                  Panel B: Median responses with 16th and 84th percentiles when the lower bound  
                                 for the short-run price elasticity of demand is -0.8  
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Figure 8A: Median responses with 16th and 84th percentiles obtained with a constant-coefficient 
                   VAR estimated over two subsamples 1974M1–1985M12 and 1986M1–2011M3. 
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