Independent natural extension for sets of desirable gambles

Gert de Cooman & Enrique Miranda
SYSTeMS, Ghent University, Belgium & Dept. of Statistics and O.R., University of Oviedo, Spain
Gert.deCooman@UGent.be & mirandaenrique@uniovi.es

Sets of desirable gambles

Consider a variable X assuming values in \mathcal{X}. A gamble on X is a map $f : \mathcal{X} \to \mathbb{R}$. The set of all gambles on X is $\mathbb{G}(X)$. A set of desirable gambles $\mathcal{G} \subseteq \mathbb{G}(X)$ is a model for the gambles that a subject strictly accepts.

Definition 1. A set of desirable gambles $\mathcal{G} \subseteq \mathbb{G}(X)$ is called coherent if:

1. $\mathcal{G}(\emptyset) = \{\emptyset\}$ (avoiding non-positivity);
2. $\mathcal{G}(\emptyset)$ is a partial order (accepting partial gains);
3. \mathcal{G} is a model for the gambles that a subject strictly accepts.

We denote by \mathcal{D} the set of all coherent sets of desirable gambles on X.

Theorem 1 (Natural extension). Let \mathcal{G} be any subset of \mathcal{D}. Then

$$\mathcal{G}(\mathcal{G}) : \mathcal{G} \subseteq \mathcal{D} \mapsto \bigcap \{ \mathcal{G} \subseteq \mathcal{D} : \mathcal{G} \subseteq \mathcal{G} \}$$

is the smallest coherent set of desirable gambles that includes \mathcal{G}.

Theorem 2. $\mathcal{G}(\mathcal{G})$ avoids non-positivity if and only if \mathcal{G} is maximal.

Moreover, its natural extension is given by:

$$\mathcal{G}(\mathcal{G}) = \bigcap \{ \mathcal{G} \subseteq \mathcal{D} : \mathcal{G} \subseteq \mathcal{G} \}.$$

Maximal sets of desirable gambles

An element \mathcal{G} of \mathcal{D} is called maximal if it is not strictly included in any other element of \mathcal{D}.

Let \mathcal{M} denote the set of all maximal elements of \mathcal{D}. Note that \mathcal{G} is a maximal coherent set of desirable gambles if and only if

$$\mathcal{G} \subseteq \mathcal{M}.$$

Theorem 3. \mathcal{M} avoids non-positivity if and only if \mathcal{G} is maximal.

Moreover, its natural extension is given by:

$$\mathcal{G}(\mathcal{M}) = \bigcap \{ \mathcal{G} \subseteq \mathcal{D} : \mathcal{G} \subseteq \mathcal{G} \}.$$

More than one variable

Consider a finite number of variables X_n, $n \in \mathbb{N}$, in the respective finite sets \mathcal{X}_n.

For $R \subseteq \mathcal{X}$, we denote by X_R the tuple of variables that takes values in the Cartesian product $X_R = \times_{n \in R} X_n$.

We denote by $\mathbb{G}(X_R)$ the set of gambles on X_R.

Suppose $\mathcal{G}_R \subseteq \mathbb{G}(X_R)$ models a subject's beliefs about X_R.

Marginalisation. The corresponding beliefs about the variable X_n, where $O \subseteq \mathbb{N}$, are given by the marginal model:

$$\mathbb{G}(\mathcal{G}_R) = \{ g \in \mathbb{G}(X_O) : g \in \mathbb{G}(X_R) \}.$$

Conditioning. Conditioning the model \mathcal{G}_R with the information that $X_i = \omega_i$, with $I \subseteq O$, leads to the updated model:

$$\mathcal{G}_R\{X_I\} = \{ g \in \mathbb{G}(X_O) : I_{\omega} g \in \mathbb{G}(X_O) \}.$$

Theorem 3. Coherence is preserved under marginalisation and conditioning.

Independent natural extension

Consider, for any subset I of O and any $\omega \in \mathcal{X}_I$, the set of desirable gambles on X_O,

$$\mathcal{G}(\omega \in \mathcal{G}(X_I)) = \mathbb{G}(X_O) \setminus \mathcal{G}(\omega \in \mathcal{G}(X_I)).$$

We use these sets to construct the following set of desirable gambles on X_O:

$$\mathcal{G}(\omega \in \mathcal{G}(X_I)) = \bigcap \{ \mathcal{G} \subseteq \mathcal{D} : \mathcal{G} \subseteq \mathcal{G}(\omega \in \mathcal{G}(X_I)) \}.$$

Constructing joints from marginals. Suppose we have coherent sets \mathcal{G}_n of desirable gambles on X_n, for each $n \in \mathbb{N}$.

Definition 3. We call independent product of the \mathcal{G}_n any independent set of desirable gambles $\mathcal{G}_n \in \mathcal{D}(X_n)$ that marginalises to the \mathcal{G}_n for all $n \in \mathbb{N}$:

$$\mathbb{G}(\mathcal{G}_n) = \mathcal{G}_n$$

for all $n \in \mathbb{N}$.

There are usually infinitely many such independent products.

We are looking for the smallest one: the independent natural extension of the \mathcal{G}_n.

Strong product

We define the strong product $\mathbb{G}(\mathcal{G}_n)$ as the set of desirable gambles on the product space X_O given by:

$$\mathbb{G}(\mathcal{G}_n) = \bigcap \{ \mathcal{G} \subseteq \mathcal{D}(X_O) : \mathcal{G} \subseteq \mathcal{G}_n \}.$$

Observe that for maximal sets $\mathcal{G}_n \in \mathcal{M}(X_n)$, $n \in \mathbb{N}$ the strong product and the independent natural extension coincide:

$$\mathbb{G}(\mathcal{G}_n) = \mathbb{G}(\mathcal{G}_n).$$

Proposition 8 (Marginalisation). Let I be any subset of O, then

$$\mathbb{G}(\omega \in \mathcal{G}(X_I)) = \mathbb{G}(\mathcal{G}(X_I)) \cap \mathbb{G}(\mathcal{G}(X_I)).$$

Proposition 9 (Conditioning). The strong product $\mathbb{G}(\mathcal{G}_n)$ is independent: for all disjoint subsets I and O of N, and all $\omega \in \mathcal{X}_O$,

$$\mathbb{G}(\omega \in \mathcal{G}(X_I)) \subseteq \mathbb{G}(\mathcal{G}(X_I)) \cap \mathbb{G}(\mathcal{G}(X_I)).$$

It is still an open problem at this point whether, like the natural extension, the strong product is associative.