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 

Abstract— We present the first application of the emerging 

framework of Information Dynamics to the characterization of 

the EEG activity. The framework provides entropy-based 

measures of information storage (self entropy, SE) and infor-

mation transfer (joint transfer entropy (TE) and partial TE), 

which are applied here to detect complex dynamics of individual 

EEG sensors and causal interactions between different sensors. 

The measures are implemented according to a model-free and 

fully multivariate formulation of the framework, allowing the 

detection of nonlinear dynamics and direct links. Moreover, to 

deal with the issue of volume conduction, a compensation for in-

stantaneous effects is introduced in the computation of joint and 

partial TE. The framework is applied to resting state EEG meas-

ured from healthy subjects in the eyes open (EO) and eyes closed 

(EC) conditions, evidencing condition-dependent patterns indica-

tive of how information is distributed in the EEG sensor space. 

The SE was uniformly low during EO and significantly higher in 

the posterior areas during EC. The joint and partial TE were 

saturated by instantaneous effects, documenting how volume 

conduction blurs the detection of information flow in the EEG. 

However, the use of compensated TE measures led us to evidence 

meaningful patterns like the presence of local sinks of infor-

mation flow and propagation motifs, and the emergence of preva-

lent front-to-back EEG propagation during EC. These findings 

support the feasibility of our information-theoretic approach to 

assess the spatio-temporal dynamics of the scalp EEG in different 

conditions. 

 
Index Terms— causal connectivity, complex dynamics, EEG 

propagation, entropy estimation, multivariate time series analy-

sis, transfer entropy, volume conduction. 

 

I. INTRODUCTION 

HANKS to its noninvasiveness, portability and high tem-

poral resolution, electroencephalography (EEG) is a well-
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established and widely used technique to investigate brain dy-

namics and brain interactions in humans. The study of brain 

dynamics based on the EEG is accomplished through the ap-

plication of time series analysis methods to individual record-

ings, and aims at mapping the spatial distribution of the dy-

namical complexity of the brain activity measured at the level 

of the scalp. This approach is largely followed in EEG analy-

sis to provide a quantitative description of the brain activity 

related to different physiological or pathological states [1-4]. 

Beyond the mapping of brain activity, the study of brain inter-

actions is viewed as central for the understanding of the orga-

nized behavior of spatially distributed cortical regions. The 

estimation of brain interactions aims at describing the connec-

tivity patterns which encode the direction and strength of the 

information flow among cortical areas. To this end, a big vari-

ety of estimation methods exists which model and quantify 

brain connectivity from the multichannel EEG [5]. Most of 

these methods are based on the concept of Granger causality 

implemented through the time- or frequency-domain represen-

tation of multivariate linear parametric models [6-9],  and 

have been used to assess the patterns of EEG activity propaga-

tion in different conditions [10-15]. 

In spite of its wide application to the assessment of the brain 

function, meaningful EEG analysis still remains a challenging 

task because of the complex nature of the signals and of the 

neuroelectrical mechanisms underlying its generation. The dy-

namical nature of the EEG has been largely debated, with evi-

dences suggesting that it may be regarded as a realization of a 

linear stochastic process [16] and that it may exhibit signifi-

cant complex temporal fluctuations that reflect nonlinear pro-

cesses [17]. Considering this, approaches able to detect both 

linear and nonlinear properties are recommended to fully 

characterize the intrinsic nature of the EEG [18]. The essen-

tially nonlinear physiological basis of the EEG encourages al-

so the development of connectivity estimators which depart 

from the linear modeling approach often followed for 

Granger-causal analysis [19]. Moreover, a big issue related to 

the estimation of directed interactions among EEG signals is 

the fact that the acquired data are a largely unknown superpo-

sition of the actual brain activities. This issue, commonly de-

noted as volume conduction, poses a serious challenge to 

EEG-based analyses of the information flow across different 

brain regions, because the underlying mixing of unmeasured 
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cortical sources favors the detection of false positive causality 

between the recorded signals [20-23]. While inverse source 

reconstruction approaches are often used to limit the issue of 

volume conduction, these approaches have to face an ill-posed 

inverse problem which imposes to make assumptions possibly 

inconsistent with the properties of the sources to be recon-

structed. Moreover, since it has been shown that artifacts of 

volume conduction persist in the source activities reconstruct-

ed through inversion methods [24], the issue of compensating 

for these artifacts is still open. 

The present study faces the study of brain dynamics and 

brain interactions assessed at the EEG sensor level within the 

emerging information-theoretic framework of information dy-

namics [25,26]. This framework provides entropy-based 

measures of information storage and information transfer that 

allow respectively the detection of complex dynamics in indi-

vidual brain regions and of directed interactions between dis-

tant regions. Information storage refers to the presence of in-

formation in the past of a neural process that will serve to pre-

dict a fraction of the information contained in the future of the 

process [27]. Its application to multichannel EEG allows to 

map the spatial distribution of the complexity of brain dynam-

ics: the lower the dynamical complexity at a given site, the 

higher the information stored at this site. Information transfer 

is a well-defined concept that implements the notion of 

Granger causality in a probabilistic framework through the 

definition of the so-called transfer entropy (TE) [28]. Contrary 

to bivariate analyses that investigate information transfer con-

sidering only two signals, we operate in a fully multivariate 

context through the computation of the overall information 

transferred to an assigned target signal from all other signals 

considered together, defined as joint TE, or the information 

transferred to the target from an individual source signal in the 

presence of the remaining signals, defined as partial TE (PTE). 

In the context of multichannel EEG, the PTE allows the detec-

tion of direct interactions between two brain sites, i.e., interac-

tions not mediated by the activity at the other sites. The practi-

cal computation of information storage and information trans-

fer is performed employing a recently devised model-free es-

timation approach that allows to deal with any type of linear 

and nonlinear dynamics [29]. This approach minimizes the 

bias in the estimation of information dynamics by exploiting a 

compensation scheme based on nearest-neighbor estimators 

and tackling the curse of dimensionality through a procedure 

for dimension reduction based on non-uniform embedding. 

Moreover, the problem of source mixing manifested in the 

EEG sensor space is faced introducing in TE analysis a com-

pensation for instantaneous effects, i.e. effects resulting in 

simultaneous (non-delayed) information sharing between two 

or more processes [30]. The framework is applied to resting 

state EEG measured from healthy subjects during eyes open 

and eyes closed, in order to evaluate whether these two neuro-

physiological conditions are characterized by spatial patterns 

of information storage and transfer, and to assess the impact of 

volume conduction on the measures of information transfer. 

The analysis framework presented in this study is imple-

mented in the Matlab ITS Toolbox, available for download 

at the link www.lucafaes.net/its.html. 

II. METHODS 

A. Subjects, Signals and Pre-Processing 

The study comprises twenty-one young healthy subjects (11 

females; age 22-39 yrs) with normal vision and reporting no 

history of neurological or mental diseases. EEG recordings 

were performed in an electrically and acoustically shielded, 

darkened room, where participants were comfortably lying 

down in a relaxed state. Signals were acquired with eyes 

closed (EC) for 40 s, and with eyes open (EO) for further 40 s. 

EEG signals were recorded (Micromed Brain Quick System) 

from 19 channels with electrodes placed according to the 10–

20 standard system. All electrodes were referred to a forehead 

common reference (Fpz) with Oz ground electrode. Elec-

trooculographic (EOG) and ECG signals were also recorded. 

All signals were digitized with a sampling rate fs=128 Hz and 

a precision of 16 bit. 

EEG pre-processing consisted of: (i) digital band-pass filter-

ing (0.3-40 Hz, FFT band-pass, zero phase-shift, unit gain fil-

ter) to remove baseline noise and extract information within 

the frequency bands of interest; (ii) if necessary, removal of 

artefacts from eyes blinks, eyes movements and cardiac activi-

ty by separation of these components from the brain activity 

through independent component analysis involving the 19 

EEG signals and EOG and ECG signals; (iii) re-referencing of 

the EEG signals by subtracting from each channel the average 

of all other channels (common average referencing); (iv) se-

lection of the most stationary 8 s windows, performed through 

an iterative test checking restricted weak stationarity of the 

signal through the approach described in [31]. 

B. Information-Theoretic Analysis 

The time series measured from each subject are interpreted 

as realizations of an M-dimensional stochastic process that de-

scribes the EEG scalp dynamics (M=19 in this study). The 

analysis is performed considering one scalar sub-process as 

the target Y and collecting all other sub-processes in the (M-

1)-dimensional driver process X. Denoting as Y
n
 the scalar 

random variable obtained sampling the process Y at the pre-

sent time n, and as Y
n

─
=[Y

n-1
,Y

n-2
,…] the vector variable de-

scribing the past of the process (the same notation holds for 

any scalar process XX), the predictive information of Y 

measures the amount of information carried by Y
n
 that can be 

predicted from the past of the whole observed process 

[X
n

─
,Y

n

─
] [26,29,32]. The predictive information can be ex-

pressed as the sum of the information stored in Y and the in-

formation transferred to from X to Y, where the information 

storage and the information transfer are computed by the self 

entropy (SE) and the joint transfer entropy (TE), defined re-

spectively as 
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The functionals H(∙), H(∙|∙), I(∙;∙), and I(∙;∙|∙) denote respective-

ly entropy, conditional entropy, mutual information (MI) and 

conditional MI. Then, with reference to a specific driver XX, 

the partial (conditioned) TE (PTE) is expressed as 
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where Z=X\X is the (M-2)-dimensional process containing all 

drivers except X. 

Even though the existence of a significant PTE is usually 

taken as an indication of the presence of lagged causality from 

X to Y, the existence of an instantaneous causality might ren-

der useless this functional. Indeed, instantaneous effects might 

be erroneously taken as lagged and inflate TE and PTE be-

cause they are not conditioned out. Instantaneous causality be-

tween X and Y is present when X
n
 and Y

n
 are not independent 

given the past of the whole process {X,Y}={X,Z,Y} [33]; this 

condition is verified when nonzero values are taken by the 

conditional MI I
Y,X|Z

=I(Y
n
 ; X

n

  
| X

n

─
, Y

n

─
, Z

n

─
). Defined as X

n

0
 the 

set of all and only the drivers XX for which instantaneous 

causality occurs between X and Y, more appropriate function-

als for testing lagged causality are the compensated TE (cTE) 

from X to Y and compensated PTE (cPTE) from X to Y given 

Z, defined respectively as [30] 
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The absence of instantaneous causality between X and Y can 

be verified after the compensation introduced by Eq. (3) ob-

serving that I
0

Y,X|Z
=I(Y

n
 ; X

n

 
| X

n

─
,Y

n

─
,Z

n

─
,X

n

0
)=0; while this condi-

tion is always true in theory, its verification in practical analy-

sis serves as confirmation of the efficacy of the compensation 

for instantaneous effects. 

C. Estimation of Information Dynamics 

In this study, the measures of information dynamics are es-

timated following a procedure for non-uniform embedding  

which optimizes the lagged components to be included in the 

conditioning vectors according to a criterion for maximum 

relevance and minimum redundancy [29]. The approach is 

based on the progressive selection, from a set of candidate 

components Ω including the lagged variables that sample the 

past of the relevant processes up to a maximum lag L, of the 

variables which are the most informative about the target vari-

able Y
n
. For computing the SE, the initial set of candidate 

components is Ω
Y
={Y

n-
,...,Y

n-L
}, and the selection procedure 

approximates the past Y
n

─
 with a sub-vector Y

n

dY composed of 

the dY most relevant lagged variables of Y. For the computa-

tion of TE and PTE, the set of initial candidates is 

Ω
XYZ

=Ω
Y
Ω

X
Ω

Z
, where ΩX={X

n-1
, X

n-1-
,...,X

 n-1-(L-1)
} and 

the same notation applies to each scalar component of Z. 

Then, the past of the whole process, [X
n

─
,Y

n

─
,Z

n

─
], is approxi-

mated with the d-dimensional vector [X
n

dX, Y
n

dY, Z
n

dZ] composed 

of lagged variables of X, Y and Z. Each lagged variable is se-

lected only if it contributes with significant information to the 

target, where statistical significance is assessed by means of a 

randomization test employing surrogate data. Details about the 

procedure for non-uniform embedding are in [29]. 

The estimation of the information storage was performed 

first approximating Y
n

─
 with the finite-dimensional vector 

Y
n

dYΩ
Y
, and then expressing the SE as S

Y
= H(Y

n
) – H(Y

n
,Y

n

dY) 

+ H(Y
n

dY) and computing the three entropy terms by nearest 

neighbor entropy estimation. With this approach, the highest-

dimensional entropy term H(Y
n
,Y

n

dY) is estimated through 

neighbor search in the (d
Y
+1)-dimensional space, while the 

lower-dimensional terms H(Y
n
) and H(Y

n

dY) are estimated 

through range searches in the spaces of dimension 1 and d
Y
. 

This results in the estimate [29]: 
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where  is the digamma function, N is the number of available 

realizations, and N1 and NdY
 are the number of points whose 

distance from Y
n
 and Y

n

dY  is strictly less than the distance from 

[Y
n
,Y

n

dY] to its k-th neighbor. (<·> denotes average and the 

maximum distance is used here). 

To estimate the information transfer, first we enlarged the 

vector Y
n

dY with the components X
n

dXΩ
X
 and Z

n

dZΩ
Z
 derived 

by non-uniform embedding to get the full embedding vector 

V
n
=[X

n

dX,Y
n

dY,Z
n

dZ]. Then, expressing the TE as  

TXY = H(Y
n
,Y

n

dY)–H(Y
n

dY)–H(Y
n
,V

n
)+H(V

n
), and expressing the 

PTE as T
XY|Z

=H(Y
n
,Y

n

dY,Z
n

dZ)–H(Y
n

dY,Z
n

dZ)–H(Y
n
,V

n
)+H(V

n
), 

the term H(Y
n
,V

n
) is estimated through neighbor search in the 

(d
X
+d

Y
+d

Z
+1)-dimensional space, while the other terms are 

estimated through range searches in the subspaces of lower 

dimension. This results in the estimates: 
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where NdY
, NdY1

, NdYZ
, NdYZ1

, and Nd are the number of points 

whose distance from Y
n

dY, [Y
n
,Y

n

dY], [Y
n

dY,Z
n

dZ], [Y
n
,Y

n

dY,Z
n

dZ], and 

V
n
, respectively, is strictly less than the distance from [Y

n
,V

n
] 
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to its k-th neighbor. 

The presence of instantaneous causality between X and Y 

was tested approximating the past of the whole process with 

the estimated full embedding vector V
n
 and checking the sta-

tistical significance of the conditional MI I
Y,X|Z

=I(Y
n
 ; X

n

 
| V

n
). 

This was achieved exploiting the same randomization test 

used in the non-uniform embedding scheme, applied to the 

conditional MI estimated through the nearest neighbor meth-

od. If instantaneous causality was detected between X
n
 and Y

n
, 

X
n

0
 was incremented with X

n
. The effectiveness of the com-

pensation for instantaneous effects was tested checking the 

statistical significance of the conditional MI I
0

Y,X|Z
=I(Y

n
 ; X

n

 
| V

n
 

; X
n

0
). Then, the cTE and cPTE were estimated following the 

same procedure described above, but incrementing the sets of 

initial candidates ΩX and ΩZ with the relevant zero-lag com-

ponents taken from X
n

0
 before the execution of non-uniform 

embedding. 

The statistical test for lagged causality used to decide 

whether the PTE and cPTE computed according to (2) and 

(3b) are significantly different from zero was performed im-

plicitly through the application of the procedure for non uni-

form embedding: if the resulting embedding vector did not 

contain any lagged component from the driver X (i.e., if 

X
n

dX=[∙]), the estimated PTE or cPTE was exactly zero and 

deemed as non-significant; on the contrary, if at least one 

lagged variable was selected from X by the randomization test 

(i.e., if X
n

dX[∙]), the PTE or cPTE was strictly positive and 

thus deemed as statistically significant [29]. The same test can 

be applied to test the statistical significance of the joint TE or 

cTE of (1b, 3b) by considering the presence of lagged compo-

nents from all drivers X. 

All analyses performed in this study are based on the ITS 

Matlab Toolbox (www.lucafaes.net/its.html) and can be 

probed launching the script EEG_EyesClosed.mat. 

D. Data Analysis 

Each analyzed data set consisted of M=19 time series of 

N=1024 samples. The computation of information dynamics 

was performed on the normalized time series obtained sub-

tracting the mean from each EEG time series, and dividing the 

result by the standard deviation. The set of candidate compo-

nents for non-uniform embedding was determined including 

L=5 past components for each series, and spacing each com-

ponent with a lag  determined as the decorrelation time of 

each individual time series, i.e. the lag at which the autocorre-

lation drops below a threshold equal to 1/e [34]. The proce-

dure for non-uniform embedding was run using random shift 

surrogates to test for the statistical significance of the infor-

mation brought to the target by the lagged variable selected at 

each step, and setting to k=10 the number of neighbors used 

for all entropy estimations [29]. 

Statistical analysis of the information storage (SE) and in-

formation transfer (joint TE) computed for the M=19 scalp re-

gions in the two experimental conditions was performed using 

nonparametric statistics. Specifically, the Friedman’s test was 

used to check for significant differences of SE, TE or cTE be-

tween the two conditions (EO vs. EC) after adjusting for pos-

sible spatial electrode distribution effects; when the test re-

turned statistically significant differences, post-hoc analysis 

was performed for each electrode location using the Wilcoxon 

signed rank test. The Kruskal-Wallis analysis of variance was 

employed to test for regional differences of SE, TE or cTE in 

an assigned condition (EO or EC); when the test returned sta-

tistically significant differences, post-hoc analysis was per-

formed between each pair of electrodes. In all statistical tests, 

compensation for multiple comparisons was performed apply-

ing a Bonferroni correction. 

III. RESULTS 

The duration of the window of past samples spanned in our 

analysis by the procedure for non-uniform embedding, Lfs, 

was equal to 19270 ms during EO and 15250 ms during EC 

 

Fig. 1.  Information storage measured by the self entropy (SE) SY computed for each electrode during eyes open (EO, top) and eyes closed (EC, bottom), and rep-

resented as box plot across subjects (left), or as color image (median across subjects, right). Asterisks indicate significant difference between EO and EC (Fried-

man + Sign Rank); for any given electrode, electrode labels above boxes indicate significant difference between the two electrodes (Kruskal Wallis + post-hoc). 
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(meanSD over all subjects and channels). During these anal-

yses, the maximum length of the time-lagged causality effects 

detected by the procedure was 10622 ms (EO) and 10922 

ms (EC) for the computation of TE/PTE, and 8863 ms (EO) 

and 9548 ms (EC) for the computation of cTE/cPTE. 

Fig. 1 depicts the spatial mapping of the predictable EEG 

dynamics in the EO and EC conditions, expressed as the in-

formation storage computed through the SE. During EO, the 

amount of information stored in the EEG was relatively low 

and did not vary significantly across sensors. The storage in-

creased significantly during EC, documenting higher regulari-

ty (i.e., lower complexity) of the brain dynamics. The increase 

was statistically significant in the frontal regions (Fp1, Fp2, 

Fz, F4) and even more marked in the posterior scalp regions 

(T5, Pz, P4, T6, O1, O2). The two occipital electrodes (O1 and 

particularly O2) stored also a significantly higher amount of 

information than many other electrodes (F7, F8, T3, C3, Cz, 

C4, T4). 

Fig. 2 depicts the spatial distribution of the overall infor-

mation transferred towards any scalp region, quantified by the 

joint TE directed to the target EEG sensor from all other sen-

sors. The information transfer was remarkable in both EO and 

EC conditions, and resulted higher than the information stor-

age in almost all scalp regions. The distribution of the infor-

mation transfer was rather uniform: while some statistically 

significant regional differences were observed, especially in 

the EO condition, these differences were not substantial and 

did not evidence variations in the information flow along the 

back-to-front directions. No significant differences were de-

tected between EO and EC. 

The barplots of Fig. 3 report the results of the analysis of 

lagged causality and instantaneous causality performed count-

ing, for each target electrode, the number of statistically sig-

nificant PTE computed with the electrode considered as target 

(black) or considered as driver (white); moreover the percent-

ages of significant conditional MI involving the target elec-

trode is also reported (gray). The same information is reported 

on the grayscale images on the right, showing also the pairs of 

electrodes connected by a significant PTE (arrows in mid-

plots) or exhibiting significant instantaneous correlation (lines 

in right smaller plots) in at least 8 out of 21 subjects. In both 

the EO and EC conditions, the percentages of incoming and 

outgoing directed links were comparable with each other and 

across regions, and were always substantially lower than the 

percentage of significant instantaneous links. The analysis of 

causal and instantaneous links found recurrently in at least one 

third of the subjects revealed that Granger causal relations 

were consistently found between pairs of adjacent electrodes, 

and instantaneous relations were ubiquitously found between 

almost any pair of electrodes. These patterns were observed 

almost identically during EO and EC. 
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Fig. 4 reports the distribution of the information transfer 

computed as in Fig. 2 but using the joint cTE in place of the 

joint TE. The compensation of instantaneous causality led to 

substantially lower amounts of information transfer (see Fig. 4 

vs. Fig. 2), which became generally lower than the infor-

mation storage (see Fig. 4 vs. Fig. 1). Moreover, the cTE evi-

denced regional propagation patterns peculiar of each condi-

tion that were not visible using the TE. During EO, the frontal 

lateral electrodes (F8 and particularly  F7) received the largest 

information flow, and a high amount of information was trans-

ferred also towards the right occipital and temporal electrodes; 

the parietal areas (P3, P4) were those receiving the lower in-

formation flow. During EC, the information flowing to F7 and 

F8 was still high, but remarkable flows of information were 

directed also towards Cz and, even more strongly, towards the 

occipital electrodes (especially O2) and the right temporal ar-

ea. The information flow directed to T6, O1 and O2 was sig-

nificantly higher than during EO, so that these areas received 

significantly higher information than that received by some 

frontal regions (e.g., F3,Fz,F4,F8). The information transfer 

was still low in the parietal areas P3 and P4. 

 

Fig. 2.  Information transfer measured by the joint transfer entropy (TE) T
XY

 computed for each electrode during eyes open (EO, top) and eyes closed (EC, bot-

tom), and represented as box plot across subjects (left), or as color image (median across subjects, right). For any given electrode, electrode labels above the box 

plot indicate significant difference between the two electrodes (Kruskal Wallis + post-hoc). 

 

Fig. 3.  Percentage of statistically significant causal links detected by the partial TE (PTE) (T
XY|Z

>0) entering and leaving each electrode during eyes open (EO, 

top) and eyes closed (EC, bottom), and represented as bar plots (left) or as grayscale image (mid, right). In left plots, gray bars indicate the percentage of signifi-

cant instantaneous causal relations (I
Y,X|Z

>0) detected for each electrode. In mid images, yellow arrows depict the causal links detected as statistically significant 

in at least one third of the subjects. In right images, yellow lines depict the instantaneous links detected as statistically significant in at least one third of subjects. 
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Fig. 5 is structured like Fig. 3, reporting the analysis of 

lagged and instantaneous causal links assessed after compen-

sation of instantaneous effects. As a result of the compensa-

tion, the number of significant instantaneous causal relations 

decreased dramatically, reducing to some residual links con-

fined to the connections involving the electrodes F7 and T3 

during EO, and becoming completely absent during EC. This 

more parsimonious representation of the patterns of lagged 

causality allowed to distinguish the two considered conditions 

in terms of significant PTE values. First, the percentage of in-

coming and outgoing connections became unbalanced for 

some electrodes, e.g., revealing a tendency of the fronto-

lateral areas (electrodes F7 and F8) to receive more infor-

mation than that sent out to the other areas. During EO, the 

PTE patterns representing the most consistent causal relations 

were those directed to F7 and F8 from the frontal electrodes, 

from the temporal electrodes T3 and T4, and from the occipi-

tal electrodes O1 and O2. This suggests the existence of a 

frontal propagation circuit, fed also by lateral and occipital ac-

tivity. During EC, the frontal circuit is still present (even if 

weaker) but also a posterior circuit emerged which was fed by 

front-to-back propagation (T5PzT6; T3T5O1, 

T4T6O2; P3O1, P4O2). 

The emergence during EC of EEG propagation directed to-

wards the posterior and occipital regions was revealed also 

counting the total number of front-to-back and back-to-front 

significant links detected by cPTE, which was 133 vs. 79 (sum 

over all subjects). The same counting performed during EO 

returns 95 vs. 89, suggesting that the prevalence of front-to-

back propagation is limited to the EC condition. It is worth 

noting that this behavior was evident only after compensating 

for instantaneous effects, since the total number of front-to-

back and back-to-front significant PTE links was 261 vs. 243 

during EO and 220 vs. 205 during EC. 

 

Fig. 4.  Information transfer measured by the compensated joint TE (cTE) T
0

XY|Z
 computed for each electrode during eyes open (EO, top) and eyes closed (EC, 

bottom), and represented as box plot across subjects (left), or as color image (median across subjects, right). Asterisks indicate significant difference between EO 

and EC (Friedman + Sign Rank); for any given electrode, electrode labels above the box plot indicate significant difference between the two electrodes (Kruskal 

Wallis + post-hoc). 

 

Fig. 5.  Percentage of statistically significant causal links detected by the compensated partial TE (cPTE) (T
0

XY|Z
>0) entering and leaving each electrode during 

eyes open (EO, top) and eyes closed (EC, bottom), and represented as bar plots (left) or as grayscale image (mid, right). In the left plots, gray bars indicate the 

percentage of significant instantaneous causal relations (I
0

Y,X|Z
>0) detected for each electrode. In mid images, yellow arrows depict the causal links detected as 

statistically significant in at least one third of the subjects. In right images, yellow lines depict the instantaneous links detected as statistically significant in at 

least one third of the subjects. 
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IV. DISCUSSION 

The present study reports the first exhaustive application of 

the emerging framework of information dynamics [25,26] to 

the characterization of EEG activity. Through the develop-

ment of a fully multivariate representation and model-free es-

timation of information dynamics, we assessed the processing 

of information inside the network of EEG sensors by quantify-

ing the amounts of information stored at each sensor and 

transferred across different sensors. While information storage 

and information transfer are constituent elements of the pre-

dictive information of a network of interacting dynamic pro-

cesses which are related to each other [32], previous attempts 

to characterize EEG dynamics were limited to the investiga-

tion of only one of these aspects. The information storage was 

never directly computed for EEG dynamics, as more tradition-

al complexity measures are commonly preferred to assess the 

complexity of the EEG sensor activity [1-3]. As to the infor-

mation transfer, a thorough model-free computation of 

Granger causal measures like the TE has not been performed 

before on EEG data. Previous recent TE investigations on 

electro-magnetic brain activities were limited to bivariate 

analyses restricted to pairs of signals [28,35], mostly because 

the curse of dimensionality limits severely the reliable model-

free estimation of entropy and MI measures for high-

dimensional variables. In this study, multivariate model-free 

analysis of the information transfer was made possible by the 

estimation framework that we recently proposed [29], which 

allows to compute reliable estimates of the overall (direct and 

indirect) causal information flow arriving at any target elec-

trode from all the other electrodes (joint TE), as well as of the 

structure of the direct interactions estimated in a truly multi-

variate context that allows ruling out indirect interactions 

(PTE). Remarkably, the adopted estimators return values of 

SE, joint TE and PTE which are strictly positive only when 

associated with significant information storage or transfer. 

This property led us to assess the statistical significance of the 

estimated PTE and assess the corresponding percentages of 

significant causal links. 

The framework of information dynamics provides entropy 

measures that characterize the overall dynamics of the ana-

lyzed multivariate time series, rather than concentrating on 

specific oscillations as it is commonly done in frequency do-

main analyses. Nevertheless, being sensitive to the amplitude 

variations in the observed time series, information measures 

tend to capture the dynamics of the predominant oscillations 

within the time series. In the context of our EEG analysis, the 

predominant oscillations are likely those in the alpha band, 

especially in the EC condition [40,42]. This is suggested in 

our results by the detection of maximal embedding delays in 

the range of 90-100 ms, which are compatible with the period 

of the alpha waves, and by the patterns of information storage 

that seem to reflect alpha EEG activity as seen in Fig. 1 and 

discussed in the following. The analysis of the information 

stored in the EEG dynamics (Fig. 1) revealed characteristic 

spatial patterns and differences between the analyzed condi-

tions that can be related to known neurophysiological behav-

iors. It is worth recalling that the information storage assessed 

through the SE reflects the regularity of the dynamics intended 

as a quantity complementary to that measured by well-known 

complexity measures such as Approximate Entropy [36], 

Sample Entropy [37] or nonlinear predictability [38]. Accord-

ing to this interpretation, the relatively low amounts of infor-

mation storage measured during EO reflect the richness of the 

EEG dynamics in this condition, with a high dynamical com-

plexity resulting from the contemporaneous presence of oscil-

latory activity in several frequency bands. On the contrary, 

during EC the EEG exhibited a significantly higher infor-

mation storage in several scalp regions. This lower complexity 

during EC is very likely related to the emergence of alpha ac-

tivity in the EEG, which is characterized by dominant regular 

oscillations at ~10 Hz [39]. This interpretation is confirmed by 

the fact that the highest amounts of information were stored in 

the posterior and occipital regions where the alpha activity is 

known to be more visible [40]. 

While the information storage can be assessed in a relative-

ly straightforward way through the quantification of the self-

predictability of the EEG, the assessment of the remaining 

component of predictive information, i.e. the information 

transfer, is complicated by computational and physical issues. 

The computational problem amounts to dealing with multiple 

time series, each sampled at multiple lags in the past, for the 

computation of joint TE and PTE. In this study, this problem 

was faced through the exploitation of non-uniform embedding 

and the accurate entropy estimation based on nearest neigh-

bors [29]. The physical problem consists in the known fact 

that the measured scalp EEG potentials do not reveal exclu-

sively genuine brain activity from localized cortical regions 

beneath the acquiring electrode, but are rather a mixing of the 

activity from multiple non-localized cortical regions which are 

conveyed to the acquiring electrode through volume conduc-

tion. Since source mixing is instantaneous and Granger-causal 

measures look for time-lagged influences, effects of volume 

conduction have been often implicitly discarded in the analy-

sis of directed connectivity performed in the EEG sensor space 

[10-12,14,15]. However, theoretical and empirical model-

based analyses have demonstrated that instantaneous effects 

arising among EEG time series as a result of volume conduc-

tion have an adverse impact on the estimation of time-lagged 

causality, and should thus be avoided [21,23,24,41]. Simula-

tion studies have shown that this issue holds also for model-

free TE estimators [28,30]. The problem is confirmed also by 

the results of the present study, showing that TE and PTE have 

high modulus, do not vary substantially across regions and be-

tween conditions, and detect a fully connected network of 

scalp connectivity where each electrode is bidirectionally 

linked with the adjacent electrodes (Figs. 2,3). Therefore, also 

in agreement with previous reports [22,24,28], we advise for 

the utilization of analysis methods able to deal with effects 

such as those inherent to volume conduction. 

Our results suggest also that reasonably interpretable pat-
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terns of directed connectivity may be retrieved in the EEG 

sensor space provided that a correction for source mixing is 

applied. In this study, we exploited the idea of compensating 

for non-physiological instantaneous effects by conditioning on 

the present of the driver processes that share significant infor-

mation with the present of the target process while performing 

TE computation [30]. Adopting this compensation, we were 

able to elicit significant regional differences in the causal in-

formation flow directed to specific EEG sensors (Fig. 4), as 

well as characteristic patterns of time lagged causality as-

sessed by the PTE (Fig. 5). Our main findings were: the exist-

ence of regional sinks of information flow, located mostly in 

the fronto-lateral regions, and also in the occipital regions dur-

ing EC; the formation of propagation motifs involving mostly 

the frontal sensors during EO, and also the temporal and oc-

cipital sensors during EC; and the emergence of a prevalent 

front-to-back propagation of the EEG activity during EC. The 

presence of significant amounts of information directed to the 

frontal regions, also originating from the occipital areas in the 

EO condition (Fig. 5), is consistent with the flow detected in 

healthy subjects during wakefulness using a frequency domain 

approach to causal inference [10]. Our result about the preva-

lence of front-to-back EEG propagation during EC may be 

counterintuitive, as it is mostly believed that the alpha rhythm, 

which is prevalent during EC, originates in the occipital re-

gions and spreads towards the frontal areas of the brain [42]. 

However, this view has been challenged by an increasing 

number of studies finding that the propagation direction of the 

alpha waves is predominantly from anterior to posterior corti-

cal regions [43-45], which are thus supported by our findings. 

The correction for source mixing applied in this study re-

moved all zero-lag correlations between EEG activities during 

EC, while some residual instantaneous effects involving the 

left fronto-temporal regions were observed during EO (Fig. 5). 

The reasons for this incomplete compensation may be compu-

tational and theoretical. Computationally, the test for instanta-

neous causality performed through the randomization proce-

dure proposed in [29] may lack sensitivity when the corre-

sponding conditional MI involves embedding vectors of rela-

tively high dimension. Theoretically, a rigorous treatment of 

instantaneous effects should set instantaneous causality be-

tween two processes X and Y when their current variables X
n
 

and Y
n
 are not independent conditionally on any combination 

of past and present variables of the observed multivariate pro-

cess [33,46]; while in this report we simplified the test reject-

ing independence between X
n
 and Y

n
 conditioned to X

n

─
 and 

Y
n

─
only, further analyses should assess the benefit and compu-

tational tractability of the complete test which looks at the de-

pendencies conditioning to any subset taken from Z
n
. Moreo-

ver, approaches attempting to assign a direction to instantane-

ous links can be considered to assess the causal structure of 

the network with finer detail [47]. Finally, future studies 

should also compare the approach for compensation of instan-

taneous causality used here with alternative ways proposed in 

the literature to deal with the detrimental effects of volume 

conduction. These alternatives comprise approaches in the 

EEG sensor space, such as corrections involving time inver-

sion tests combined with Granger causality estimation [24] 

and time-shift tests combined with model-free estimation of 

TE [28], or the use of measures deemed as insensitive to vol-

ume conduction [20,44], as well as approaches that follow the 

different perspective of performing inverse source reconstruc-

tion prior to the estimation of Granger-causal measures 

[13,21,23]. 

V. CONCLUSIONS 

This work documents the appropriateness of assessing the 

dynamics of information of the scalp EEG network through 

the computation of the information stored at each electrode 

and transferred across electrodes. Our analysis emphasizes the 

importance of performing a compensation for instantaneous 

effects in the analysis of TE, since we showed that volume 

conduction effects dominate the transfer of information across 

EEG sensors blurring the detection of meaningful patterns of 

information flow. This inclusive integrated approach to the 

analysis of information dynamics, though not allowing to draw 

definitive conclusions about the processing of information of 

the deep electrocortical sources that generate the observed ac-

tivity, led us to retrieve condition-dependent patterns descrip-

tive of how information is distributed in the EEG sensor space. 

We showed that significant transfer of information may occur 

towards scalp regions which do not store high amounts of in-

formation (e.g., frontal areas during EO), but also towards re-

gions with substantial stored information (e.g., occipital areas 

during EC). Together with the prevalence of front-to-back 

propagation of alpha activity detected in the EC condition, 

these findings encourage the exploitation of EEG information 

dynamics in neurocognitive or clinical investigations. 
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