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A novel approach is proposed to group redundant time series in the frame of causality. It assumes that
(i) the dynamics of the system can be described using just a small number of characteristic modes, and
that (ii) a pairwise measure of redundancy is sufficient to elicit the presence of correlated degrees of
freedom. We show the application of the proposed approach on fMRI data from a resting human brain
and gene expression profiles from HeLa cell culture.
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Over the last years the interaction structure of many complex
systems has been mapped in terms of graphs, which can be char-
acterized using tools of statistical physics [1]. Dynamical networks
model physical and biological behavior in many applications; ex-
amples range from networks of neurons [2], Josephson junctions
arrays [3] to genetic networks [4], protein interaction nets [5] and
metabolic networks [6]. Synchronization in dynamical networks is
influenced by the topology of the network [7]. The inference of
dynamical networks is related to the estimation, from data, of the
flow of information between variables. Two major approaches are
commonly used to estimate the information flow between vari-
ables, transfer entropy [8] and Granger causality [9].

An important notion in information theory is the redundancy
in a group of variables, formalized in [10] as a generalization of
the mutual information. A formalism to recognize redundant and
synergetic variables in neuronal ensembles has been proposed in
[11] and generalized in [12]. Recently a quantitative definition to
recognize redundancy and synergy in the frame of causality has
been provided [13] and it has been shown that the maximization
of the total causality, over all the possible partitions of variables,
is connected to the detection of groups of redundant variables; the
search over all the partitions is unfeasible but for small systems.
We remark that the information theoretic treatments of groups of
correlated degrees of freedom can reveal their functional roles in
complex systems. The purpose of this work is to propose a simple
approach to find groups of causally redundant variables (groups
of variables sharing the same information about the future of the
system), which can be applied also to large systems. The main as-
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sumption underlying our approach is that the essential features of
the dynamics of the system under consideration are captured using
just a small number of characteristic modes. Hence we use prin-
cipal components analysis to obtain a compressed representation
of the future state of the system. Then, we introduce a pairwise
measure of the redundancy w.r.t. the prediction of the next con-
figuration of the modes, thus obtaining a weighted graph. Finally,
by maximizing the modularity [7], we find the natural modules of
this weighted graph and identify them with the groups of redun-
dant variables. In the following section we describe the method. In
Section 2 we describe the application of the method to fMRI data,
and in Section 3 to a gene expression data-set. Some conclusions
are drawn in Section 4.

1. Method

Let us consider n time series {xi(t)}i=1,...,n; after a linear trans-
formation, we may assume all the time series to be normalized
and with zero mean. The lagged times series are denoted Xi(t) =
xi(t − 1). We make the hypothesis that the dynamics of the system
under consideration may be described in terms of a few modes,
and that these modes may be extracted by principal components
analysis, as follows. Calling x the n × T matrix with elements
xi(t), we denote {uα(t)}α=1,...,nλ the (normalized) eigenvectors of
the matrix x�x corresponding to the largest nλ eigenvalues. The
T -dimensional vectors uα(t) summarize the dynamics of the sys-
tem; the correlations among variables at different times determine
to what extent the modes u may be predicted on the basis of the
Xi(t) variables.

Preliminarily, we select the variables which are significatively
correlated with the modes u. For each i and each α we evalu-
ate the probability piα that the correlation between Xi and uα is
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due to chance, obtained by Student’s t test. We compare piα with
the 5% confidence level after Bonferroni correction (the threshold
is 0.05/(n × nλ)) and retain only those variables Xi which are sig-
nificatively correlated with at least one mode. The variables thus
selected will be denoted {Yi(t)}i=1,...,N , N being their cardinality.

The second step of the present approach is the introduction
of a bivariate measure of redundancy, as follows. For each pair
of variables Yi and Y j , we denote Pi the projector onto the
one-dimensional space spanned by Yi and P j the projector onto
the space corresponding to Y j ; Pij is the projector onto the bi-
dimensional space spanned by Yi and Y j . Then, we define:

ci j =
nλ∑

α=1

(‖Piuα‖2 + ‖P juα‖2 − ‖Pijuα‖2); (1)

according to the discussion in [13], ci j is positive (negative) if vari-
ables Yi and Y j are redundant (synergetic) w.r.t. the prediction of
the future of the system. In other words, if Yi and Y j share the
same information about u, then ci j is positive.

In the third step, the matrix ci j is used to construct a weighted
graph of N nodes, the weight of each link measuring the degree of
redundancy between the two variables connected by that link. By
maximization of the modularity [14], the number of modules, as
well as their content, is extracted from the weighted graph. Each
module is recognized as a group of variables sharing the same in-
formation about the future of the system.

As an example we report the following example. Let us consider
the following autoregressive system:

ψt = 0.6ηt−1 + 0.1ξ1
t ,

ηt = 0.6ψt−1 + 0.1ξ2
t , (2)

where ξ are i.i.d. unit variance Gaussian variables. By construction,
ψ is caused by η and vice versa. A system of 50 time series is
constructed as follows. For i = 1, . . . ,10:

xi(t) = ψt + 0.2ρ i
t ,

x10+i(t) = ηt + 0.2ρ10+i
t ,

x20+i(t) = ξ3
t + 0.2ρ20+i

t ,

x30+i(t) = ξ4
t + 0.2ρ30+i

t ,

x40+i(t) = ρ40+i
t , (3)

where ρ and ξ are i.i.d. unit variance Gaussian variables. Start-
ing from a random initial configuration, the above equations are
iterated and, after discarding the initial transient regime, ns con-
secutive samples of the system are stored for further analysis. Note
that the first ten variables share the same information correspond-
ing to ψ , whilst the second ten variables share the information
of η. The variables xi , with i = 21, . . . ,30, form a group of vari-
ables with correlations at equal times, similarly to the group of
variables with i = 31, . . . ,40. The variables xi , with i = 41, . . . ,50,
correspond to pure noise. In Fig. 1 the equal-times correlations of
the system are depicted, for a typical case with ns = 500, showing
four groups of correlated variables. We perform the principal com-
ponents analysis and retain a variable number nλ of modes for the
analysis.

In Fig. 2, top-left, we depict N , the number of selected vari-
ables, as a function of nλ . For nλ = 3,4,5, twenty variables (xi with
i = 1, . . . ,20) are selected; nineteen variables for nλ = 1,2,6,7,8.
Then, for each value of nλ , the quantities ci j are evaluated. We
find that, in this example, the matrix ci j is non-negative and can
be treated as a weighted graph.

In Fig. 2, top-right, we plot the number of modules Nm we
find by applying the method described in [14] to the matrix ci j;

Fig. 1. The correlation matrix of the simulated example, showing four groups of
variables correlated at equal times.

Fig. 2. (Top-left) Concerning the simulated example, the number of selected vari-
ables N is plotted versus nλ , the number of modes. (Top-right) The number of
modules, obtained by modularity maximization, of the matrix ci j , whose elements
measure the pairwise redundancy. (Bottom-left) The measure of the stability of the
partition, going from nλ − 1 to nλ , is plotted versus nλ . (Bottom-right) The eigenval-
ues of the matrix x�x are depicted.

the method correctly recognizes the two modules for each value
of nλ .

In Fig. 2, bottom-left, we plot a measure of the stability of the
partition while going from nλ − 1 to nλ , defined as follows. We
consider all the pairs of variables that are selected both in corre-
spondence of nλ − 1 and nλ . The stability is one minus the fraction
of pairs such that the variables are recognized to be in the same
module in one instance and in different modules in the other in-
stance. In this case the stability is always one; when the method
is applied to real data, the stability curve may be helpful to fix the
optimal number of modes nλ .

Finally, in Fig. 2, bottom-right, the eigenvalues of the matrix
x�x are depicted. In this case it is clear that the optimal number
of modes is four.

We remark that a suitable number of samples is needed to ob-
tain reliable results. In Fig. 3 we depict the number of selected
variables, for this example, as a function of ns for three choices
of nλ: it vanishes as the number of samples decreases.
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Fig. 3. The number of selected variables, for the simulated example, is depicted as
a function of the number of samples ns for nλ = 2,3,4.

2. Modular organization of brain activity

The fMRI signal can be regarded as a proxy for the underly-
ing neural activity. Remote regions of the brain do not operate
in isolation and there is a growing interest in studying the in-
teractions and connectivity patterns between these regions, which
have been investigated by independent component analysis [15],
principal components analysis [16] and other approaches. Tempo-
ral and spatial functional networks, corresponding to spontaneous
brain activity in humans, were derived in [18] on the basis of the
equal-time correlation matrix. Modularity in the resting state of
the human brain has also been studied in [19–21]. The connectiv-
ity structure of brain networks extracted from spontaneous activity
signals of healthy subjects and epileptic patients has been analyzed
in [22,23].

Here we consider fMRI data from a subject in resting condi-
tions, with sampling frequency 1 Hz, and number of samples equal
to 500. A prior brain atlas is utilized to parcellate the brain into
ninety cortical and subcortical regions, and a single time series is
associated to each region. All the ninety time series are then band-
passed in the range 0.01–0.08 Hz, so as to reduce the effects of
low-frequency drift and high-frequency noise [23,24].

In Fig. 4, top-left, we depict N , the number of selected vari-
ables, as a function of nλ . For nλ > 3, all the ninety regions are
recognized as influencing the future of the system. For each value
of nλ , the quantities ci j are evaluated. In Fig. 4, top-right, the num-
ber of modules Nm we find by applying the method described in
[14] to the matrix ci j is depicted; this plot suggests the presence
of four modules for 4 < nλ < 8. These values are the most stable,
as it is clear from Fig. 2, bottom-left, where we plot the measure
of the stability of the partition while going from nλ − 1 to nλ . It
follows that the optimal value of nλ is four, corresponding to a
graph structure with four modules and modularity equal to 0.3.
We find that module 1 includes brain regions from the ventral
medial frontal cortices which are primarily specialized for ante-
rior default mode network. This brain network is also termed as
self-referential network, which has been assumed to filter, select,
and provide those stimuli which are relevant for the self of a par-
ticular person. Module 2 is typical referred to as posterior default
mode network, which exhibits high levels of activity during resting
state and decreases the activity for processes of internal-oriented
mental activity, such as mind wandering, episodic memory, and
environmental monitoring. Module 3 mainly corresponds to exec-

Fig. 4. (Top-left) Concerning the fMRI application, the number of selected regions
N is plotted versus nλ , the number of modes. (Top-right) The number of modules,
obtained by modularity maximization, of the matrix ci j , whose elements measure
the pairwise redundancy. (Bottom-left) The measure of the stability of the partition,
going from nλ − 1 to nλ , is plotted versus nλ . (Bottom-right) The eigenvalues of the
matrix x�x are depicted.

Fig. 5. The histogram of the values of the pairwise redundancy ci j , in fMRI example
(bottom), and choosing randomly the modes u (top).

utive control network, assumed to be dedicated to adaptive task
control. Module 4 refers to some brain regions in the occipital lobe
that are primarily specialized for visual processing and the others
in the subcortical cortices. In Fig. 4, bottom-right, the eigenvalues
of the matrix x�x are depicted.

It is worth comparing the histogram of the values of ci j , in this
example (Fig. 5, bottom), with those corresponding to a random
choice of the modes u (Fig. 5, top). In the random case, the pairs
of variables are either redundant or synergetic, and the typical val-
ues of c are very small. On the data set at hand, the magnitude
of the values of c’s is much higher and variables are mostly re-
dundant; indeed the c’s are negative (with small absolute value)
only for a few pairs of regions. Our results confirm that brain is
highly redundant, as most information theoretic work shows (see,
e.g., [17]). We remark that the presence of a few small and neg-
ative weights does not influence significantly the output from the
modularity algorithm of [14]: the output does not change if all
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Fig. 6. The causalities between the four modules of the fMRI application.

Fig. 7. (Top-left) Concerning the genetic application, the number of selected regions
N is plotted versus nλ , the number of modes. (Top-right) The number of modules,
obtained by modularity maximization, of the matrix ci j , whose elements measure
the pairwise redundancy. (Bottom-left) The measure of the stability of the partition,
going from nλ − 1 to nλ , is plotted versus nλ . (Bottom-right) The eigenvalues of the
matrix x�x are depicted.

c’s with absolute value less than a threshold are set to zero (the
threshold being chosen so that all the elements of the resulting
matrix are non-negative).

Averaging the time series belonging to each module, we obtain
four time series and we evaluate the causalities between them: the
result is displayed in Fig. 6. It is interesting to observe that mod-
ule 4 influences all the three other modules but is not influenced
by them, it is an out-degree hub; this is consistent with the fact
that it corresponds to subcortical brain. Another striking feature is
the clear interdependencies between modules 2 and 3. The relia-
bility of this pattern needs to be assessed on a large population of
subjects.

3. HeLa gene expression regulatory network

HeLa [25] is a famous cell culture, isolated from a human
uterine cervical carcinoma in 1951. HeLa cells have somehow ac-
quired cellular immortality, in that the normal mechanisms of
programmed cell death after a certain number of divisions have

Fig. 8. The histogram of the values of the pairwise redundancy ci j , in genetic appli-
cation (bottom), and choosing randomly the modes u (top).

somehow been switched off. We consider the HeLa cell gene ex-
pression data of [26]. Data corresponds to 94 genes and 48 time
points, with an hour interval separating two successive readings
(the HeLa cell cycle lasts 16 hours). The 94 genes were selected,
from the full data set described in [27], on the basis of the associ-
ation with cell cycle regulation and tumor development. This data
has been also considered in [28]. The static correlation analysis
between time series, which is the result of regulation mechanisms
with time scales faster than the sampling rate, revealed a highly
related network with the presence of two modules: the first mod-
ule was recognized as corresponding to the regulatory network of
the transcriptional factor NFkB [29], whilst the second module ap-
peared to be orchestrated by transcriptional factors p53 and STAT3.
Use of bivariate Granger causality, in [28], has put in evidence 19
causality relationships acting on the time scale of one hour, all
involving genes playing some role in processes related to tumor
development.

As stated in [30], fundamental patterns underlie gene expres-
sion profiles. This suggest the use of the proposed approach on
gene expression time series. In Fig. 7 we describe the application
of the proposed approach on the HeLa data-set. The stable parti-
tion corresponds to nλ = 4 and consists of two modules of 9 and
7 genes (the modularity is 0.1). The first module is characterized
by the transcriptional factor NFkB and consists of NFkB, MCP-1,
ICAM-1, Bcl-XL, IAP, A20, c-myc, TSP1, and Mcl-1. The second mod-
ule is related to the transcriptional factor JunB, known to be a
regulator of life and death of cells [31], and consists of JunB, IL-6,
IkappaBa, P21, Noxa, c-jun and NRBP. Averaging the time series be-
longing to each module, and evaluating the causality between the
two time series thus obtained, we obtain a relevant (0.145) causal-
ity of the first module on the second one. We note that all the
sixteen genes selected by our approach were recognized as inter-
acting in [26]; nine of them were involved also in the causalities
described in [28]. It is not surprising that different methods, on the
same data set, provide slightly different results: currently available
data size and data quality make the reconstruction of gene regu-
latory networks from gene expression data a challenge. In Fig. 8,
bottom, we depict the histogram of the values of c on this data-
set, and compare with those corresponding to choosing randomly
the modes u (Fig. 8, top). On this data-set, the values of c that we
obtain are significantly greater than those one finds in the random
case, and all the pairs are redundant (see, e.g., [32] for a review of
information–theoretic analysis of interacting genes).
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4. Conclusions

Grouping redundant time series reveals their functional roles in
complex systems. In the frame of causal approaches, grouping re-
dundant time series may reflect directed influence of one group
over another. In this work we have proposed a novel approach
which assumes that (i) the dynamics of the system can be de-
scribed using just a small number of characteristic modes, and
that (ii) a pairwise measure of redundancy is sufficient to elicit
the presence of correlated degrees of freedom. Grouping is pro-
vided by the identification of the modules of the weighted graph
of redundancies. The method may be seen as an alternative to
the analysis of [13], which can be applied also for large systems.
We have shown the effectiveness of the proposed approach in two
applications, the analysis of fMRI data and the analysis of gene ex-
pression data. In both these applications usually linear interactions
are sought for, and only lags of 1 are considered, therefore here
we limited to consider a linear pairwise measure of redundancy,
and considered only lags of 1. The generalization of the pairwise
redundancy measure, here introduced, to the non-linear case and
to lags of higher order is matter for further work, along the lines
described in [13].
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