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Kernel method for clustering based on optimal target vector
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Abstract

We introduce Ising models, suitable for dichotomic clustering, with couplings that are (i) both ferro- and anti-ferromagnetic (ii) depending on
the whole data-set and not only on pairs of samples. Couplings are determined exploiting the notion of optimal target vector, here introduced,
a link between kernel supervised and unsupervised learning. The effectiveness of the method is shown in the case of the well-known iris data-set
and in benchmarks of gene expression levels, where it works better than existing methods for dichotomic clustering.
© 2006 Elsevier B.V. All rights reserved.

PACS: 05.10.-a; 87.10.+e
Recent years have been characterized by a dramatic evolu-
tion in many fields of life science with the apparition and rapid
spread of so-called high-throughout technologies, which gener-
ate huge amounts of data to handle various aspects of biological
samples or phenomena. The need for efficient methods to repre-
sent, analyze and finally make sense out of these data triggered
the development of numerous data analysis algorithms, some
of which physically motivated: for example in [1] the cluster-
ing problem is mapped onto the phase diagram of Potts models,
in [2] models of coupled chaotic maps are exploited, while
method from quantum mechanics are used in [3]. Among the
most effective approaches, kernel methods have quickly gained
popularity for problems involving the classification and analy-
sis of high-dimensional or complex data. Well-known super-
vised kernel algorithms are support vector machines [4], both
for regression and classification, and kernel ridge regression [5].
A popular unsupervised kernel method is kernel principal com-
ponents [6], a nonlinear projection tool which generalizes the
classical principal component analysis. In this work we propose
use of Ising models for dichotomic clustering, and construct
the set of couplings exploiting a simple connection between su-
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pervised and unsupervised kernel methods, here presented: the
ground state of the Ising model should correspond to the op-
timal target vector, i.e., the target vector leading to the best fit
using kernel ridge regression. We compare performances by our
method with those from fuzzy c-means [7], the most commonly
used method for dichotomic clustering.

In order to describe our prescription for Ising couplings,
firstly we recall kernel ridge regression, while referring the
reader to [5] or [8] for further technical details. Let us con-
sider a set of � independent, identically distributed data S =
{(xi , yi)}�i=1, where xi is the n-dimensional vector of input
variables and yi is the scalar output variable. Data are drawn
from an unknown probability distribution p(x, y). The prob-
lem of learning consists in providing an estimator y = f (x)

out of a class of functions, called hypothesis space. In ker-
nel ridge regression, calling y = (y1, y2, . . . , y�)

� the vector
formed by the � values of the output variable, the estimator is
given by

(1)y = f (x) =
�∑

i=1

cik(xi ,x),

where coefficients {ci} are given by

(2)c = (K + λI)−1y,
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K being the � × � matrix with elements Kij = k(xi ,xj ). λ is
called regularization parameter, and its main role is to render
well posed the inversion of matrix K which in most cases is
nearly singular. k(·, ·) is a positive definite symmetric function,
and Eq. (1) may be seen to correspond to a linear estimator in
the feature space

Φ(x) = (√
α1ψ1(x),

√
α2ψ2(x), . . . ,

√
αNψN(x), . . .

)
,

where αi and ψi are the eigenvalues and eigenfunctions of the
integral operator with kernel k.

Many choices of the kernel function are possible, for exam-
ple the linear kernel k(x,x′) = x · x′ leads to the usual linear
estimator. The polynomial kernel of degree p has the form
k(x,x′) = (1 + x · x′)p (the corresponding features are made
of all the powers of x up to the pth). The Gaussian kernel is
k(x,x′) = exp[−(‖x − x′‖2/2a2)] and deals with all the de-
grees of nonlinearity of x. Specifying the kernel function k one
determines the complexity of the function space within which
one searches for the estimator, similarly to the effect of spec-
ifying the architecture of a neural network, that is number of
layers, number of units for each layer, etc. Due to (1) and (2),
the predicted output vector ȳ, in correspondence of the true tar-
get vector y, is given by ȳ = Gy, where the symmetric matrix
G is given by

(3)G = K(K + λI)−1.

Note that matrix G depends only on the distribution of {x} val-
ues: G embodies information about the structures present in {x}
data set. Indeed, the matrix element Gij quantifies how much
the target value of the j th point influences the estimate of the
target of point i. The training error E can be calculated as fol-
lows

E = (y − Gy)�(y − Gy) = y�Hy,

where H = I − 2G + GG is a symmetric and positive matrix.
It is worth stressing that, given a kernel function, the cor-

responding features φγ (x) are not centered in general. One can
show [6] that centering the features (φγ → φγ −〈φγ 〉, for all γ )
amounts to perform the following transformation on the kernel
matrix:

K → K̃ = K − I�K − KI� + I�KI�,

where (I�)ij = 1/�, and to work with the centered kernel K̃.
Therefore in the following we will always assume that the ker-
nel matrix K has been centered.

Matrix G may be seen as a linear convolution filter, mapping
target vectors onto the vector of predicted outputs, and carrying
information about the structures naturally present in the set of
{x} points. In the unsupervised case the data set is made of x
points, {xi}�i=1, and the target vector y is missing. However we
may consider the following question: what is the vector y such
that treating it as the target vector leads to the best fit, i.e., the
minimum training error y�Hy? One may expect that this opti-
mal target vector would bring information about the structures
present in the data. We look for the optimal target vector in
the space of binary functions, σ ∈ {−1,1}�, the minimizer of
Fig. 1. In the plane of the first and second principal components, the iris data-set
is represented. Symbols represent classes: · setosa, + versicolor, × virginica.
The four misclassified points are surrounded by a circle.

the training error σ�Hσ thus naturally provides a partition of
points in two classes. The minimizer is the ground state of an
Ising model (see, e.g., [9]) with long range symmetric couplings
J given by

Jij = 4Gij − 2
�∑

k=1

GikGkj ,

for i �= j , and Jii = 0. We note that, unlike the Potts model
introduced in [1], here the couplings are both ferro- and anti-
ferromagnetic. Therefore there is room for frustration and mul-
tiple minima. Many algorithms can be used to find an estimate
of the ground state of Ising models, for example simulated an-
nealing [10]. Here we use the mean field annealing method [11],
which iteratively solves the mean field equations for the local
magnetization vector m = 〈σ 〉,

(4)m = tanh(βJm),

while decreasing the temperature (increasing β). The starting
temperature βcr may be chosen as the inverse of the maximum
eigenvalue of matrix J. Note that m ∈ {−1,1}� in the limit of
large β .

Let us now discuss the application to iris data-set, published
by Fisher [12], where the sepal length, sepal width, petal length,
and petal width are measured in millimeters on fifty iris speci-
mens from each of three species, iris setosa, iris versicolor, and
iris virginica. Firstly we process all the 150 points, using a lin-
ear kernel and λ = 1: we find two clusters, one is made of 51
points (50 belonging to iris setosa), the other is made of the
remaining 99 points. Then, we process the 99 points with lin-
ear kernel and the same value of λ, obtaining two clusters of
48 points (47 belonging to iris versicolor) and 51 points (49
belonging to iris virginica). Globally four points are misclassi-
fied, with efficiency of classification 0.973. In Fig. 1 we show
the four misclassified points. Results are quite insensitive to λ:
the same classification is obtained varying λ ∈ [0.05,100]. Us-
ing a Gaussian kernel we obtain even better efficiency: using
a = 3 only two points are misclassified, with efficiency 0.987.
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Fig. 2. The colon data set, + normal and × tumor, is represented in the plane
of the first and second principal components (extracted over the 100 most dis-
criminating genes). Misclassified points are surrounded by a circle.

We now compare our results with those from fuzzy c-means;
applying twice dichotomic fuzzy c-means, as in the case of
the proposed method, we obtain 0.847 efficiency. Application
of fuzzy c-means, with three centers, leads to 0.893 efficiency.
Hence in both cases the proposed algorithm outperforms fuzzy
c-means.

Now we consider application on gene expression data sets.
Firstly the colon cancer data set of [13], consisting in 40 tu-
mor and 22 normal colon tissues samples, each described by
2000 gene expression levels; data are available on the Kent
Ridge Bio-medical Data Set Repository [14]. We are not go-
ing to face, in this place, the important task of feature selection
which is fundamental in the analysis of gene expression data.
The following preprocessing is used to normalize data. First,
for each gene, expression levels are rescaled so as to get unit
mean over tissues. Then, for each tissue, expression levels are
linearly transformed to have zero mean (over genes) and unit
variance. Application of our method, using all the genes and a
linear kernel (λ = 1), leads to 12 misclassified points with an
efficiency of 0.806 (the efficiency from fuzzy c-means is 0.532).
Then we select the 100 most discriminant genes, using a super-
vised step where nonparametric Wilcoxon test is used to asses
the capability of each gene in discriminating tumor and nor-
mal tissues. After ranking genes by Wilcoxon test, we apply
our method (still with linear kernel and λ = 1) using only 100
attributes corresponding to the first 100 genes. The output is de-
picted in Fig. 2, seven points are misclassified with efficiency
0.887 (fuzzy c-means efficiency is 0.613). Next we consider the
leukemia data set of [15], consisting of samples of tissues of
bone marrow samples, 47 affected by acute myeloid leukemia
(AML) and 25 by acute lymphoblastic leukemia (ALL), 7129
attributes. Data are normalized as in the previous example. Us-
ing all genes, and linear kernel, leads to a poor performance
with efficiency 0.569 (fuzzy c-means shows 0.555 efficiency in
this case). Ranking genes by Wilcoxon test (assessing the ca-
pability of each gene in discriminating AML and ALL tissues)
and selecting the best 500 genes, leads to better performances:
our method with a linear kernel misclassifies 8 points, with effi-
Fig. 3. The leukemia data set, + AML and × ALL, is represented in the plane
of the first and second principal components (extracted over the 500 most dis-
criminating genes). Misclassified points are surrounded by a circle.

ciency 0.889, see Fig. 3 (the classification from fuzzy c-means
has an efficiency 0.722). Our results are quite insensitive to the
choice of λ.

We now summarize our method. Dichotomic clustering is
described as the problem of evaluating the ground state of Ising
models, with couplings values determined in the frame of ker-
nel methods for supervised learning. The effectiveness of the
proposed approach is shown here on real examples in terms of
high efficiency of classification, much higher than those from
fuzzy c-means. As the output depends very weakly on the reg-
ularization parameter λ, only the choice of the kernel matters.
In this Letter we mostly deal with the simplest kernel, the lin-
ear one: the problem of kernel selection, common to any kernel
method, will be considered elsewhere.

Some remarks are in order. Firstly, it is worth stressing that
some information about structures can also be recovered from
diagonal elements Gii . In the leave-one-out scheme [4] a data
point i is removed from the data set and the model is trained
using the remaining � − 1 points: let us denote ỹi the target
value thus predicted, in correspondence of xi . It can be shown
that the leave-one-out error ỹi −yi and the training error ȳi −yi ,
obtained using the whole data set, satisfy

(5)ỹi − yi = ȳi − yi

1 − Gii

.

This formula shows that the closer Gii to one, the farther the
leave-one-out predicted value from those obtained using also
point i in the training stage. If point i is in a dense region of the
feature space then one may expect that removing this point from
the data-set would not change much the estimate since it can be
well “interpolated” by neighboring points. Therefore points in
low density regions of the feature space are characterized by
diagonal values Gii close to one, while Gii is close to zero for
points xi in dense regions. In Fig. 4 we depict {Gii} for the case
of iris.

Secondly, one may look for the optimal target vector y in R
�;

to avoid the trivial solution y = 0, one may constrain y to have
unit norm, y�y = 1. This problem then becomes equivalent to



416 L. Angelini et al. / Physics Letters A 357 (2006) 413–416
Fig. 4. The 150 points of iris data-set are depicted (first and second princi-
pal components). The radius of the circle around each point is proportional to
1 − Gii , the matrix G being evaluated using a Gaussian kernel with σ = 0.5
and λ = 1.

find the normalized eigenvector of H with the smallest eigen-
value. On the other hand, matrix H is a function of matrix K:
hence it has the same eigenvectors of K while the corresponding
eigenvalues are related by a monotonically decreasing func-
tion. Therefore, optimal target functions in R

� coincide with the
kernel principal components: this shows that the method intro-
duced in [6] may be motivated also as the search for the optimal
target functions.

Finally, as already shown in the iris example, we remark
that multiclass clustering may be obtained by repeated applica-
tion of the proposed dichotomic method. The notion of optimal
target vector is an interesting bridge between supervised and
unsupervised learning: here we have considered application of
this notion for dichotomic clustering. In our opinion it will carry
to the developments of other effective algorithms for the analy-
sis of complex data.
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