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Abstract

We introduce a semi-supervised learning estimator which tends to the first kernel principal component as the number of labeled points
vanishes. We show application of the proposed method for dimensionality reduction and develop a semi-supervised regression and clas-
sification algorithm for transductive inference.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The problem of effectively combining unlabeled data
with labeled data, semi-supervised learning, is of central
importance in machine learning; see, for example, Zhu
et al. (2003b, 2004) and Chapelle and Zien (2005) and ref-
erences therein. Semi-supervised learning methods usually
assume that adjacent points and/or points in the same
structure (group, cluster) should have similar labels; one
may assume that data are situated on a low dimensional
manifold which can be approximated by a weighted dis-
crete graph whose vertices are identified with the empirical
(labeled and unlabeled) data points. This can be seen as a
form of regularization (Smola and Kondor, 2003). A com-
mon feature of these methods, see also Argyriou et al.
(2006), is that, as the number of labeled points vanishes,
the solution tends to the constant vector. An interesting
survey on semi-supervised learning literature may be found
on the web (Zhu, 2006). Improving regression with unla-
beled data is the problem considered in (Zhou and Li,
2005), where co-training is achieved using k-NN regressors.
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A statistical physics approach, based on the Potts model, is
described in (Getz et al., 2005). An issue closely related to
semi-supervised learning is active learning: some attempts
to combine active learning and semi-supervised learning
has been made (Zhu et al., 2003a).

The purpose of this work is to introduce a semi-super-
vised learning estimator which, as the number of labeled
points vanishes, tends to the first kernel principal compo-
nent (Schölkopf et al., 1998); when a suitable number of
labeled points is available, it may be used for transductive
inference (Vapnik, 1982). Our approach is based on the fol-
lowing fact. Given an unlabeled data-set, its first kernel
principal component is such that, treating it as target vec-
tor, supervised kernel ridge regression provides the mini-
mum training error. Now, suppose that you are given a
partially labeled data-set: as it will be described in the next
section, still one may look for the target vector minimizing
the training error. This optimal target vector may be seen
as the generalization of the first kernel principal compo-
nent to the semi-supervised case.

The paper is organized as follows. In Section 2 we
describe our approach, while in Section 3 the experiments
we performed are described. Some conclusions are drawn
in Section 4.
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2. Methods

2.1. Kernel ridge regression

We briefly recall the properties of kernel ridge regression
(KRR), while referring the reader to Shawe-Taylor and
Cristianini (2004) for further technical details. Let us con-
sider a set of ‘ independent, identically distributed data
S ¼ fðxi; yiÞg

‘
i¼1, where xi is the n-dimensional vector of

input variables and yi is the scalar output variable. Data
are drawn from an unknown probability distribution; we
assume that both x and y have been centered, i.e. they have
been linearly transformed to have zero mean. The regular-
ized linear predictor is y = w Æ x, where w minimizes the fol-
lowing functional:

LðwÞ ¼
X‘
i¼1

ðyi � w � xiÞ2 þ kjjwjj2: ð1Þ

Here jjwjj ¼
ffiffiffiffi
w
p
� w and k > 0 is the regularization param-

eter. For k = 0, the predictor (1) has the following prop-
erty, called IIV property and introduced in (Ancona and
Stramaglia, 2006): it is invariant when new variables, statis-
tically independent of input and target variables, are added
to the set of input variables. One may show that this invari-
ance property holds, for (1), also at finite k > 0.

KRR is the kernel version of the previous predictor.
Calling y = (y1,y2, . . . ,y‘)

> the vector formed by the ‘ val-
ues of the output variable and K(Æ,Æ) being a positive defi-
nite symmetric function, the predictor has the following
form:

y ¼ f ðxÞ ¼
X‘
i¼1

ciKðxi; xÞ; ð2Þ

where coefficients {ci} are given by

c ¼ K þ kIð Þ�1
y; ð3Þ

K being the ‘ · ‘ matrix with elements K(xi,xj). Eq. (2) may
be seen to correspond to a linear predictor in the feature
space

UðxÞ ¼ ð ffiffiffiffiffia1

p
w1ðxÞ;

ffiffiffiffiffi
a2

p
w2ðxÞ; . . . ;

ffiffiffiffiffiffi
aN
p

wN ðxÞ; . . .Þ;

where ai and wi are the eigenvalues and eigenfunctions of
the integral operator with kernel K. One may show (Anc-
ona and Stramaglia, unpublished) that, for KRR predic-
tors with nonlinear kernels, the IIV property does not
generically hold, even for those kernels, discussed in (Anc-
ona and Stramaglia, 2006), for which the property holds at
k = 0. Regularization breaks the IIV invariance in those
cases.

Due to (2) and (3), the predicted output vector �y, in cor-
respondence of the true target vector y, is given by �y ¼ Gy,
where the symmetric matrix G is given by

G ¼ K K þ kIð Þ�1
: ð4Þ

Note that matrix G depends only on the distribution of {x}
values: G embodies information about the structures pres-
ent in {x} data-set. Indeed, for i 5 j, the matrix element Gij

quantifies how much the target value of the jth point influ-
ences the estimate of the target of point i. Let us now con-
sider the leave-one-out scheme; let data point i be removed
from the data-set and the model be trained using the
remaining ‘ � 1 points. We denote ~yi the target value thus
predicted, in correspondence of xi. It is well known (Shawe-
Taylor and Cristianini, 2004) that the leave-one-out-error
~yi � yi and the training error obtained using the whole
data-set �yi � yi satisfy:

~yi � yi ¼
�yi � yi

1� Gii
: ð5Þ

It is worth stressing that, given a kernel function, the cor-
responding features wc(x) are not centered in general.
One can show (Schölkopf et al., 1998) that centering the
features (wc! wc � hwci, for all c) amounts to perform
the following transformation on the kernel matrix:

K ! eK ¼ K � I ‘K � KI ‘ þ I ‘KI ‘;

where (I‘)ij = 1/‘, and to work with the centered kernel eK .
In the following we will assume that the kernel matrix K
has been centered.

2.2. Optimal target vector

The training error of the KRR model is proportional to
(y � Gy)>(y � Gy) = y>Hy, where H = I � 2G + GG is a
symmetric and positive matrix. In the unsupervised case
the data-set is made of x points, fxig‘i¼1, the target function
y is missing. However we may pose the following question:
what is the vector y 2 R‘ such that treating it as the target
vector leads to the best fit, i.e. the minimum training error
y>Hy? We expect that this optimal target vector would
bring information about the structures present in the data.
To avoid the trivial solution y = 0, we constrain the target
vector to have unit norm, y>y = 1; it follows that the opti-
mal vector is the normalized eigenvector of H with the
smallest eigenvalue. On the other hand, matrix H is a func-
tion of matrix K: hence it has the same eigenvectors of K
while the corresponding eigenvalues lH and lK are related
by the following monotonically decreasing correspondence:

lH ¼ 1� lK

lK þ k

� �2

:

Therefore, independently of k, the smallest eigenvalue of H
corresponds to the largest eigenvalue of K, and the optimal
vector coincides with the first kernel principal component.
To conclude this subsection, we have shown that the
method in (Schölkopf et al., 1998) may be motivated also
as the search for the optimal target vector.

The notion of optimal target vector has been introduced
in (Angelini et al., 2006), where it was supposed to have
binary entries, thus leading to a kernel method for dicho-
tomic clustering consisting in finding the ground state of
a class of Ising models. In this work the entries of the opti-
mal target vector are assumed to be real valued.
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Fig. 1. The solutions of Eq. (7) are depicted, for a typical instance of four
labeled points in the IRIS data-set. The star corresponds to the solution
with l < l1, which has the smallest energy E.
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2.3. Semi-supervised learning

Now we consider the case that we are given a set
S ¼ fxig‘i¼1 of data points with unknown targets ftig‘i¼1,
and a set S0 ¼ fðxj; ujÞgN

j¼‘þ1, where N = ‘ + m, of input–
output data. Without loss of generality we assume that
the labeled points belong to two classes, and take
uj 2 f�1=

ffiffiffiffi
N
p

;þ1=
ffiffiffiffi
N
p
g for all j’s. The N dimensional full

vector of targets y is obtained appending {t} (unknown)
and {u} (known) values:

y ¼ ðt>u>Þ>:

Keeping the kernel and k fixed, we look for the unit norm
target vector y minimizing the training error y>Hy. The
N · N matrix H has the block structure

H ¼
H0 H1

H>
1 H2

� �
;

where H0 is an ‘ · ‘ matrix. Neglecting a constant term, the
optimal vector is determined by the vector t minimizing

EðtÞ ¼ t>H0t þ 2t>H1u ð6Þ

under the constraint ktk2 = 1 � kuk2. The first term of E fa-
vors projections of the ‘ points with great variance,
whereas the second term measures their consistency with
labeled points. Let us denote {Wa 0} and {la 0} the eigenvec-
tors and eigenvalues of H0, sorted into increasing la 0. We
express t ¼

P‘
a0¼1na0Wa0 . The coefficients na 0 for the mini-

mum are given by

na0 ¼
fa0

l� la0
;

where fa0 ¼ W>a0H1u, and l is a Lagrange multiplier which
must to be tuned to satisfy:

gðlÞ ¼
X‘
a0¼1

fa0

l� la0

� �2

¼ 1� jjujj2: ð7Þ

Eq. (7) has always at least one solution with l < l1, see
Fig. 1, and usually this is the one minimizing E. However
all the solutions of (7) must be compared according to their
energies E; those corresponding to the lowest E, yw, is then
selected. Clearly as m! 0 one recovers the first eigenvector
of H0, i.e. the first kernel principal component: yw thus
constitutes a generalization of the latter to the semi-super-
vised case. To construct the other generalized kernel prin-
cipal components, we make the following transformation
on matrix H:

fH ¼ H � PHH �HPH þ PHHPH;

where PH ¼ yHyH
>

is the projector on the linear subspace
spanned by yw. The symmetric matrix fH has the lowest
eigenvalue equal to zero and corresponding to eigenvector
yw. The system of eigenvectors of fH constitutes a general-
ization of kernel principal components to the semi-super-
vised case.
3. Experiments

3.1. Generalizing kernel principal components

Now we present some simulations of the proposed
method, focusing on the dimensionality reduction issue
and comparing with fully unsupervised kernel principal
component analysis. We consider three well-known data-
sets: IRIS (100 points in a four-dimensional space, second
and third classes, versicolor and virginica); colon cancer
data-set of Alon (1999), consisting in 40 tumor and 22 nor-
mal colon tissues samples, each sample being described by
the 100 most discriminant genes; the leukemia data-set of
Golub (1999), consisting of samples of tissues of bone mar-
row samples, 47 affected by acute myeloid leukemia (AML)
and 25 by acute lymphoblastic leukemia (ALL), each sam-
ple being described by the 500 most discriminant genes.
The following question is addressed: is yw more correlated
to the true labels than the fully unsupervised first kernel
principal component? Here we restrict our analysis to the
linear kernel, and take k = 1 (results are stable against vari-
ations of k).

We start with IRIS and proceed as follows. We ran-
domly select m = 4 points and, treating them as labeled,
we find the system of eigenvectors of fH . Then we evaluate
the linear correlation R between the eigenvectors and the
true labels of the whole data-set. The distributions of R

for the four eigenvectors are depicted in Fig. 2. We observe
that in most cases the vector yw is more correlated with the
true classes than the fully unsupervised principal compo-
nent: the one-dimensional projection of data onto yw is
more informative than the first principal component. How-
ever there are situations where use of labeled points leads
to poor results; a typical example is depicted in Fig. 3. In
Fig. 4, a situation is depicted where knowledge of labeled
points leads to a relevant improvement: indeed the linear
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Fig. 2. Concerning IRIS data-set and m = 4, we depict the distribution
(over 10,000 random selections of labeled points) of the linear correlation
R between eigenvectors offH and the true labels. From the left to the right
and the top to the bottom, we refer to the first, the second, the third and
the fourth eigenvector. Grey (black) histogram bars denote values of R

lower (greater) than those of the corresponding fully unsupervised
principal component.
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Fig. 3. (Top) The IRIS data-set is depicted in the plane of the first two
principal components, w versicolor, + virginica. The linear correlation of
the first principal component with the true labels is R = 0.732. Four
selected points are surrounded by a circle. (Bottom) The data-set is
represented in the plane of the first two eigenvectors of fH . The linear
correlation between yw and the true labels is R = 0.615. (Note that two
circles are almost overlapping and thus difficult to distinguish.)
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Fig. 4. (Top) The IRIS data-set is depicted in the plane of the first two
principal components, w versicolor, + virginica. Four selected points are
surrounded by a circle. (Bottom) The data-set is represented in the plane
of the first two eigenvectors of fH . The linear correlation between yw and
the true labels is, in this case, R = 0.846.
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Fig. 5. The fraction f (see the text) is depicted as a function of �m for three
data-sets here considered. 10,000 random selections of the labeled points
are considered for each value of m and for each data-set.
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correlation between yw and the true labels is, in this case,
R = 0.846, whilst for the first principal component it is
R = 0.732.

In general, we denote f the fraction of instances such
that yw is more correlated to the true labels than the first
principal component. In Fig. 5 we depict f as a function
of �m ¼ m=N for the three data-sets here considered. At
�m ¼ 0:16 f is already nearly one. The semi-supervised
method here proposed outperforms principal components
almost always for large �m.
3.2. Transductive inference

In this subsection we demonstrate the effectiveness of the
proposed approach for estimating the values of a function
at a set of test points, given a set of input–output data
points, without estimating (as an intermediate step) the
regression function. First of all we note that, concerning
transductive inference, our approach is similar to the trans-
ductive linear discrimination (TLD) approach developed in



Table 2
The percentage test error of transductive linear discrimination and optimal
target approach, on five data-sets from UCI database

TLD OT

Diabetes 23.3 11.98
Titanic 22.4 6.52
Breast cancer 25.7 16.7
Heart 15.7 3.3
Thyroid 4.0 4.0
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(Chapelle et al., 1999), the main differences being that our
definition of optimal vector deals with the training error
whilst TLD deals with the LOO error, and a different con-
straint on t.

The boston data-set is a well-known problem where one
is required to estimate house prices according to various
statistics based on 13 locational, economic and structural
features from data collected by US Census Service in the
Boston Massachusetts area. For ‘ = 5,10,15,20,25, we
partition the data-set of N = 506 observations randomly
100 times into a training set of N � ‘ observations and a
testing set of ‘ observations. We use a Gaussian kernel with
r = 1 and set k = 1; we check that these results are stable
against variations of 30% for these parameters. The follow-
ing constraint is used in the case of regression:

jjtjj2 ¼ ‘

m
jjujj2:

In Table 1 we report the mean squared error (MSE) on the
test set averaged over the 100 runs, for each value of ‘, we
obtain using the optimal target vector yw. In Table 1 we
also report the MSE obtained using the classical KRR in
the two step procedure: (i) estimation of the regression
function using the training data-set (ii) calculation of the
regression function at points of interest (test data-set).
The improvement achieved using the optimal target ap-
proach, over classical KRR, is clear: the MSE by our meth-
od is always smaller than those by KRR.

We also consider five well-known data-sets of pattern
recognition from UCI database: we evaluate the optimal
target vector, points are then attributed to classes accord-
ing to the sign of yw. We compare with the transductive lin-
ear discrimination (TLD) approach developed in (Chapelle
et al., 1999); the performance of a classifier is measured by
its average error over 100 partitions of the data-sets into
training and testing sets. We use the linear kernel with
k = 1, still the results are stable to variations of k. Obvi-
ously, our approach and TLD are applied to the same par-
titions of data-sets, so that the comparison is meaningful.
The results are shown in Table 2: our approach outper-
forms TLD.

It is worth stressing that our results are obtained with-
out a fine-tuning of parameters. The analysis of parameter
k, connected with regularization, will be discussed else-
where. In particular, note that our definition of optimal
Table 1
The mean square error on the Boston data-set obtained using the optimal
target (OT) approach and the classical kernel ridge regression (KRR)
method

‘ OT KRR

5 2.3790 3.6312
10 2.7938 4.0111
15 2.9460 4.1057
20 3.1024 4.1802
25 3.1569 4.1653

The size of the test set is ‘.
target vector fixes the relative importance of the two terms
in Eq. (6).
4. Conclusions

We have presented a new approach to semi-supervised
learning based on the notion of optimal target vector, the
target vector such that KRR provides the minimum train-
ing error over all the possible target vectors. The proposed
algorithm is characterized by the fact that the first kernel
principal component is recovered as the cardinality of
labeled points vanishes; hence it may be seen as a semi-
supervised generalization of kernel principal components
analysis. The effectiveness of the proposed approach for
transductive inference has also been demonstrated.
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