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Abstract. We show that modularity, a quantity introduced in the study of
networked systems, can be generalized and used in the clustering problem as an
indicator for the quality of the solution. The introduction of this measure arises
very naturally in the case of clustering algorithms that are rooted in statistical
mechanics and use the analogy with a physical system.
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1. Introduction

The problem of data clustering consists of grouping together items so that two points
belonging to the same group (cluster) are, in some sense, more similar than two that
belong to different ones; it has applications in several fields such as pattern recognition,
bioinformatics, learning, astrophysics and more (for a review see, e.g., [1]). A data set
composed by N points is represented either in terms of their coordinates (features) in a
D-dimensional space or, alternatively, by means of an N × N ‘distance matrix’, whose
elements measure the dissimilarity of pairs of data points. Many clustering methods
are now available. Some of them make some assumption about the clusters’ density
distribution, so clustering becomes an optimization problem. Other approaches are called
nonparametric, as they do not impose a determinate model to the data set.

The clustering problem is inherently ill-posed, i.e., any data set can be clustered
in drastically different ways, with no clear criterion for preferring one clustering over
another. In particular, in the case of unsupervised approaches, a satisfactory clustering of
data depends on the desired resolution which determines the number of clusters and their
size. However, the goal of data clustering is to partition a sample according to natural
classes that are present in it. For example, in the case of gene clustering in microarray
data one searches to separate genes that are involved in a particular biological processes
from others which act as spectators. In the feature space the job consists of recognizing
regions that are densely populated and are separated by regions in which the density is
lower.

The problem of natural clustering becomes very important when analysing the results
of clustering procedures. For example, if one applies different algorithms to the same data
set, what is the criterion for choosing from them the most efficient one? Let us consider
yet another situation: many algorithms perform hierarchical clustering, i.e., there is a
parameter which controls the resolution at which the data set is clustered; by varying the
value of this parameter the data set is grouped in a hierarchy of clusters ranging from the
whole data set (one cluster) to single items (N clusters). Also in this situation the following
question arises: what is the best value of this parameter or, in other words, at what
resolution should one look at the data to find a scientific meaning in the classification?

The problem of the most natural clustering solution has been explored in a recent
paper [2], where an answer is given in the frame of the superparamagnetic clustering
(SC) method [3, 4]. The authors introduce an automated sequential procedure, sequential

doi:10.1088/1742-5468/2007/08/L08001 2

http://dx.doi.org/10.1088/1742-5468/2007/08/L08001


J.S
tat.M

ech.
(2007)

L08001

Natural clustering: the modularity approach

superparamagnetic clustering (SSC), in which SC is recursively applied: at each step one
well-distinguished cluster is separated and in the next step SC is applied to the rest of
the sample. In this letter we present an alternative procedure that emerges naturally in
clustering algorithms that are inspired by the analogy with a physical system, but can
also be applied in a straightforward way to other algorithms that perform hierarchical
clustering. The central role in this approach is played by modularity, a quantity which
was first introduced in order to detect community structure in networks; this is the subject
of the next section. Then we briefly review one of the clustering methods that are based
on a theoretical physics approach and we show that modularity, if redefined starting from
the coupling matrix rather than the adjacency matrix, is able to select the most efficient
cluster partition for a data set whose correct classification is already known. The last
section is dedicated to comments and conclusions.

2. Networks and modularity

A network is the representation of a data system as a set of nodes joined by edges that
correspond to pairwise relations between nodes. Networks can be used to describe many
systems of scientific interest, such as electric power grids, road or airline networks, the
Internet and World Wide Web, social communities, and biological or chemical systems.
The interest in the study of networks increased in the last decade together with the
availability of large databases, describing real-world networks, and large computing power.
Recently many authors have reviewed concepts and results in this discipline [5]–[7], and
we refer to these reviews for further details.

A typical feature of real networks is the appearance of tightly connected subgraphs
with only sparser links between them. For example, in the case of social networks
the existence of these subgroups could be related to the presence of important cultural
differences between individuals. Many efforts have been dedicated to the problem of
identifying communities in a network. One of the most effective method was introduced
by Girvan and Newman [8, 9]: their algorithm is able to produce a hierarchy of subdivisions
in a network, from a single agglomerate to isolated nodes. They also introduced a quantity,
the modularity Q, that is able to select which of the divisions is optimal. It is clear that,
if a partition in a fixed number of subgroups of the network is requested, the best solution
is obtained by minimizing the number of edges connecting vertices belonging to different
subgroups (or maximizing the number of vertices belonging to the same subgroup). But
this is not a good recipe when the number of divisions is free, because this solution would
correspond to no division at all. In this case a good division into communities is the one in
which the number of edges between vertices belonging to the same group is significantly
greater than the number expected from a random distribution of edges. This crucial
concept is turned into a mathematical quantity, the modularity.

Let us consider a network composed of N vertices and an adjacency matrix A, where
Aij is the number of edges (0 or 1) between vertices i and j. The number of edges incident
with node i is ki =

∑
j Aij and the total number of edges is m = 1

2

∑
i ki. Suppose our

network has been partitioned into q groups; we can label each node i with an index
σi ∈ {1, 2, . . . , q} denoting its group. Modularity is defined by

Q =
1

4m

∑

i�=j

(

Aij −
ki kj

2m

)

δ(σi, σj). (1)
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The first term in the sum contributes to the number of edges falling within groups
while the second term is the expected number for the same quantity in the case of a
random distribution of edges. Thus the problem of detecting communities in a network
is turned into the problem of maximizing the modularity. Many standard and dedicated
optimization techniques have been investigated; see [10] and references therein.

3. Modularity and clustering algorithms

Extending the use of modularity to the problem of data clustering, in particular when
hierarchical algorithms are used, requires the introduction of edges in the feature space
where data are represented. This comes out in a very natural way in the case of some
algorithms that are rooted in theoretical physics and that work through the analogy with
a physical system. These algorithms associate a physical quantity to each point in the
feature space, the entities being coupled by a coupling constant that depends inversely on
the distance. This interaction is able to drive the system to an equilibrium condition where
entities that are closer are characterized by a more similar behaviour. Clusters are then
recognized by the measure of some variable identifying this dynamical similarity. This is
the case of an algorithm called the chaotic map clustering (CMC) algorithm [11], to which
some of the author of this paper contributed. We briefly review the CMC algorithm.

We assign a real dynamical variable xi ∈ [1, 1] to each point of the data set and define
pair-interactions

Jij = exp

{

−
d2

ij

2α2〈dij〉2

}

, (2)

where dij is a suitable measure of distance between points i and j in our D-dimensional
space, 〈dij〉2 is its average over the sample and α is a parameter. The time evolution of
the system is given by

xi(t + 1) =
1

Ci

∑

j �=i

Jij f(xj(t)), (3)

where Ci =
∑

j �=i Jij, and we choose the map f(x) = 1 − 2x2. Due to the choice of the

function f , equations (3) represent the dynamical evolution of chaotic maps xi coupled
through pair interactions Jij. The lattice architecture is fully specified by fixing the value
of α as the average distance of k-nearest-neighbour pairs of points in the whole system.
For the sake of computational economy, we consider only interactions of each map with
a limited number of maps whose distance is less than 3α, and set all other Jij to zero.
Starting from a random initial configuration of x, equations (3) are iterated until the
system attains its stationary regime, corresponding to a macroscopic attractor which is
independent of the initial conditions. To study the correlation properties of the system,
we consider the mutual information Iij , between pairs of variables whose definition [12]
is as follows. If the state of element i is xi(t) > 0 then it is assigned a value 1, otherwise
it is assigned 0: this generates a sequence of bits, in a certain time interval, which allows
the calculation of the Shannon entropy Hi for the ith map. In a similar way the joint
entropy Hij is calculated for each pair of maps, and finally the mutual information is
given by Iij = Hi + Hj − Hij . The mutual information is a good measure of correlations
and it is practically precision independent, due to the coarse graining of the dynamics. If
maps i and j evolve independently then Iij = 0; if the two maps are exactly synchronized
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then the mutual information achieves its maximum value, ln 2. The algorithm identifies
clusters with the linked components of the graph obtained by drawing a link between
all the pairs of maps whose mutual information exceeds a threshold θ: θ controls the
resolution at which data are clustered. Hierarchical clustering is obtained repeating this
procedure for an increasing sequence of θ-values: each clustering level is extracted as a
partition of data with a finite stability region in the θ parameter. The algorithm is very
fast, also for huge data sets requiring much computer memory, due to the limit in the
couplings that renders the interaction local. The two tasks, coupled map evolution and
hierarchical cluster tree building, can be separated for computational needs. With regard
to the choice of α we note that for small values the lattice is very fragmented, while for
large values the dependence of the coupling (2) on the distance becomes flat and the
algorithm is unable to reveal substructures in the data set. Analysing data sets for which
the expected classification is known, we got good results for α between 0.10 and 0.30, the
algorithm being quite insensitive in this range.

In previous applications of CMC algorithm we considered as optimal partition of the
given data set the most stable solution, i.e., the one ranging on the widest θ interval.
However, the capacity of modularity to reveal the underlying structure in networks
suggests extending the use of this quantity also for data mining. There are two ways to
introduce modularity in our algorithm, depending on the definition of the edge between
two elements of the data set. The first way is to replace the adjacency matrix element
Aij , giving the link between site i and site j, with the value of the coupling Jij between
the two maps xi and xj . The matrix J is also a sparse matrix, but it differs from matrix
A because its elements have real values. One can think of the data set in the feature
space as a network with weighted edges. Another way consists of the use of the mutual
information matrix I measuring the synchronization between the maps. This second
method is more algorithm dependent, but it has the practical advantage that computer
memory can be freed by deallocating the coupling matrix in the final stage. We applied
both methods on many data sets that are currently used to test clustering algorithms.
In every case we found that the maximum of modularity corresponded to the highest
value of efficiency (percentage of correctly classified points). Modularity was calculated
following both methods, coupling and mutual information, and we did not find significative
differences between them.

As an example we report here results from the application of the CMC algorithm
(with Euclidean distance) to the famous IRIS data sample of Anderson [13]. This four-
dimensional data set, which is represented in the first two principal components plane in
figure 1, has often been used as a standard for testing clustering algorithms: it consists of
three clusters (Virginica, Versicolor and Setosa) and there are 50 objects in R4 per cluster.
Two clusters (Virginica, Versicolor) are very overlapping. Figure 2 shows, as a function
of θ, the following quantities (from top to bottom): the number of clusters, the efficiency,
the modularity calculated using the couplings matrix J , and the modularity calculated
using the mutual information matrix I. (Points are not equidistant because we add a new
point only when the number of clusters changes.) We point out the similarity between
the behaviour of the efficiency, that measures the goodness of the classification, and each
of the two modularities, in particular with respect to the positions of their maxima. For
θ = 0.423 the two modularities achieve their maximum value together with the maximum
value of the efficiency, 82%.
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Figure 1. The Iris data set projection in the first two principal components plane.

Figure 2. Efficiency and modularity for the Iris data sample.

We also applied to the same data set the SSC method [2]. Results from this test are
shown in figure 3; to explain them we briefly describe this algorithm. SSC is an extension
of superparamagnetic clustering of Domany and co-workers [3], in which every point i of
the data set to be analysed is associated with a Potts spin variable si → {1, 2, . . . , q},
where q is of the order of tenths. Each spin is coupled to its k nearest neighbours
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Figure 3. Cluster structure resulting from the application of the SSC algorithm [2]
to the Iris data set.

with a coupling whose expression is similar to (2). The system evolves to equilibrium
configurations through a canonical Monte Carlo procedure at temperature T and two
points are considered to belong to the same cluster if their pair correlation function is
larger than a threshold value. Depending on the temperature T , the system can be found
to be in three phases: a ferromagnetic phase from T = 0 to Tferro, a paramagnetic phase
for T greater than a value T = Tmax, and a superparamagnetic phase at intermediate
T . In the superparamagnetic phase only the closest spins are strongly correlated, so this
phase is characterized by the formation of clusters. Two spins i and j are attributed to
the same cluster if the pair correlation Gij = 〈δsi,sj

〉 exceeds a fixed threshold Θ. The
number of these clusters increases with T from Tferro to Tmax, resulting in a classification
hierarchy, so the temperature acts as the parameter that controls the resolution at which
data are clustered. This method has some difficulty in dealing with data sets that
contain clusters with different densities, because these clusters do not appear at the
same resolution (temperature) level. Sequential superparamagnetic clustering tries to
solve this problem through a sequential procedure in which at each step the most stable
cluster is extracted from the data set. Then the most stable cluster and the residual set
are clustered separately. This procedure is applied repeatedly resulting in a binary tree.
Cluster stability here is temperature stability, i.e.,

sT =
Tcl

Tmax
(4)

is used as a stability parameter, where Tcl is the temperature range over which the cluster
emerges. At each level of the procedure the branching process is stopped if clustering
produces subcomponents none of which has stability greater than a threshold value sΘ.
Tferro, the temperature at which the cluster separates, should not be very small for a
cluster to be considered as a natural cluster. This is true also for the final branches: in
this case if Tferro takes a vanishing value the points of the cluster are considered as noise.

When applying the SSC algorithm to the Iris data set we used for the number of
Potts states the value q = 20, for the number of nearest neighbours the value k = 10
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Figure 4. The LANDSAT TM image data set projection in the first two principal
components plane. Colours distinguish the different landcover classes.

and for the stability threshold the value sΘ = 0.1 (but the results are stable in the range
0.1–0.194). As we see in figure 3, at the first step the method succeeds in separating
the Setosa cluster from the Virginica and Versicolor points, but it is unable to separate
these two species efficiently. Lowering the stability threshold under 0.099, the 87-point
cluster splits in two clusters of 81 and 6 points, so the results get worse. It seems that
the SSC algorithm solves very smartly the problem of identifying homogeneous classes,
but it meets difficulties when applied to recognizing classes which present inhomogeneities
inside, even though they are composed of elements that are close in the feature space.

Now we go back to the modularity approach and present another example given by
the data set used in [11], that is also characterized by clusters of different size and density.
It is a real data set extracted from a LANDSAT Thematic Mapper (TM) image of an
area in the south of Italy consisting of 1489 pixels, each of which is represented by six
spectral bands. The true landcover classes, see figure 4, were determined by means of
visual interpretation of areal photos followed by site visits. The area study includes seven
landcover classes: (A) coniferous reafforestation, 69 points; (B) bare soil, 85 points; (C)
urban areas, 91 points; (D) vineyards, 300 points; (E) cropland, 316 points; (F) pasture,
265 points; (G) olive groves, 363 points. As reported in [11] our algorithm succeeded
in resolving the data structure, identifying seven cluster that were stable over a large
range of θ; 96.6% of data was classified; the purity of the classification (percentage of
correctly classified points) is 96.2%, so the efficiency was 92.9%. We remember also that
we searched for the best classification requiring that it would be the one surviving for the
largest range in θ. We found that both the six-cluster partition and the seven-cluster one
appeared stable: prior knowledge was needed, in this case, to select the correct partition
of the data set. We reanalysed this data set according to the criterion of maximum
modularity. The results from these analyses are essentially the same as those reported
previously: as we see in figure 5, the modularity reached its maximum value of 0.71 at
θ = 0.35 in the presence of 7 big clusters and 19 small clusters of few points, the efficiency
being 93.49. This slight improvement in itself does not justify the introduction of the
modularity criterion; however, we note that, for this data set, the previous analysis had
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Figure 5. Efficiency and modularity for the LANDSAT data sample.

such a good performance that it was not possible to improve it much further. Finally,
we emphasize that the problem of choosing between the two stable solutions found an
optimal solution without an external supervision.

4. Conclusions

We have shown that the problem of finding the optimal classification in hierarchical
clustering can be turned into the problem of finding communities in a weighted network.
Results reported in this letter are obtained using the CMC algorithm, but it should be
clear that the modularity method can be applied to any hierarchical clustering algorithm.
For example, it can be applied also to the superparamagnetic clustering (SC) approach.
Here the role of θ is played by temperature, but couplings between the elements of the
data set have the same definition. We stress two important characteristic of the method
proposed here. The first one is that no new parameter is introduced. The second feature
is that it reduces the computational time considerably with respect to the alternative
method described in [2], where one needs many Monte Carlo runs to find just one cluster.
We remember also that, in that method, once one cluster is identified, it is eliminated
from the sample, and this could result in the loss of the collective aspect of the data
distribution.

We are aware that the problem of finding the most natural clusters does not have a
unique solution, but it seems to us that the modularity maximum method corresponds to
an intuitive idea of optimal classification as the one in which connectivity within groups
is as far as possible the one obtained from a random distribution.
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