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The communication among neuronal populations, reflected by transient synchronous activity, is the
mechanism underlying the information processing in the brain. Although it is widely assumed that the
interactions among those populations (i.e. functional connectivity) are highly nonlinear, the amount of
nonlinear information transmission and its functional roles are not clear. The state of the art to understand
the communication between brain systems are dynamic causal modeling (DCM) and Granger causality.
While DCM models nonlinear couplings, Granger causality, which constitutes a major tool to reveal effective
connectivity, and is widely used to analyze EEG/MEG data as well as fMRI signals, is usually applied in its
linear version. In order to capture nonlinear interactions between even short and noisy time series, a few
approaches have been proposed. We review them and focus on a recently proposed flexible approach has
been recently proposed, consisting in the kernel version of Granger causality. We show the application of the
proposed approach on EEG signals and fMRI data.
iele Marinazzo).
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Introduction

Exploring long-range interactions of neuronal assemblies at
different temporal and spatial scales is an important issue in human
brain research. The concept of brain functional connectivity, defined
as the statistical dependence between neuronal activities in distant
regions, is central for the understanding of the organized behavior of
cortical regions which constitute distributed functional networks
typically engaged in cognitive and perceptive processing (Friston et
al., 1996). Activity in a neural system can directly or indirectly exert
influence over that in another (Friston, 1994, 2011-this issue). This
influence is modeled as the effective connectivity in the brain, and has
been extensively investigated with multi-modal functional neuroi-
maging studies (Breakspear, 2004; Brovelli et al., 2004; David et al.,
2008; Seth, 2005). The state of the art to understand the communi-
cation between brain systems are dynamic causal modeling (DCM)
(Friston et al., 2003; Stephan et al., 2008) and Granger causality
analysis (GCA).

Granger causality analysis (Granger, 1969; Wiener, 1956) is an
approach that measures the causal association and effective connec-
tivity and can provide information about the dynamics and direc-
tionality on both electroencephalography (EEG) (Brovelli et al., 2004;
Guo et al., 2008; Kaminski et al., 2001; Wang et al., 2008) and
functional magnetic resonance imaging (fMRI) (Chen et al., 2009; Gao
et al., 2008; Goebel et al., 2003; Londei et al., 2007; Roebroeck et al.,
2005; Seth, 2005; Sridharan et al., 2008; Uddin et al., 2009; Upadhyay
et al., 2008; Wilke et al., 2009; Zhou et al., 2009a,b). In this issue,
Bressler and Seth give the details of Wiener–Granger causality
(Bressler and Seth, 2011-this issue).

Despite good results obtained with GCA based on linear models, in
order to interpret the amount of transmission of nonlinear informa-
tion between brain regions and its functional role, it is important to
consider the physiological basis of the signal, which is likely to be
mainly nonlinear. Furthermore, there is wide evidence that the
hemodynamic processes associated with changes in physiological
states in fMRI experiments, including cerebral blood flow, cerebral
blood volume and total deoxyhemoglobin content caused by neuronal
activity, are examples of nonlinear functions of physiological para-
meters (Buxton et al., 2004; Johnston et al., 2008; Lahaye et al., 2003).

Regarding DCM, a nonlinear extension that models nonlinear
couplings of neuronal population activity in fMRI data has been
developed (Stephan et al., 2008). For a critical review on DCM, see
Daunizeau et al. (2011-this issue). Regarding GCA, several studies
have proposed a nonlinear version. Freiwald et al. (1999) described
a general framework that encompasses both linear and nonlinear
modeling of neurophysiological time series data by means of Local
Linear Nonlinear Autoregressive models (LLNAR); Gourevitch et al.
(2006) presented and reviewed some usual approaches to detect
linear and nonlinear causality between signals; in Bezruchko et al.
(2008), the autoregression model is constructed in the form of a
polynomial of order p to evaluate nonlinear Granger causality. In
order to capture nonlinear interactions between brain regions even
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in short fMRI time series, two approaches have been recently
proposed, one consisting in an extended autoregressive model (Li et
al., 2010) and one based on the kernel version of Granger causality
(Liao et al., 2009b).

In this paper, we review the nonlinear approaches to Granger
causality which have been proposed so far and then focus on a
comprehensive approach based on Kernel methods. This review could
complete the table in Friston (2009) on the presence of nonlinear
approaches toGranger causality. The paper is organized as follows: in the
next section, we describe the theory behind Granger causality and recall
some approaches that have been proposed for its extension to nonlinear
case. Then we review Kernel Granger causality (KGC) as a simple
approach to nonlinearGranger causalitywhich in principle canhandle all
theorders of nonlinearity. In the Results section,we report its application
toneural data, namelyanEEGdata set fromavisual task, andan fMRIdata
set for amotor imagery task. In theDiscussion section,we approach some
issues related to Granger causality in general, and nonlinear Granger
causality in particular, when we apply it to the analysis of neural data.

Granger causality: from the definition to the nonlinear extension

To understand nonlinear approaches to Granger causality as
generalizations of the linear case, we first review the linear case briefly.
The temporal dynamics of a stationary time series{ξ(t)}t=1,.,N+ m, can
be described using an autoregressive model based on the pastm values
of the time series.

We use the following shorthand notations:

Xi = ni; N ; ni + m−1
� �T

;

Yi = fi; N ; fi + m−1
� �T

;
Xi = ni + m;

for i = 1 N N

ð1Þ

We treat these quantities as N realizations of the stochastic variables
X, Y and x.

The temporal dynamics of the time series {ξi}i=1…N can be
described using an autoregressive model based on the past m values
of the time series:

x = XTA + e ð2Þ

Alternatively, we consider the bivariate autoregressive model which
also takes into account the past values of ζ:

x = XTA0 + YTB + e0 ð3Þ

The operative definition of Granger causality is that ζ Granger-
causes ξ if the variance of residuals e′ is significantly smaller than the
variance of residuals e, as it happen when the coefficients B are jointly
significantly different from zero. An index measuring the strength of
the causal interaction is then defined as

δ = 1− heV2i
he2i ; ð4Þ

where 〈˙〉 denotes averaging over n (note that 〈e〉= 〈e′〉=0). This
strength is effectively a log likelihood ratio that compares the
accuracy of the two models in terms of the sum of squared errors.
In classical parametric statistics, it plays the same role as an F-ratio.

Exchanging the roles of the two series, we could evaluate the
causality index in the opposite direction (ξ→ζ). It is worth noting that
in general δξ→ζ≠±δζ→ξ, that is the causal index is neither symmetric
nor antisymmetric, and that we can have nonzero causal relationships
in both directions.

In the framework of probabilistic theory, we can approximate the
series {ξi}i=1…N by a Markov process of order m, that is p(ξn|ξn−1,…,
ξn−m)=p(ξn|ξn−1,…,ξn−m−1). The same can be done for {ηi}i=1…N.
The generalized Markov property states that p(x|X,Y)=p(x|X).
Granger causality implies a violation of the above written property
via the concept of transfer entropy. See Barnett et al. (2009) for a
complete explanation of the phenomenon.

From the beginning (Granger, 1980; Wiener, 1956) it has been
known that if two signals are influenced by third one that is not
included in the regressions, this leads to spurious causalities, so an
extension to the multivariate case is in order. The conditional Granger
causality analysis (CGCA) (Chen et al., 2006; Geweke, 1984) is based
on a straightforward expansion of the autoregressive model to a
general multivariate case including all measured variables. Other
multivariate causality measures, based on the notion of Granger
causality, include Partial Directed Coherence (Baccala and Sameshima,
2001), squared Partial Directed Coherence (Astolfi et al., 2006),
Direct Transfer Function (Kaminski and Blinowska, 1991), modified
Directed Transfer Function (Korzeniewska et al., 2003). For an
application to EEG data see for example Blinowska et al. (2004), Chen
et al. (2006), and Hesse et al. (2003); for an application to fMRI data
see Deshpande et al. (2009), Liao et al. (2009a), and Zhou et al.
(2009a,b). The idea of conditional Granger causality implies that all
the variables that could have a possible influence in the problem are
considered in the analysis. This is not always possible, and a recent
study has proposed partial Granger causality to tackle this issue (Guo
et al., 2008).

In order to deal with possible nonlinearities in the measured
signals, different approaches to nonlinear Granger causality have been
proposed. This concern originated first in the field of econometrics
(Bell et al., 1996; Hiemstra and Jones, 1994; Teräsvirta, 1998; Warne,
2000). The issue was then transferred to neuroscience in 1999, with a
seminal paper by Freiwald et al. (1999), where the extension to the
nonlinear case was performed specifying a linear autoregressive
model whose coefficients depended on the previous states of the
system. In that paper, the authors pointed out that in order to be
suitable to evaluate causality a nonlinear model should be matched to
the complex characteristics of the system. The issue of detecting
causal influences in neural (and thus most probably nonlinear)
systems is discussed in Valdes et al. (1999).

A different approach is discussed in Chavez et al. (2003): there the
nonlinear Granger causality is seen in probabilistic terms as a
violation of the Markov property.

A similar method is discussed in Gourevitch et al. (2006): there the
violation of the Markov property is tested by means of the correlation
integral (Grassberger and Procaccia, 1983).

A straightforward extension of Eq. (3) to evaluate nonlinear
Granger causality is proposed by Bezruchko et al. (2008), in which the
autoregression model is constructed in the form of a polynomial of
order p. As correctly pointed out by the authors, indeed, for short time
series the prevision tends to be unstable when increasing the
dimensionality of the model and the order of the polynomial. In the
same paper, the authors propose to evaluate nonlinear connectivity
looking at the phases, albeit not in the framework of Granger
causality.

Kernel Granger causality

Now we focus on a recently proposed approach which tries to
condense all the issues above described, introduced inMarinazzo et al.
(2008a) and generalized to the nonlinear case and to the issue of
network reconstruction in Marinazzo et al. (2008b).

Linear Granger causality was reformulated, and a new statistical
procedure to handle overfitting (Palus and Vejmelka, 2007) was
introduced; this new formulation was then generalized to the
nonlinear case by means of the kernel trick (Shawe-Taylor and
Cristianini, 2004). Kernel algorithms work by embedding data into a
Hilbert space, and searching for linear relations in that space (Vapnik,
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1998) (for precise information on the geometry of least square
regression and projection matrices, see Davidson and MacKinnon,
2004). Hilbert spaces here are spaces of kernel functions, where these
functions can be thought of as correlation or covariance functions.

To see how kernels help to evaluate causality, we observe that the
predicted values of x using only X (resp. Z) are the projection of the
true values of x on a space H (resp. H′=H⊗H⊥). In this way the
improved prediction which defines Granger causal influence from ζ
to ξ resides in H⊥, the space of the vectors of H′ orthogonal to the
vectors of H (that is the information that we can gain on ξ from the
values of ζ). It can be shown that H⊥ is the range of a matrix
constructed from the scalar products of the input variables (X or Z).
These scalar products are contained in a N×N matrix K, called the
Gram matrix, with elements Kij=k(Xi, Xj) (resp. Kij=k(Zi, Zj)),
where k is a kernel function whose spectral representation contains
functions of X (resp. Z).

Since this scalar product is the sole way in which the input
variables enter in the model, we can perform Granger causality
analysis in spaces constructed by nonlinear functions of the input
values characterized only by the Gram matrix of a given kernel k.

Once that the kernel function has been used to create nonlinear
mixtures of the original data, the embedding is then performed
implicitly, by specifying the inner product between pairs of points;
for example, one can use an inhomogeneous polynomial kernel of
degree p:

Kp Z;Z′ð Þ = 1 + ZTZ′
� �p

;

or a Gaussian kernel:

Kσ Z;Z′ð Þ = exp − Z−Z′ð ÞT Z − Z′ð Þ
2σ2

 !
:

where Ζ is a 2m×N matrix having vectors Zi=(Xi
T,YiT)T as columns

in the bivariate case, and a nobs×m×n matrix in the multivariate
case, where nobs is the number of simultaneously recorded
observables.

We thus have a method with the following two main features: (i)
the nonlinearity of the regressionmodel can be controlled by choosing
the kernel function; (ii) the problem of false-causalities, which arises
as the complexity of the model increases, is addressed by a selection
strategy of the eigenvectors of a reduced Gram matrix whose range
represents the additional features due to the other time series. This
effectively reduces the number of unknownmodel parameters (in our
case coefficients of a vector autoregression model) by considering a
relatively small number of (possibly nonlinear) mixtures of para-
meters, thus providing a heuristic approach to bounding model
complexity and ensures that the accuracy of different models is a
rough approximation to their evidence.

Furthermore, it is worth to recall that KGC is equivalent to
performing a linear Granger causality in the feature space of the
kernel; it has been demonstrated in Ancona and Stramaglia (2006)
that, for polynomial and Gaussian kernels, this nonlinear approach
continues to fulfill the following invariance property, necessary to
analyze causality and satisfied by linear models:

“the optimal predictor (i.e. the function which minimizes the risk
functional (Papoulis 1985)) does not change when new variables,
statistically independent of input and target variables, are added
to the set of input variables.”

In KGC, the causality between ξ and ζ, conditioned to all the
other variables, is assessed comparing the prediction of ξ obtained
when Zcontains the past values of all the series and the prediction
of ξ when Zcontains the past values of all the series but ζ
(Marinazzo et al., 2008b).
Furthermore, KGC allows also an easy extension to an analysis of
the causality between phases (Bezruchko et al., 2008). This is
discussed in detail in Angelini et al. (2009a).

The causality index from KGC as described in Marinazzo et al.
(2008a), and used in this paper, is a quantity bounded between 0 and
1, which sums up only significant contributions: it follows that it is
always significant if the point estimate is nonvanishing.

The application of the kernel approach on simulated autoregres-
sive systems is described in previous papers (Marinazzo et al., 2008a,
b) and the performance was very good in terms of statistical power.
However, a detailed analysis of the statistical power of our procedure
over simulated neural signals will be presented elsewhere.

Results: examples of applications to neural data

Here we show briefly two examples of application of KGC to EEG
and fMRI.

EEG data

We considered the human EEG from a visual task contained in the
EEGLAB package (Delorme and Makeig, 2004). The data from 32
channels were sampled at 128 Hz. A visual target was presented 80
times. For each trial, we computed the causality between the signals
from the 30 channels on the scalp, thus excluding EOG1 and EOG2, for
1 s before the stimulus and 1 s after the stimulus, with m=2, with IP
kernel of degrees 1 and 2. About the choice of the model order,
application of cross-validation to these data suggested a low value of
m; therefore we restricted our analysis to m=1 and m=2.

Those causality indexes were then averaged over all the trials.
Fig. 1 reports the results of this analysis. Inspecting the matrices of
causal indexes, one can observe that these are not symmetric, nor
antisymmetric, as recalled when the causality index was defined
above. When a quadratic kernel is used, higher values of the causal
indexes appear after the stimulus, and a flow of causality, calculated as
described in Seth (2005) toward the occipital electrodes is observed.
Of course, these results, obtained for a single subject, are only
indicative of a possible trend. Quantitative conclusion could only be
drawn after a study involving more subjects and validating the
obtained results against the results obtained with a bootstrap method
(see for example (Deshpande et al., 2009)). It is also worth to recall
that the main result of a causality analysis lies in the matrix of the
indexes, and that the causal flow can be calculated, for illustrative
purposes, once that the statistical significance of the individual
indexes has been assessed.

It is interesting to show the compared performances of the three
used kernels in the course of time. We evaluated causality between a
frontal (F3) and an occipital (O2) electrode in a moving window of 50
points (0.39 s) (Fig. 2), in order to investigate the change after the
stimulus. In this case, we used also a Gaussian kernel with σ=4. We
can see that the highest increase in causal influence from the frontal to
the occipital channel is detected when we use the inhomogeneous
polynomial kernel with p=2. In the opposite direction, there is no
observable change of causality. As stated above, these results are
meant to report the performance of the different kernel; to validate
statistically the increase in causality as a phenomenon connected to
the visual stimulus, a more comprehensive study is needed.

fMRI data

We use KGC to analyze fMRI data from a motor imagery task (see
Liao et al., 2009b, for a complete description of the protocol, results
and discussion).

For Granger causality analysis, a seed x was first defined as the
average time series of all activated voxels within such a ROI. Then, the
seed x was chosen to accomplish effective connectivity assessment of
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the supplementary motor areas (SMA) against the rest of the voxels in
whole brain separately for each subject using the bivariate IP and
Gaussian KGC and GCA (Gao et al., 2008; Goebel et al., 2003;
Roebroeck et al., 2005; Upadhyay et al., 2008) method.

The detailed results of this analysis are explained in Liao et al.
(2009b). We report here the comparisons of the causal connectiv-
Fig. 3. Granger causality map of the regions influenced by the supplementary motor areas (SM
Three Granger causality sub-maps: brain regions found only by KGC (shown in red), brain
found by KGC intersecting the regions found by GCA) (shown in yellow). Adapted from Fig
ity results showing the Fx→y and Fy→x maps between those
obtained from KGC (IP kernel with p=2) and GCA method. In
Fig. 3, we display three Granger causality sub-maps: brain regions
found only by KGC (shown in red), brain regions found only by
GCA (shown in green), and common brain regions (the regions
found by KGC intersecting the regions found by GC) (shown in
yellow). In the map of the regions influenced by the (SMA)
(Fig. 3A), we find that the significant causal influences from the
SMA to the bilateral cingulate motor area (CMA), superior parietal
lobule (SPL), paracentral lobule, putamen and the contralateral
postcentral were found by KGC only. Significant influences from
the seed to the bilateral inferior parietal lobule (IPL) and SMA were
detected only with GC. Regarding the regions influencing the seed
(SMA) (Fig. 3B), KGC detected strong influences from the bilateral
SPL and the contralateral postcentral and precentral gyrus. GC only
found that the part of SMA extensively influenced the seed.

In order to explain the causal influences revealed by GCA but not
by KGC (green regions in Fig. 3), we can say that when we add to the
model the nonlinear features, in particular for those short and noisy
time series, the threshold for significance is raised, and so some weak
linear influences are no longer detected in the nonlinear KGC analysis
(see below in the Discussion section).
Discussion

In the following we will address some specific points, either
related to nonlinear Granger causality in particular, or to Granger
causality in general.
A) (A) and the regions influencing the SMA (B) in fMRI data from amotor imagery task.
regions found only by GCA (shown in green), and common brain regions (the regions
. 6 in Liao et al. (2009b). © IEEE 2009, used with permission.
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Choice of the model order

There are several recipes for the choice of the optimal value of the
autoregressive model orderm (Lütkepohl, 2005). In machine learning
based approaches, this is usually done using the standard cross
validation scheme (Shawe-Taylor and Cristianini, 2004) or the
embedding dimension (Kantz and Schreiber, 1997). Alternatively,
one can use the Bayesian information criterion (BIC) (McQuarrie and
Tsai, 1998), or other order selection criteria (Akaike Information
criterion, Hannan-Quinn criterion). These last criteria (AIC and BIC)
are usually considered as approximations to the log evidence or log
marginal likelihood for a model. The model evidence is simply the
probability of observing the data given some model. The log-evidence
includes an accuracy term and a complexity term and is a crucial
quantity in comparing models. In the example above, it can be used to
optimize the value of m. However, one could also use an implicit
approximation to the model evidence to compare the model with the
extra time-series y and those without y, thus assessing causality. As it
is possible to upper bound the complexity (see, e.g. Cherkassky and
Ma, 2003), we can conclude that the accuracy, as measured by the
unexplained variance or residual sum of squares (after filtering), is a
good approximation to the model evidence.

High dimensionality and ill-posedness

One of the major issues when we deal with high dimensional and
even short fMRI data is that the problem becomes ill-posed (number
of variables comparable with, or bigger than, the number of
observations). A recent paper (Zhou et al., 2009a) has introduced a
way to overcome this problem, by means of reduction of dimension-
ality in reference regions of interest (ROI) with principal component
analysis (PCA). This approach, applied to fMRI, could be more correct
and more efficient than methods based on averaging or a priori
definition of ROIs.

For sparse connectivity and small number of samples, method-
ologies based on L1 norm minimization have been proposed
(Napoletani and Sauer, 2008). Even if KGC proves more efficient
(i.e. it shows higher statistical power for a given size) than those
methodologies in reconstructing network connectivity (i.e. bigger
number of true connections revealed, with fixed number of false
connections, see Marinazzo et al., 2008b), also in this case a
dimensionality reduction is in order. A method already rooted in
this framework has been proposed (Angelini et al., 2009b), based on
the concept of redundant and synergetic variables (Schneidman et
al., 2003), which looks for connectivity patterns between groups of
redundant variables.

Model comparison

One of the most important issues that need to be addressed within
our framework is how to compare different models. Model compar-
ison is the most important aspect of inference with causal models and
allows one to test different hypotheses by comparing differentmodels
in terms of their (log) evidence. In the context of Granger causality,
this has been approximated by comparing models in terms of their
accuracy under bounded complexity (using the filtered Granger
Causal Index introduced in Marinazzo et al., 2008a).

However, it will be important to check whether the issue of
model comparison could be further improved by use of approaches
using more than only the accuracy, like e.g. writing down nested
models and using likelihood ratio tests. Moreover, the availability of
likelihood-ratio tests would remove the need for the filtering of
eigenvalues to control the complexity, and one could directly assess
the influence of the second time series on the first. This requires the
kernel model, employed by KGC, to be expressed in a maximum
likelihood framework: it is a matter for further work. We refer the
reader to Mak et al. (2009) for a recent attempt to generalize in a
nonlinear fashion the maximum-likelihood linear regression.

Experimental or endogenous inputs

Aswith all current implementations of Granger causal analyses, we
have neglected experimental or exogenous inputs that correspond to
stimulus functions in conventional neuroimaging experiments. These
are an important source of variance and call for an extension of the
vector autoregression models used in Granger causality so that they
can be incorporated gracefully. This is particularly important in our
application because we could, in principle, consider bilinear interac-
tions between exogenous inputs and the data (states). This would be
equivalent to an experimentally mediated change in the coupling or
autoregression coefficients and would address the key issue of
context-sensitive coupling in the same way that DCM does. A few
Granger causality studies including both linear and nonlinear models
(Guo et al., 2008; Li et al., 2010) have addressed this issue, taking into
account experimental or exogenous inputs to brain regions.

Bivariate aspect of KGC approach

Note that even in the context of a kernel approach with a full
(multivariate) vector autoregression model, our inferences are still
about bivariate coupling. In other words, we are not testing sparse
architectures or different models of coupling; rather we are simply
testing two models where one model does not have a particular
connection. This means that the Granger causal index should not be
interpreted in terms of a dependency graph. It is a measure of the
statistical dependence between the two regions, allowing for
complete coupling elsewhere. In principle, there is no reason why
we could not extend our approach to explore any arbitrary
connectivity by comparing models with and without subsets of
connections. However, this would depend upon the model compar-
ison framework as mentioned above.

Distinction between function and effective connectivity

Granger causal analysis occupies an interesting and intermediate
position between functional and effective connectivity (Friston, 2011-
this issue). It should be noticed that our approach does not need to
refer explicitly to estimates of the autoregression coefficients that
quantify the coupling between brain areas. All we need to do is
examine the observed and predicted data under different models. The
measure of coupling is based upon an inference (the comparison of
model accuracies); this is the Granger causal index. This means that
our measure of coupling is inferential and reflects the statistical
dependencies between two brain areas. This means that it measures
functional connectivity (Friston, 2011-this issue). However, because
the models impose temporal precedence; this functional connectivity
can be considered as directed (given the qualifications about
hemodynamic latency variations above). This measure of coupling is
different from effective connectivity which, in our model, corresponds
to the estimates of the autoregressionmatrices A and B in the first two
equations. In principle, having estimated the Granger causality we
could now return and examine the effective connectivity in terms of
the regression coefficients in the usual way.

Application to fMRI

First of all, we should note that there are some controversies about
the opportunity of applying GCA to fMRI data (Friston, 2009, 2011-this
issue; Roebroeck et al., 2011-this issue). Some reasons have been
indicated to justify why GCA might not be the method of choice for
fMRI data. For example, the causal interactions are mediated at the
neuronal level and the vector autoregression models used by GCA have
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no hidden neuronal states (Friston, 2009). Anyway, efforts are being
made in order to provide GCA with the approximating features of DCM
(Ge et al., 2009). Another concern is the fact that GCA rests upon
uncorrelated prediction errors, although random fluctuations in fMRI
data are smooth because of the hemodynamic response function (HRF)
convolution. Finally, regional variations in the latency of the HRF would
violate the assumptions of temporal precedence upon which GCA is
based. In some current application,we can appeal to the fact thatwe are
looking at the coupling amongst distributed modes, where any
variations in hemodynamic latency will average out.

As discussed in Roebroeck et al. (2005), the straightforward
application of GC to hemodynamically filtered and sub-sampled time
series, can lead to bias toward false positive causalities, even before
considering differences in hemodynamics between different regions.
This bias is present also when KGC is used, and also KGC can be
modified to contrast its effect, with the same the strategy proposed by
Roebroeck et al. (2005), or with other strategies which will hopefully
be explored in the future.

Still about deconvolution, we must know two out of the three
signals in the equation y(t)= s(t)⊗h(t)+e(t), where y(t) is the
observed signal, s(t) is the activity of the underlying neural
population, and h(t) is the HRF. One has then to make assumptions
on s(t) and h(t). In this issue, Roebroeck et al. (this issue) state that
“undoing the effect of hemodynamics on fMRI data (by deconvolu-
tion) can be an important tool. However, it is crucially dependent
upon assumptions that need to be verified.” Nonlinearity is certainly
another assumption that we should make, but it is not clear if this
nonlinearity should reside in s(t) or in the HRF h(t). A biologically
inspired model has to answer precisely to this question. In the
application of KGC on fMRI data (Liao et al., 2009b), this aspect was
not considered; furthermore it did not consider one of the crucial
problems, that is the differences in nonlinear h1(t) and h2(t) that
convolve s1(t) and s2(t), respectively (differences that were under-
lined in Roebroeck et al., this issue). In Logothetis et al. (2001), it is
suggested that, like in neural responses, fMRI blood oxygenation
level-dependent (BOLD) contrast signal is also a nonlinear function
of stimulus contrast (Boynton et al., 1996, 1999), however, a linear
systems analysis on the fMRI responses predicted a linear relation-
ship between the BOLD and neural activity. So, many of the more
recent effective connectivity approaches are based on stochastic or
deterministic dynamic models, and capable of capturing temporal
structure. Volterra series representation (Friston and Buchel, 2000)
characterizes interactions in a nonlinear convolution model relating
multiple inputs to a single output. Thus, dynamic nonlinear
influences on a single region can be characterized. For future work,
aimed to detect interactions in a nonlinear convolution model in
whichmultiple inputs are fed to a single output, more physiologically
motivated models will be needed (Balloon, Windkessel or Volterra
models).

Specific problems of nonlinear GC

For every nonlinear generalization of GC, the most important
problems to be solved are:

(i) Fix the degree of nonlinearity of the model
(ii) Deal adequately with overfitting, so that the introduction of
more features due to nonlinearity results in a minimal loss of
statistical power

Every approach comes with a possible answer to these two
problems, but a lot of work still needs to be done to establish the best
recipes in the field of neural systems.

When choosing the kernel for the model, it is important that the
model itself will be matched to the dynamical characteristics of the
signal, as correctly pointed out in Pereda et al. (2005). In KGC, we deal
with problem (i) performing a preliminary analysis in which we look
how the causality indices change with the order p of the polynomial
kernel, orwith theσ of theGaussian kernel, and theparameter is chosen
according to the stability of the results. Our approach to overfitting lays
in the framework of sparsification through statistical testing, discussed
for example in Haufe et al. (2008). This strategy is of proven efficacy, but
of course is not able to completely eliminate the problem. In spite of our
efforts, we can always run into some situations in which linear GCA
detects influences which are not considered significant in KGC. This is
what happens in the green regions in Fig. 3. To illustrate better this
point, we have generated two time series as follows:

x tð Þ = 0:95
ffiffiffi
2

p
x t − 1ð Þ− 0:9025x t − 1ð Þ + 0:5τ1 tð Þ;

y tð Þ = ax t − 1ð Þ + bx t−1ð Þ2 + cτ1 tð Þ; ð5Þ

where the τ's are unit variance Gaussian noise terms. We evaluated
the bivariate causality for two pairs of maps for 100 trials using KGC
with IP kernel with p=1 and 2, and Gaussian kernel with σ=6.
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As shown in Fig. 4, all the causal influences decrease with increasing
noise.When linear influences are stronger (left panel), the linear kernel is
slightly more robust (for example when c=1.34); when nonlinear
influences are stronger (right panel), the usefulness of nonlinear kernels
for the detection of nonlinear influences decreases when the noise
increases.

Stationarity and noise

The framework of Granger causality assumes stationarity of
signals: further work should deal with the effects of nonstationarities
on nonlinear estimates of causalities (see Dhamala et al., 2008; Fujita
et al., 2007; Sato et al., 2006, for a promising strategy in the linear case).

We expect that the proposed method will provide a statistically
robust basis to assess nonlinear drive–response relationships in many
fields of science, wherever collected data form time series; it works for
deterministic and stochastic systems, provided that noise is not so
high as to obscure the deterministic effects.
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