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This work introduces a framework to study the network formed by the autonomic component of heart rate variability 

(cardiac process ) and the amplitude of the different EEG waves (brain processes , , , , ) during sleep. The 

framework exploits multivariate linear models to decompose the predictability of any given target process into measures 

of self, causal and interaction predictability reflecting respectively the information retained in the process and related to 

its physiological complexity, the information transferred from the other source processes, and the information modified 

during the transfer according to redundant or synergistic interaction between the sources. The framework is here applied 

to the , , , , ,  time series measured from the sleep recordings of 8 severe sleep apnea hypopnea syndrome (SAHS) 

patients studied before and after long-term treatment with continuous positive airways pressure (CPAP) therapy, and 14 

healthy controls. Results show that the full and self predictability of ,  and  decreased significantly in SAHS 

compared to controls, and were restored with CPAP for  and  but not for . The causal predictability of  and  

occurred through significantly redundant source interaction during healthy sleep, which was lost in SAHS and recovered 

after CPAP. These results indicate that predictability analysis is a viable tool to assess the modifications of complexity 

and causality of the cerebral and cardiac processes induced by sleep disorders, and to monitor the restoration of the 

neuroautonomic control of these processes during long-term treatment. 
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In the emerging field of network physiology [1], the human body is seen as an integrated network composed of different 

organ systems, which have their own internal regulatory mechanisms but also interact with each other to preserve the 

physiological function. In addition to other important physiological systems subjected to neural regulation, such as the 

circulatory and respiratory systems, two crucial nodes of the human physiological network are the brain and cardiac 

systems. The dynamical states of these systems are continuously modulated by the rhythmic activity of brain structures 

devoted to visceral control (i.e. the autonomic nervous system). This modulation is clearly visible in the time course of 

the physiological variables measured as output of the cardiac and central brain systems. For instance, the analysis of low-

frequency (LF) and high-frequency (HF) oscillatory components of heart rate variability (HRV) is ubiquitously used to 

assess autonomic control in a variety of physiological conditions and pathological states [2]. The continuous modulation 

of brain activity is reflected in the amplitude of electro-encephalographic (EEG) rhythms oscillating in the , , , , , 

and  frequency bands that cover the whole spectral EEG variability. In particular, the modulating activity of the 

autonomic function is known to have an impact on the five frequency bands that characterize in detail the EEG during 

sleep (i.e., , , , , and  [3]. Sleep is a physiological state which has a significantly more complex and important 

impact on the neural regulation of cardiac and cerebral physiological variables [3-6]. The stage organization of sleep 

reflects modulations in the autonomic activity such that an increase in the balance between the variance of the autonomic 

components of HRV in the LF and HF bands (LF/HF ratio) is known to occur with the transition from non-random eye 

movement (NREM) sleep to REM sleep [4, 7]. Sleep state-related variations are also observed in the spectral power of 

the sleep EEG, with wave amplitude decreasing significantly in the slower , , and  bands, and increasing in the faster 

, and  bands, during REM sleep compared with NREM stages [3, 8]. 

 

In more recent years, the research on brain and cardiovascular dynamics during sleep has seen a shift of paradigm from 

the study of individual EEG or HRV activity to the investigation of the relationships between specific EEG wave 

amplitudes and HRV dynamical indexes. Initially, brain and cardiovascular interactions during sleep were studied only 

indirectly, correlating indexes of cardiac and cerebral variability to each other through simple non-dynamical analyses [9-

14]. Dynamic approaches to the joint characterization of cardiac and neural time series were introduced only recently, and 

were based on bivariate and non-causal analyses [15-22]. However, complex physiological networks are composed of 

multiple nodes, where each node may represent the activity of a specific physiological system which exhibits autonomous 

dynamics but is also connected to other diverse systems. A proper analysis of these networks necessitates the introduction 

of fully multivariate and causal methods for time series analysis, to guarantee a faithful reconstruction of the network 

structure based on the detection of direct and directional effects. To meet this need, we have recently proposed an 

integrated framework for multivariate time series analysis, essentially based on information-theoretic and predictability 

measures, that led us to evidence for the first time the existence during sleep of a structured network of brain heart-

interactions, sustained both by the internal dynamics of the various cardiac and brain processes and by the causal 

interactions between them [23, 24]. In the present study we pursue the twofold aim of completing the methodological 

formulation of this framework, and of advancing its utilization in the clinical description of sleep disorders.  

 

Methodologically, the analysis of how information is processed inside a network of multiple interacting processes is often 

performed under the perspective of distributed computation, whereby the general concept of “information processing” is 

dissected into the basic components of information storage, transfer and modification [25]. Information storage and 

transfer refer respectively to how much the uncertainty about the present state of a dynamical system can be resolved by 

the knowledge of its own past states [26], and by the additional knowledge of the past states of the systems potentially 

connected to it [27]. Following our recent developments in the detection of information storage and information transfer 

in brain-heart networks [23, 24], in this study we embed in the framework the concept of information modification, 

relevant to how two (groups of) source systems interact redundantly or synergistically with each other when they 



contribute to resolve the uncertainty about the states of the assigned target system [28, 29]. The complete framework is 

formulated, in the context of multivariate linear prediction models, devising a predictability decomposition strategy that 

leads to decompose the full predictability of the target process into measures of self predictability, causal predictability 

and interaction predictability which reflect the notions of information storage, transfer and modification. This opens the 

way to the thorough investigation of how different cardiac and brain processes retain the information that they produce, 

transfer information to each other, and mutually interact while they transfer information. 

 

From a clinical point of view, a pathological condition that leads to a reorganization of the network of physiological 

interactions between the cardiovascular and brain rhythms is the sleep apnea-hypopnea syndrome (SAHS). This 

syndrome is a common medical problem that dramatically affects the quality of life, and is associated with hypertension, 

heart failure, myocardial infarction, stroke and vascular complications [30, 31]. SAHS has been associated with 

significant alterations of the rhythmic autonomic activity during sleep, with blunted shifts of the alternating predominance 

of cardiac vagal and sympathetic activities during NREM and REM sleep [32], increased  EEG activity during NREM 

apnea [33], and impaired link between cardiac parasympathetic and delta EEG activities [34]. Moreover, the treatment of 

severely apneic patients with nasal continuous positive airways pressure (CPAP), a respiratory therapy which consists in 

applying mild air pressure to keep the airways continuously open during nighttime, has been proven effective in 

improving sleep architecture and cardiovascular parameters, as well as in reducing some comorbidities of SAHS [35-37]. 

It has been recently shown that long-term CPAP therapy produces a subtle but clinically important restoration of the 

neuroautonomic joint regulation of different organ systems: in the presence of similar sleep characteristics and spectral 

profiles of cardiac variability, patients with severe SAHS exhibiting a weakened link between the cardiac vagal 

component of HRV and the sleep delta EEG amplitude partially recovered such a link after more than one year of nasal 

CPAP treatment [38]. In this study, we delve into these modified brain-heart interactions, according to the broader 

perspective of multivariate analysis of network processes, though the evaluation of the patterns of self predictability, 

causal predictability and interaction predictability. 

 

 

 

Let us consider a multivariate stochastic process ={Y,X} composed by a predefined ‘target’ process, Y, and by M other 

possibly interacting processes, X={X1,...,XM}, which are considered as ‘sources’. In this context, we deal with the 

description of the dynamics of the target process performed in the framework of linear prediction. Setting a temporal 

frame where n represents the present time, the random variable associated to the present of the target, Yn, is described as 

resulting from a linear combination of the p past target variables, Yn-1,..., Yn-p, and of the past variables of the source 

processes, Xm,n-m, ..., Xm,n-p (m=1,...,M), according to the autoregressive (AR) model of order p and with M inputs:  
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where Ak and Bmk are linear regression coefficients, m is the minimum delay of the interaction from Xm to Y, and W is a 

scalar zero-mean innovation process uncorrelated with Y and X1,...,XM. The variance of W, denoted as (Y|)=(Y|Y,X), 

is a measure of the unpredictability of Y given ={Y,X}, and is bounded between 0 and the variance of Y, (Y). 

 

Starting from the most complete model structure of Eq. (1), simplified structures that disregard some of the source 

processes can be obtained as follows. Disregarding all possible sources, the description of Y can be performed by a simple 

linear AR model: 
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where the regression coefficients Ãk are generally different from the Ak in (1), and the variance of the innovation process 

WY, denoted as (Y|Y), is a measure of the unpredictability of the present of the target process given its past. Moreover, 

considering two disjoint sets of Q and M-Q source processes, i.e. V={V1,...,VQ} and Z={Z1,...,ZM-Q} such that X={V,Z}, 

the linear prediction of Y can be performed considering as exogenous inputs only one of these two subsets by setting the 

models: 
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In Eq. (3), the variances of the innovation processes WYV and WYZ , denoted as (Y|Y,V) and (Y|Y,Z), can be taken as 

measures of the unpredictability of the present of Y given its past and the past of V, or given its past and the past of Z, 

respectively. 

 

Based on the representations above, we provide the following definitions of full predictability of Y, self predictability of 

Y, and causal predictability from X to Y: 

 ),|()(| XYYYPY  . (4) 

 )|()(| YYYP YY  . (5) 

 ),|()|( XX YYYYP Y  . (6) 

The full predictability PY| quantifies the portion of the variance of the target process Y that can be predicted from the 

knowledge of the whole set of available processes ={Y,X}. Similarly, the self predictability PY|Y quantifies the portion of 

the variance of Y that can be predicted from the exclusive knowledge of its own dynamics. These predictability measures 

are inversely related to the complexity of the target time series, which is defined in this study as the degree of 

unpredictability of the series measured through the prediction error variance [39]. The causal predictability PXY 

measures the portion of the variance of Y that can be predicted from the knowledge of the source process X above and 

beyond the portion that can be predicted from Y considered alone. Quantifying predictability improvement, this last 

measure is in agreement with the concept of Wiener-Granger causality [40, 41]. Combining Eqs. (4-6), one can easily 

show that the measures of full, self and causal predictability are related to each other by the equation: PY|Y,X = PY|Y + PXY 

(see Fig. 1). Moreover, separating the source process X into the subsets V and Z we define the partial causal 

predictability from V to Y given Z as 

 ),,|(),|(| VZZZV YYYYP Y  . (7) 

Quantifying the portion of the variance of Y that can be predicted from the knowledge of V above and beyond the portion 

that can be predicted from Y and Z, the measure defined in Eq. (7) reflects the concept of (multivariate) partial Granger 

causality [41-44].  

 

The concepts of causal predictability and partial causal predictability can be combined together to investigate how the 

sources interact with each other in the prediction of the target dynamics. Specifically, defining a so-called interaction 

predictability as 

 ),,|(),|(),|()|(, ZVZVZV YYYYYYYYI Y  , (8) 



it is easy to show that it quantifies the difference between the causal predictability and the partial causal predictability 

from one source process to the target process as 

 VZZZVVZV ||, YYYYY PPPPI   . (9) 

Then, one can show that the ‘collective’ causal predictability from X={V,Z} to Y can be decomposed as 

 YYYYYYY IPPIPPP   ZVVZZVZVZVX ,||, , (10) 

 

 

Fig. 1. Variance decomposition for the multivariate process ={Y,X}={Y,V,Z}. The diagrams show how the variance of 

the target process Y ((Y), total area) is decomposed in an unpredictable part ((Y|), gray area) plus a predictable part 

PY|, denoting full predictability. The latter further splits in two parts evidencing the self predictability of the target (PY|Y, 

red area) and the causal predictability from all sources to the target (PXY, yellow + white areas). Then, the overall causal 

predictability can be decomposed: (a) as the sum of the partial causal predictabilities (PVY|Z and PZY|V, yellow) plus the 

interaction predictability (IZ,VY, white) in the case of redundancy; or (b) as the sum of the causal predictabilities (PVY 

and PZY, yellow) minus the interaction predictability (-IZ,VY, white) in the case of synergy. 

 

The predictability decomposition of Eq. (10) is illustrated graphically in Fig. 1, showing how it allows to quantify the 

character (redundant or synergistic) of the interaction between V and Z when they are used to predict Y [45]. Specifically, 

if the causal predictability from V to Y is larger than the partial causal predictability from V to Y given Z, the interaction 

predictability is positive. In this case we have that considering the two sources together yields a worse prediction of the 

target than summing up the individual predictabilities from each source (PXY<PVY+PZY); this situation denotes 

redundancy between the sources (Fig. 1a). If, on the contrary, the causal predictability from V to Y is smaller than the 

partial causal predictability from V to Y given Z, the interaction predictability is negative. In this case we have that 

considering the two sources together yields a better prediction of the target than summing up the individual 

predictabilities from each source (PXY>PVY+PZY); this situation denotes synergy between the sources (Fig. 1b). 

 

It is worth noting that the predictability measures introduced above are strictly related to a set of corresponding 

information-theoretic measures defined for vector AR processes. Specifically, exploiting the close correspondence 

between conditional entropy and prediction error variance that holds for linear processes, one can show that the measures 

of full predictability, self predictability, (partial) causal predictability and interaction predictability defined in this study 

are directly related to the linear AR definition of the measures of prediction entropy [46], self entropy [46], (partial) 

transfer entropy [43, 46] and interaction transfer entropy [47], respectively. The theoretical concepts underlying these 

measures and their practical implementation in simulated time series have been thoroughly tested in a number of recent 

studies [43, 46-48]. 
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This study considers a database previously collected [38], including eight patients (45.66.7 years) who were admitted in 

the Sleep Laboratory for two consecutive nights and were diagnosed as suffering from severe SAHS, detected measuring 

an apnea-hypopnea index (AHI) >30 events/hour. The same patients were admitted again (49.97.0 years) after at least 

one year of treatment with the CPAP therapy (range: 1.8-7.8 years; meanSD: 43 years), which was maintained for at 

least 5 hours every night and led to adjustments documented by the significant reduction of apnea episodes (AHI<10 

events/hour). Moreover, fourteen healthy age-matched subjects (44.06.2 years), admitted to the Sleep Laboratory for 

three consecutive nights, were considered as control group. Participants were not allowed to take any medication, and 

were instructed to limit alcohol and caffeine consumption and to respect regular sleep-wake cycle. All participants gave 

written informed consent to the procedure, that was approved by the Ethical Committee of the Erasme Academic Hospital 

of Brussels. 

 

We analyzed the ECG and EEG recordings of the SAHS patients, both before and during CPAP treatment, and of the 

healthy controls, acquired during the second or third night of their hospitalization. The measurement procedure resembled 

that of our previous studies [23, 24] and consisted in the following processing of ECG and EEG signals, digitized 

simultaneously with 200 Hz sampling frequency and 12 bit amplitude resolution. The analysis of the EEG recordings 

(Cz-Ax derivation, with Ax mastoid reference) was performed first applying a Fast Fourier transform (FFT) to each 

consecutive window of 5 sec, and then computing the spectral power inside each of the five conventional frequency 

bands (: 0.5-3 Hz; : 3-8 Hz; : 8-12 Hz; : 12-16 Hz; : 16-25 Hz) traditionally explored in sleep studies [1, 3, 15-17, 

34, 49]. In this study we stick to these five bands, excluding the dynamics of the EEG amplitude in the  band (>25 Hz) 

which are commonly associated to sensory and cognitive functions and during sleep are partly synchronous with  

dynamics (1 band, 25-35 Hz) and partly correlated only to muscle tone artifacts ((2 band, 35-45 Hz) [50]. The time 

series representative of the , , , , and  wave amplitudes were finally obtained averaging the power values for the 

relevant frequency band over non-overlapping windows of 60 sec. The ECG (lead V4 or V6) was first up-sampled to 400 

Hz to increase precision in the location of the R-peaks, which were used to measure HRV through the sequence of the 

durations of the time intervals between consecutive R peaks (RR intervals). Premature ventricular contractions, ectopic 

beats and other artifacts were automatically detected when RR<0.35 s or RR>1.5 s, and were then removed and linearly 

interpolated with the surrounding values. The resulting RR time series was interpolated and resampled uniformly to 8 Hz, 

and then subdivided in consecutive windows of 120 sec overlapped by half. For each window, the RR interval series was 

in turn detrended, Hanning windowed, and FFT transformed. Finally, the time series representative of the cardiac 

parasympathetic activity was obtained as the sequence of the spectral power values taken in the HF band (0.15-0.4 Hz) 

divided to the power contained in the LF+HF band (0.04-0.4Hz). With this overall procedure six synchronous time series, 

describing the variability of the five brain wave amplitudes and of the cardiac parasympathetic component, were obtained 

with sampling frequency of 1 minute. In this way, one multivariate time series was collected from the full night 

polysomnographic recordings of each individual subject. 

 

Before predictability analysis, each time series was normalized to zero mean and unit variance. The six normalized time 

series measured for each subject were then considered as a realizations of the overall stochastic process ={,}, 

composed by the five-dimensional vector process ={, , , , } describing the dynamics of the different brain 

rhythms and by the scalar process  describing the cardiac dynamics. The analysis was then performed, following the 

derivations presented in Sect. II, as described in the following. In the study of cardiac dynamics, the role of the target Y 

was assumed by the cardiac process , while the sources X were represented by the brain process . We computed the 

full, self and causal predictability measures P, P, and P; further, causal predictability decomposition was 

performed computing the interaction predictability between each single brain process and the remaining brain processes 



as Ix,\x, with x taking the role of any process , , , , or . In the study of brain dynamics, each single brain process 

was considered as the target and the full, self and causal predictability were computed as Px, Pxx, and P,\x x; 

predictability decomposition was then performed computing the interaction predictability between the cardiac process and 

the brain processes other than the target as I,\x x, (here x was equal to , , , , or ). All indexes were computed from 

the prediction error variances obtained from the linear regressions described in Eqs. (1-3). Regressions were performed 

through the standard least squares approach, after optimizing the model order p in the range from 2 to 12 according to the 

Bayesian Information Criterion (BIC) applied to the full multivariate AR model fitting the six series. The reduced model 

structures were separately identified from the data using the same model order obtained through the BIC criterion for the 

full structure. In the study of cardiac dynamics, the minimum interaction delays m were set equal to 1 for all sources. On 

the contrary, in the study of brain dynamics the minimum interaction delay from the cardiac source process  to the 

considered brain target process x, with x=, , , , or , was set to 0 to account for the partial overlap of the time series 

due to the measurement convention, which introduces “causal” information with no delay from heart to brain (i.e., since 

the HF power of HRV was measured on windows of 120 s overlapped in the second half with the measurement windows 

of the EEG bandpowers, the n-th sample of the cardiac series is built including HRV points that occur in time before the 

EEG points forming the n-th sample of any brain series) [24]. 

 

To test the hypothesis that an individual observed process (i.e., the cardiac rhythm  or one of the  brain rhythms , , , 

, ) is significantly predictable given either the past of the full process , its own past, or the past of all other processes, 

we assessed the statistical significance of the measures of full, self and causal predictability (Eqs. 4-7); this was 

performed for each individual subject applying the Fisher F-test with significance P<0.01: the test compares the variances 

of the residuals obtained from the unrestricted and restricted model structures relevant to the model-based computation of 

the considered predictability measure. To test the hypothesis that the brain rhythms interact significantly with each other 

while they contribute to improve the predictability of the cardiac rhythm, and the hypothesis that the cardiac rhythm 

interacts significantly with the brain rhythms while contributing to improve their predictability, we assessed the statistical 

significance of the interaction predictability measure (Eqs. 8,9) on a group basis, by testing whether the causal 

predictability and partial causal predictability measures computed across subjects come from a distribution with the same 

median; this was done using the Wilcoxon signed rank test for paired data, and correcting for multiple comparisons (i.e. 

setting statistical significance P<0.01).  To test the hypothesis that each assigned predictability measure varied 

significantly when computed before and during the CPAP treatment, we used the Wilcoxon signed rank test for paired 

data with significance P<0.05. To test the hypothesis that each assigned predictability measure varied significantly 

between untreated SAHS patients and controls, or between patients treated with CPAP therapy and controls, we used the 

Mann-Whitney U-test with significance P<0.05. 

 

 

 

The length of the time series analyzed in this study (from the onset of sleep until the end of the last REM sleep state) was 

41860 min for the control group, 41955 min for the SAHS patients, and 41081 min for the same patients studied after 

prolonged CPAP treatment. Complete sleep and demographic parameters for these groups are reported in [38]. The model 

order estimated for the full multivariate model using the BIC criterion was 3.52 (average for all groups and time series), 

and did not vary significantly across the three groups (CTRL: 3.41.3 for , 3.81.9 for ; SAHS: 3.92.6 for , 3.51.8 

for ; CPAP: 2.50.5 for , 3.21.9 for ). 

 

The results of the predictability decomposition of the cardiac dynamics are reported in Fig. 2, showing the distribution in 

the three groups of the full predictability of the process  and of its constituent terms, i.e. the self predictability and the 

causal predictability derived from the brain process . In the group of healthy subjects, about 50% of the variance of the 
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cardiac dynamics during sleep could be predicted from their past and from the dynamics of the brain processes. This full 

predictability was significantly lower (36.9%, P=0.007) in patients suffering from SAHS, and remained at lower levels 

(38.4%, P=0.012) also after the CPAP treatment. This higher complexity exhibited by apneic patients compared with 

healthy controls was the result of a decrease of both the self-predictability of the cardiac dynamics and of the causal 

predictability brought by the brain dynamics. The indexes of full and self predictability were statistically significant in all 

groups, while the causal predictability was not significant in 3 out of 8 patients before CPAP treatment, and 1 patient after 

the treatment. 

 

 

Fig. 2. Distribution of the measures of full predictability (P), self predictability (P) and causal predictability (P) 

assessed for the cardiac parasympathetic component of HRV in the network ={,} formed by cardiac process  and 

the brain process , and expressed as median and quartiles computed in healthy controls (CTRL), in patients with severe 

sleep apnea-hypopnea syndrome (SAHS), and in the same patients studied after prolonged continuous positive airways 

pressure therapy (CPAP). For each measure, the number of subjects for which it was detected as statistically significant is 

reported inside the bar. *, P<0.05 CTRL vs. SAHS or CTRL vs. CPAP (Mann Whitney U test). 

 

Fig. 3 reports the distributions of the measures of interaction predictability reflecting how each single brain process , , 

, , or  interacts with the other brain processes in the prediction of the cardiac process . In the group of healthy 

subjects, the , , and  brain wave amplitudes interacted redundantly with the other EEG waves (the interaction 

predictabilities I\, I\, and I\ were significantly different from zero). This redundant interaction 

disappeared in SAHS patients, and was restored after CPAP treatment. Noticeably, in the SAHS group the interaction 

predictability was never significantly different from zero, documenting the absence of any significant interaction between 

the brain processes while they contribute to the prediction of the cardiac dynamics. 

 

 

Fig. 3. Box plots of the measures of interaction predictability, Ix\x, quantifying the degree of interaction between each 

brain process (x=, , , , ) and the remaining brain processes in the prediction of the cardiac process , computed in 

healthy controls (CTRL), in patients with severe sleep apnea-hypopnea syndrome (SAHS), and in the same patients 

studied after prolonged continuous positive airways pressure therapy (CPAP). For each measure, significantly nonzero 

interaction predictability is denoted by the symbol # (P<0.01, Wilcoxon signed-rank test). *, P<0.05 CTRL vs. SAHS 

(Mann Whitney U test) or CTRL vs. CPAP (Wilcoxon signed-rank test). 

 



Fig. 4 depicts the results of predictability decomposition applied to the five brain processes, reporting how the predictable 

dynamics of each process broke down into components related to the self predictability of the process and to its 

predictability arising from the other processes of the brain-heart network. In the control group, the full predictability of 

the brain processes ranged from 81% for the  wave dynamics to 73% for the  waves, ~65% for the  and  waves, and 

73% for the  waves, resulting higher than that of the cardiac process (~50%). While these full predictability values and 

their self and causal constituents did not differ significantly in the untreated and treated patients compared with the 

controls when considering the faster ,  and  waves, important modifications were noticed for the slower  and  

waves. Specifically, the predictability was markedly decreased in SAHS patients for the  dynamics (62%, P=0.005) and 

the  dynamics (59%, P=0.003), but was restored at values comparable to those of the healthy controls after long-term 

CPAP treatment (74% for  and 71% for , P=NS). The drop of predictability and its recovery with treatment were 

entirely due to the self predictability of these brain rhythms, while the causal predictability was unchanged across the 

three groups for the  wave, and was even showing an opposite trend for the  wave. 

 

 

Fig. 4. Distribution of the measures of full predictability (Px), self predictability (Pxx) and causal predictability (P\xx) 

assessed for the amplitude of each EEG brain wave (x=, , , , ) in the network ={,} formed by cardiac process 

 and the brain process , and expressed as median and quartiles computed in healthy controls (CTRL), in patients with 

severe sleep apnea-hypopnea syndrome (SAHS), and in the same patients studied after prolonged continuous positive 

airways pressure therapy (CPAP). For each measure, the number of subjects for which it was detected as statistically 

significant is reported inside the bar. *, P<0.05 CTRL vs. SAHS (Mann Whitney U test) or CTRL vs. CPAP (Wilcoxon 

signed-rank test). 
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Fig. 5. Box plots of the measures of interaction predictability, I\x x, quantifying how the prediction of each brain 

process (x=, , , , ) results from the interaction between the remaining brain processes and the cardiac process , 

computed in healthy controls (CTRL), in patients with severe sleep apnea-hypopnea syndrome (SAHS), and in the same 

patients studied after prolonged continuous positive airways pressure therapy (CPAP). For each measure, significantly 

nonzero interaction predictability is denoted by the symbol # (P<0.01, Wilcoxon signed-rank test). 

 

 

The higher causal predictability of the sleep EEG amplitude in the  frequency band observed in untreated SAHS patients 

(8.3% vs. 5.7% of healthy controls, P=0.044), as well as its decrease with CPAP treatment (5.6% vs. 8.3%, P=0.039) 

documented in Fig. 4, can be related to how the brain and heart processes interact in contributing to the predictability of 

the  waves. Fig. 5 shows indeed that the interaction predictability between the cardiac dynamics and the brain dynamics 

other than  is significantly positive in the control group, cannot be distinguished from zero in the SAHS patients, and is 

again significantly positive during long-term CPAP treatment. Such a redundant interaction between brain and cardiac 

dynamics for healthy subjects and treated patients was a peculiarity of the  waves, as it was not observed for any of the 

other brain wave amplitudes. 

 

 

 

The present study deals with the characterization of the physiological network of brain-heart interactions during sleep, 

extending the methodology and the results of our previous works in this field [23, 24] in several respects. First, 

complexity and causality of the brain and cardiovascular dynamics during sleep are investigated exploring predictability 

measures rather than information measures. Complexity is a defining feature of physiological systems, and is commonly 

quantified as the departure of a signal from a fully predictable time course [39, 51]; in this study we assessed complexity 

through the full and self predictability measures, quantifying respectively how much of the unpredictability of an 

observed signal can be reduced by the knowledge of its own dynamics, or by the knowledge of the dynamics of the whole 

set of signals composing the observed physiological network [39]. Causality is a concept related to the existence of 

directed interactions between the observed signals, and is often associated to the physiological mechanisms of joint 

modulation of interconnected organ systems [52]; here causality was assessed in agreement with the well-known Wiener-

Granger concept of predictability improvement [41]. Furthermore, in this work the notion of causality is broken down by 

exploring, for the first time in the study of brain-heart networks, the concept of source interaction: defining the novel 

measure of interaction predictability we investigate whether two (groups of) source signals act redundantly or in synergy 

while they contribute to reduce the unpredictability of the target signal. The complete framework, investigating the 

concepts of complexity and causality from a different perspective than in [23, 24] and including the new concept of 

redundancy/synergy, is applied for the first time on brain-heart networks assessed in pathological states, considering a 

group of severely apneic patients before and after their treatment with the ventilation therapy. When applied to these 

unique data, our comprehensive approach for the prediction of multivariate time series led to the following original 

findings: (i) the proposed framework detected consistently the presence of structured dynamics in the nocturnal time 



course of the cardiac parasympathetic component of HRV and of the EEG wave amplitudes, documented by the 

statistically significant predictability measures which explained, in all subjects and patients, more than 50% of the 

variability of heart and brain dynamics during sleep; (ii) severe apneas-hypopneas increased the complexity of the 

nocturnal dynamics of the brain and cardiovascular systems, significantly reducing the predictability of the time courses 

of the parasympathetic component of HRV and of the  and  EEG bandpowers; (iii) this higher complexity of cardiac 

and slow-wave brain rhythms was due in its largest part to a marked reduction of the self predictability of these rhythms; 

(iv) prolonged treatment of SAHS patients with the CPAP therapy restored the full and self predictability of the  and  

brain wave amplitudes, but not those of the cardiac parasympathetic component; (v) the magnitude of the causal effects 

sustaining the network of physiological brain-heart interactions during sleep decreased along the brain-to-heart direction, 

and increased significantly towards the  brain process, in apneic patients compared to healthy subjects; (vi) brain-heart 

communications during normal sleep were characterized by redundant interactions between different brain rhythms 

contributing to the cardiac dynamics, and between brain and cardiac rhythms contributing to the  EEG dynamics, which 

were lost in severe SAHS and were restored by long-term nasal CPAP. 

 

The analysis framework introduced in this study was designed to quantify together different aspects of the dynamics of 

networks composed by multiple interacting dynamical processes, i.e., the reduction in uncertainty about an assigned 

target process that results from its own dynamics, from the dynamics of the other processes in the network, and from the 

interaction between these other processes. The relevant quantitative measures are the self predictability, causal 

predictability and interaction predictability, and are intimately related to the information-theoretic concepts of 

information storage, transfer and modification [25]. While traditionally these concepts are quantified through entropy-

based functionals like the storage entropy [43], the transfer entropy [27] and a dynamical formulation of the interaction 

information [53], in this work we adopted predictability-based functionals essentially exploiting the prediction error 

variance. The information-theoretic and predictability frameworks are closely connected as regards the estimation of 

information storage and information transfer, as the self and transfer entropies are strictly related to self and causal 

predictability, and are formally equivalent in the linear Gaussian approximation [42, 46]. An important advantage of the 

predictability framework regards the evaluation of information modification: the information-theoretic formulation of the 

interaction information, which for dynamical systems reflects the synergy or redundancy between two sources 

transferring information to a target process [53], leads to a distorting effect which may produce net synergy in the 

presence of statistically independent sources [48]. This confusing behavior, that leads to the prevalence of synergy over 

redundancy in multivariate Gaussian systems, is avoided if one quantifies information as reduction in variance rather than 

reduction in entropy. Thus, also according to recent studies [45, 48], our formulation based solely on subtracting 

prediction error variances allows an unbiased evaluation of how information is modified when comparing the combined 

contribution of two sources with the sum of the individual contributions in the formula for the interaction predictability. 

 

In agreement with our previous findings obtained applying the information-theoretic framework in a different group of 

healthy subjects [23], the results of the present work confirm that during undisturbed sleep each node of the brain-heart 

physiological network displays structured dynamics that can be significantly predicted from the past activity at the node, 

as well as from the past activity at the other nodes of the network. These structured physiological dynamics are likely the 

result of changes in the regulation of sleep that determine fluctuations in the  autonomic nervous activity. In turn, these 

fluctuations induce dynamical changes in the activity of both the brain and cardiac systems [3, 5, 54], which are 

manifested at multiple time scales [21]. The characteristic scales explored in this and previous works [15, 16, 23, 24, 34] 

are relevant to brain and cardiovascular oscillations occurring with periods longer than 15 min. In a previous study we 

documented that this network of brain-heart interactions is sustained mostly by the transitions across the different sleep 

states, since it is much less connected when assessed for specific individual sleep stages [23]. The present study 

documents that these brain-heart dynamics are detectable also in the sleep recordings of patients with severe SAHS. More 

importantly, we observe a number of significant alterations in the temporal structure of these dynamics, which were 

quantified by our measures of full, self, causal and interaction predictability. First, we found that cardiac dynamics ( 
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rhythm) and slow wave brain dynamics ( and  rhythms) are significantly more complex during disturbed apneic sleep 

(Figs. 2,4). SAHS induces sudden surges in sympathetic and vagal cardiac activity [55] as well as in NREM EEG  

activity [33] and, as a result, suppresses the nocturnal rhythmic physiological shifts in the sympatho-vagal balance. In 

turn, this suppression likely induces a weakened autonomic control of the heart and brain rhythms and may thus explain 

their higher complexity, which we measured in this study in terms of markedly reduced values of full and self 

predictability. 

 

After long-term CPAP treatment, the differences in full and self predictability observed in SAHS patients compared to 

healthy controls were maintained for the cardiac dynamics (Fig. 2) and disappeared for the  and  brain dynamics (Fig. 

4). A factor which may contribute to the restoration of the predictability of the brain dynamics is the fact that in this 

group of SAHS patients the duration of REM sleep, which was significantly lower before the CPAP treatment, increased 

to values comparable to those of the healthy controls after the treatment [38]. Since the slow wave EEG activity was 

found to be much more irregularly affected by apneas during NREM sleep compared to REM [33], the restoration of 

REM duration favored by the treatment may be helpful to restore also the complexity of the dynamical structure of the 

EEG waves. On the contrary, the absence of any difference in all sleep parameters between treated patients and controls, 

documented in [38], was not sufficient to recover the drop in complexity of the dynamics of the HF component of HRV 

(see Fig. 2, showing that the drop in complexity documented by lower predictability of  for SAHS was not restored after 

CPAP). The higher complexity of the cardiac dynamics displayed by SAHS patients both before and after prolonged 

CPAP treatment documents an important and peculiar alteration of the neural regulation of the heart, because it was 

observed in the absence of any significant change of the mean and spectral HRV components across the same three 

groups [38]. A possible factor related to this higher complexity observed for the cardiac time series even after treatment 

may be the presumed increase of the cardiac vagal tone induced by CPAP, that was documented in previous studies [37, 

56] and only partially observed in the patients of the present work [38]. Nevertheless, future studies are needed to 

investigate the underlying pathophysiological mechanisms and clinical relevance of this lack of recovery of the 

predictability of cardiac dynamics. 

 

The analysis of the dynamical interactions in the brain-heart physiological network was performed in this study by 

exploring the intertwined concepts of information transfer and information modification through the measures of causal 

predictability and interaction predictability. Focusing on the network nodes for which the patterns of predictability 

changed significantly across groups, i.e. the cardiac  node and the  brain node, we observed opposite changes of the 

full causal predictability comparing  SAHS patients and healthy subjects: the causal interactions were weaker when 

directed to the  node (Fig. 2), and stronger when directed to the  node (Fig. 4). This suggests that in apneic patients the 

network of physiological interactions reorganizes its sleep topology in a way such that information flows more towards 

the  brain node and less toward the cardiac node. After prolonged CPAP treatment, the information flowing to the  

brain node decreased to values comparable with the healthy controls (Fig. 4), while the flow toward the cardiac node 

showed only a tendency to increase to the level of the controls (Fig. 2). These results extend to a broader perspective the 

findings of a previous study [38], and agree in suggesting that long-term CPAP treatment restores some aspects, but not 

the full connectivity structure of brain-heart interactions.  

 

Contrary to causal predictability, the measure of interaction predictability revealed a common pattern in the comparison 

among healthy controls and untreated/treated patients, i.e. the loss of redundant interactions in the brain-heart network 

associated to SAHS and their recovery with CPAP. This was documented by the interactions between each of the ,  

and  waves and the other brain waves when predicting the cardiac activity (Fig. 3), and between the cardiac dynamics 

and the brain dynamics when predicting the  wave activity (Fig. 5), that were significantly positive for the controls 

(indicating redundant cooperation), non-significant for the SAHS group (indicating statistical independence), and again 

significantly positive for the CPAP group. These results suggest that redundancy is a prevailing feature of correctly 



working brain-heart networks, and its loss during sleep apneas generates a kind of segregation of the network nodes 

which are still transferring information to each other but perform this task in isolation. 

 

Limitations of the present work regarding the study design include the small size of the considered group of patients, the 

fact that patients and controls, though being matched in almost all demographic parameters, differed in the body-mass 

index [38], and the highly variable duration of the CPAP treatment. Combined with the small population size, the 

different time at which follow-up measurements were taken may have an impact on the interpretation of our results. 

Nevertheless, since the CPAP therapy was prolonged up to the achievement of beneficial effects in terms of sleep 

efficiency, duration and quality, its different duration was unavoidable and in some sense purposeful to the formation of a 

group of treated patients for which therapy was really effective [38]. Given the size and characteristics of our group of 

patients, our results should be confirmed by larger population studies in which they can be tested also across the duration 

of long-term treatments. 

 

Methodologically, the linear parametric approach adopted in this work guarantees the full detection of the system 

dynamics only when these dynamics are distributed as a jointly Gaussian process. While we have shown in a recent 

comparative study that linear and nonlinear estimators detect similar brain-heart networks in normal undisturbed sleep 

[24], we cannot exclude that nonlinear dynamics which cannot be fully disclosed by our linear approach may significantly 

contribute to self, causal and interaction predictability during SAHS and after CPAP treatment. Thus, it may be possible 

that some of the results presented in this study would change when the same measures are computed relaxing the 

assumption of linearity. Therefore, we advocate studies comparing the linear approach proposed in the present study with 

model-free nonlinear prediction methods [43, 52] to assess the actual contribution of nonlinear dynamics to full night 

brain-heart interactions during apneic sleep and after long-term treatment. As to the theoretical development, the 

proposed measure of interaction predictability may be compared with novel concepts of information modification based 

on the simultaneous evaluation of redundant and synergistic contributions to a given target [48]. Finally, the approach 

proposed here could be extended in future studies to the identification of larger physiological networks comprising 

different physiological systems. This is particularly important given the known relevance to physiological interactions of 

variables not considered in the present study such as respiration, arterial pressure or cerebral blood flow [57, 58]; in 

particular, the inclusion of respiratory dynamics would allow to relate the alterations of the brain-heart dynamics 

observed in this study to the cardiopulmonary instability which breaks down the scaling function of HRV in sleep apnea 

patients [59]. The network size can be enlarged even more within an individual complex system such as the brain, e.g. 

extending the intra-channel EEG network to the inclusion of the  frequency band [19, 20] and including a new 

subnetwork which explores the spatial level through the simultaneous inter-channel analysis of the EEG at different scalp 

locations [20]. 

 

In conclusion, we have documented specific alterations of the sleep dynamics of the cardiac parasympathetic and brain 

wave activities in patients with SAHS, which are evident even in the absence of substantial modifications in the sleep 

characteristics or in the cardiovascular parameters. These alterations, documented for the first time using our 

predictability framework, are manifested through the falloff of  the regularity of cardiac activity and slow wave brain 

activity, and of the redundant information shared within the network of brain-heart physiological interactions. We 

documented also that prolonged treatment of apneic patients with nasal CPAP is effective in restoring almost completely 

the sleep dynamics of the slow EEG waves as well as the links of the brain-heart network, but is unable to recover the 

structure of the cardiac dynamics. These findings help in elucidating how the complex influence of the autonomic 

nervous system on the sleep physiological dynamics is modified by sleep disorders, and may contribute to assess the 

efficacy of therapeutic approaches as well as to adjust the delivery of such therapies. 
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