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We introduce a novel method for identifying the modular structures of a network based on the
maximization of an objective function: the ratio association. This cost function arises when the
communities detection problem is described in the probabilistic autoencoder frame. An analogy
with kernel k-means methods allows us to develop an efficient optimization algorithm, based on the
deterministic annealing scheme. The performance of the proposed method is shown on real data
sets and on simulated networks. © 2007 American Institute of Physics. �DOI: 10.1063/1.2732162�

The structure of a complex network may be described by
identifying the modules of which it is composed. The con-
cept of the module is qualitative: nodes are more con-
nected within their modules than with the rest of the net-
work, and its quantification is still a subject of debate.
Modularity, a quantity related to the correlation between
the probability of having an edge joining two sites and
the fact that the sites belong to the same modules, has
been widely accepted as a measure for module identifica-
tion. Here we provide a new description of this important
problem. We analyze the use of a novel objective func-
tion, the ratio association, measuring the coherency be-
tween modules. Ratio association emerges in the proba-
bilistic autoencoder frame, performing a lossy
compression of the network’s structures. An analogy to
kernel k-means allows the development of an efficient al-
gorithm for the optimization of ratio association. The
power of the proposed technique is assessed by showing
the structures found by ratio optimization on real
datasets and on simulated networks. The likelihood of the
probabilistic autoencoder model may be used to select the
optimal number of modules.

I. INTRODUCTION

A hierarchical structure of modules characterizes the to-
pology of most real-world network systems.1 In social net-
works, for instance, these modules are densely connected
groups of individuals belonging to social communities. Mod-
ules �also called community structures� are defined as tightly
connected subgraphs of a network, i.e., subsets of nodes
within which the density of links is very high, while between
which connections are much sparser. These tight-knit mod-
ules constitute units that separately �and in parallel� contrib-
ute to the collective functioning of the network. For instance,

the presence of subgroups in biological and technological
networks is at the basis of their functioning. Hence the issue
of detecting and characterizing module structures in net-
works received a considerable amount of attention.

Rigorously, the identification of the hierarchy of mod-
ules of a network is equivalent to the graph partitioning
problem in computer science, which is known to be a non-
deterministic polynomial time-complete problem.2 A series
of efficient heuristic methods has been proposed over the
years to cope with this problem. These include methods
based on spectral analysis,3 or hierarchical clustering meth-
ods developed in the context of social networks analysis.4

Among the different techniques, we recall the modularity
identification based on the statistical properties of a system
of spins,5 and hierarchical clustering techniques exploiting
the central concept of modularity.6,7 The modularity Q is a
measure of the correlation between the probability of having
an edge joining two sites and the fact that the sites belong to
the same modules �see Ref. 7 for the mathematical definition
of Q�. Methods directly based on the optimization of Q have
been proposed,8,9 while recently a spectral technique has
been introduced10 exploiting the information of the modular-
ity matrix, which, for a given graph, has the property of
being dense even when the adjacency matrix is sparse.

Furthermore, another recent stream of research has been
initiated by the relevant observation that topological hierar-
chies are associated with dynamical time scales in the tran-
sient of a synchronization process.11 Such an observation in-
spired the introduction of a fast technique able to detect and
identify the modules of a complex network from the cluster
desynchronization scenario of phase oscillators.12

In this paper, we introduce a new technique for modules
identification, which efficiently optimizes an objective func-
tion called ratio association. Precisely, once the number of
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modules nc is fixed, the optimization process leads to a fast
�in a time scaling linearly with the number of nodes N in the
network� detection of the corresponding modules. The effi-
ciency of the algorithm is due to an equivalence with the
kernel k-means,13 which we exploit in the deterministic an-
nealing frame.14 We show that the optimization of ratio as-
sociation may be motivated in the probabilistic autoencoder
frame, a paradigm that has been used to derive cost functions
for data clustering;15 the same cost function has been used in
Ref. 16 for classification of time-series data. In order to se-
lect the number of modules nc, the quality of the solution is
to be assessed. This can be achieved in two ways, on the
basis of the modularity of the solution, or according to the
likelihood of the probabilistic autoencoder model.

The paper is organized as follows. In the next section,
we describe our method, while in Sec. III some applications
are shown. Section IV summarizes our conclusions.

II. THE METHOD

Given a set of data vectors �xi�i=1
N , with xi�Rn, the goal

of the kernel k-means is to find a q-way disjoint partition17

��c�c=1
q of the data �where �c represents the cth cluster� such

that the following objective function is minimized:

I���c�c=1
q � = �

c=1

q

�
xi��c

���xi� − mc�2, �1�

where

mc =
�xi��c

��xi�

	�c	
. �2�

Here, 	�c	 is the cardinality of the subset �c, and � is a
function mapping the x vectors onto a �generally� higher-
dimensional space �if � is the identity function, the above
equations recover the standard definition of k-means�.

Expanding the distance term ���xi�−mc�2 in the objec-
tive function, one obtains

��xi� · ��xi� −
2�xj��c

��xi� · ��x j�

	�c	

+
�xj��c

�x���c
��x j� · ��x��

	�c	2
. �3�

Notice that in Eq. �3�, all computations involving data
points are in the form of inner products. As a result, one can
use the kernel trick: if one can compute the dot product Kij

=��xi� ·��x j� efficiently, then one is able to compute dis-
tances between points in this mapped space without having
to explicitly know the mapping of xi and x j onto ��xi� and
��x j�, respectively. It is known that any positive semidefinite
matrix K can be thought of as a kernel matrix.18 Using the
kernel matrix, Eq. �1� can be rewritten as

I���c�c=1
q � = �

c=1

q

�
i��c


Kii −
2� j��c

Kij

	�c	
+

� j��c
����c

Kj�

	�c	2
� .

�4�

Suppose that the graph G= �V ,A� is given, where V is
the set of N vertices and A is the adjacency matrix �the ele-
ments Aij are one �zero� whenever an edge is �is not� present
between vertices i and j�. If A and B are two disjoint subsets
of V, we furthermore define links�A ,B�=�i�A,j�BAij.

The idea is to fix the number of modules nc into which
we want to efficiently partition the original graph, and to
look for the nc-way disjoint partition of V ���c�c=1

nc �, which
maximizes the following objective function, called ratio
association:19

R���c�c=1
nc � = �

c=1

nc links��c,�c�
	�c	

. �5�

Let us now associate to the given graph a N�N kernel
matrix as follows:

K = �I + A , �6�

where I is the identity matrix and � is a real number chosen
to be sufficiently large so that K comes out to be positive
definite. Now, given a nc-way disjoint partition ��c�c=1

nc of the
graph, the corresponding value of the ratio association and
the objective function of kernel k-means are related as fol-
lows:

I���c�c=1
nc � = �N − nc�� − R���c�c=1

nc � . �7�

An important point follows: I attains its minimum in
correspondence with the same partition providing the maxi-
mum of R, independently of �, as was shown in Ref. 20
when considering the standard iterations of k-means. There-
fore, the kernel k-means minimization may be straightfor-
wardly used to find the nc optimal clustering of the graph, by
simply maximizing the ratio association. The ratio associa-
tion may be derived in the probabilistic autoencoder frame as
described in the Appendix.

Hence, we can use graph clustering to discover modules
structures. As we deal here with modular structures maximiz-
ing the ratio association, in the following we will handle the
optimization problem by deterministic annealing.

Let �ic be the probability that vertex i belongs to the cth
module. We write

�ic =
e−��ic

�c�=1
nc e−��ic�

, �8�

where, according to �4�,

�ic = Kii −
2� j=1

N Kij� jc

�m=1
N �mc

+
� j,�=1

N Kj�� jc��c

��m=1
N �mc�2 , �9�

and K is given by �6�.
Starting from a random configuration of ��� and ���, Eqs.

�8� and �9� are solved iteratively while exponentially increas-
ing �. At large �, �i�c� are all zero except for one element
providing the module to whom the vertex i has to be as-
signed.

Notice that the annealing procedure leads to a final par-
tition of vertices that still has a tiny dependence on the start-
ing configuration, hence the algorithm is to be run several
times, selecting the partition leading to the lowest value of I.
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As is typical of deterministic annealing approaches, the com-
plexity of the algorithm is O�ncN�z
�, where �z
 is the aver-
age number of edges per vertex. Note, however, that in the
proposed method, the number of modules is to be specified
in advance. Therefore, for a full hierarchical description of
the original network �i.e., when one wants also to determine
the optimal nc�, the algorithm has to be run by varying nc

between its minimum �2� and its maximum �N� value, lead-
ing to an overall complexity O�N3�z
�.

The choice of � deserves few comments. As said before,
to enforce the positive definiteness of K, and thus to establish
the connection to kernel k-means, � must be sufficiently
large. However, since varying � does not change the global
optimum, one may choose � in the most convenient way
from the computational point of view, even though K will not
be ensured to be positive definite.

III. APPLICATIONS

Let us first discuss the application of the proposed
method to the well-known Zachary karate club network,21

shown in Fig. 1. We point out that the output of the algorithm
is independent of �� �020� �notice that K, in this case, is
positive for ��5�.

When selecting nc=2 �i.e., when trying to split the net-
work in two modules�, Fig. 1 shows that one fully recovers
the true subdivision of the data set, with R=8.0139 and
modularity Q=0.3715.

When repeating the analysis at varying nc, Fig. 2 reports
the value of I, corresponding to the solution, as a function of
nc: it is a strictly decreasing function. In Fig. 3, we plot the
modularity Q of the solution versus nC: the maximum is Q
=0.420 and corresponds to a partition of the graph into four
modules, in perfect agreement with the outcome of other
techniques previously tested on the Zachary karate club net-
work. Finally, Fig. 4 reports the ratio association R versus
nC, making evident the validity of Eq. �7�.

The selection of nc may also be done on the basis of the
average log-likelihood of the autoencoder �see the Appen-
dix�. In Fig. 5, we plot L−L0 versus nc, where L is the aver-
age log-likelihood of the data set, while L0 is the same quan-
tity evaluated on a network with the same number of nodes

and links but with links randomly assigned to pairs of
nodes.22 According to the criterion of the largest 	L=L−L0,
both nc=2 and 4 are suitable partitions.

To evaluate the performance of the proposed technique,
we generate a set of random graphs featuring a well defined
modular structure. Precisely, all graphs are generated with
N=128 nodes and K=1024 edges. The nodes are distributed
into four modules, containing 32 nodes each. Pairs of nodes
belonging to the same module �to different modules� are
linked with probability pin �pout�. pout is taken so that the
average number zout of edges a node forms with members of
other communities can be controlled �in our trials zout has
been varied between 0 and 10�. pin is chosen so as to main-
tain a constant total average node degree �k
=16. Notice
that, as zout increases, the modular structure of the network
becomes weaker and harder to identify. As the real modular
structure is directly imposed by the generation process here,
the performance of the identification method can be assessed

FIG. 1. The Zachary karate club network. The two modules identified by the
proposed algorithm are colored in gray and white, respectively. Squares and
circles indicate the two real communities described by Zachary �Ref. 21�.
Notice that our technique fully reveals the true subdivision.

FIG. 2. The objective function I for the karate club modular structure found
by the proposed algorithm vs the number of communities nC. Here �=2, but
results are stable against variations of �.

FIG. 3. The modularity Q for the karate club modular structure found by the
proposed algorithm vs nc. As in Fig. 2, we use here �=2, but results are
stable against variations of �.
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by monitoring the fraction p of correctly classified nodes
versus zout. In Fig. 6, we report a comparative analysis of p
versus zout for the proposed algorithm, for the Girvan and
Newman method,7 and for the method introduced by Duch
and Arenas.9 The result is that the accuracy attained by our
method comes out to be slightly better than that of Ref. 9.
Note that while applying our algorithm to these networks, we
have selected nc by maximizing L−L0 �similar results are
obtained maximizing the modularity, see Fig. 7�.

While dealing with medium-large real networks, finding
the number of communities is a computationally heavy task.
An efficient strategy to cope this problem consists of re-
peated division into two communities, a suboptimal strategy
to optimize the ratio association. We use our algorithm first
to divide the network into two parts, then divide those parts,
and so forth: the overall complexity is O�N2�z
� in this case.
Note that after dividing the network in two, we delete the
edges falling between the two parts and then apply the algo-
rithm to each subgraph. This is correct, for ratio association

optimization, as the degree of nodes does not appear in the
definition of ratio association. Moreover, we adopt the pre-
scription that, at any stage, we leave undivided communities
with size smaller than a threshold Sth. To show the applica-
tion of this strategy, we consider here the Pretty Good Pri-
vacy �PGP� web of trust social network,25 containing 10680
nodes. The maximum modularity of this dataset, obtained by
the method,26 is 0.7329 and it is achieved at nc=80. Using
the method described in Ref. 9, the maximum modularity is
0.8459 and corresponds to nc=365. In Fig. 8, we depict L
−L0, as found by our algorithm, versus nc. In accordance
with the method,9 we find that the optimal number of com-
munities, maximizing 	L, is nc=360 �local maxima are
found also at nc=100 and 190�. Having thus determined the

FIG. 4. The ratio association R for the karate club modular structure found
by the proposed algorithm vs nC. Same stipulations on � as in the captions
of Figs. 2 and 3.

FIG. 5. 	L=L−L0 �see the text� is plotted vs nc for the Zachary network.

FIG. 6. The fraction p of correctly classified nodes is plotted vs zout, the
average number of edges a node forms with members of other modules, for
the proposed algorithm �stars�, for the Girvan and Newman method �Ref. 7�
�empty squares� and for the method introduced by Duch and Arenas �Ref. 9�
�empty circles�. Each point refers to an ensemble average over 100 different
network realizations. Same stipulations for �=2 as in the captions of
Figs. 2–4.

FIG. 7. Top: 	L=L−L0 �see the text� is plotted vs nc for a randomly gen-
erated network with zout=4. Bottom: the modularity of the modular structure
found by the proposed algorithm on the same network.
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optimal number of communities, we subsequently run our
algorithm with nc=360 so as to find all the 360 communities
in one step. To describe the properties of the communities
structure we obtain, we sort the communities according to
their sizes and we plot, in Fig. 9, the size S�i� of the ith
community. We note that there are eight communities with
size greater than 100, while communities with size smaller
than 20 exhibit the functional relation S�i�� i0.61: this scaling
law may be connected with the scale-free structures discov-
ered in the PGP network.25

We finally report in Fig. 10 the CPU time needed to
complete a given partition as a function of the number of
vertices. The curve confirms that, for a given nc, the compu-
tational demand scales linearly with the network size.

IV. CONCLUSIONS

In conclusion, we introduced a novel method for identi-
fying the modular structures of a network based on the maxi-

mization of an objective function: the ratio association. This
objective function emerges in the frame of probabilistic au-
toencoders, thus providing a new description of the commu-
nities detection problem, in terms of a lossy compression of
the structures, as well as a new selection strategy for the
number of modules by means of the log-likelihood of the
model.
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APPENDIX: PROBABILISTIC AUTOENCODER FRAME

In this appendix, we show that ratio association may be
derived in the Probabilistic Autoencoder Framework. We
briefly discuss autoencoders described by one-stage folded
Markov chains.15 Let us consider a point x, in a data space,
sampled with probability distribution P0�x�; a code index 

� �1, . . . ,q� is assigned to x according to conditional prob-
abilities P�
 	x�. A reconstructed version of the input, x�, is
then obtained by use of the Bayesian decoder:

P�x�	
� =
P�
	x��P0�x��

P�
�
. �A1�

The joint distribution of x, x�, and 
, describing this
encoding-decoding process, is

P�x,x�,
� = P0�x�P�
	x�P�x�	
�; �A2�

owing to �A1�, the joint distribution reads

P�x,x�,
� =
P0�x�P0�x��P�
	x�P�
	x��

P�
�
. �A3�

The conditional probabilities �P�
 	x�� are the free param-
eters that must be adjusted to force the autoencoder to emu-
late the identity map on the data space.

FIG. 8. 	L=L−L0 is plotted vs nc for the PGP network. The curve is
obtained using repeated division in two parts, and Sth=16.

FIG. 9. The cardinality S�i� of the ith community �after sorting in ascending
order� is plotted vs i. The linear fit, in the left part of the curve, is S� i0.61.

FIG. 10. The scaling of the CPU time is reported as a function of the
number of vertices N at fixed nc.
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Let s�x ,x�� be a measure of the similarity between input
and output; the average similarity is then given by

S = �
�=1

q � dx� dx�
P0�x�P0�x��P�
	x�P�
	x��

P�
�
s�x,x�� . �A4�

A good autoencoder is obviously characterized by a high
value of S. Given a set of data vectors �xi�i=1

N , partitioning
these points in q modules corresponds, in this frame, to de-
sign an autoencoder, with q code indexes, acting on data
space. Choosing the encoder to be deterministic leads to

P�
	x� = �
��x�, �A5�

��x�� �1, . . . ,q� being the code index associated with x. The
estimate for the average similarity, based on the dataset at
hand, is given by

Ŝ =
1

N
�

=1

q �i,j=1
N �
�i

�
�j
sij

�k=1
N �
�k

. �A6�

If the similarity matrix sij is identified with the kernel matrix
K, we obtain

NŜ = nc� + R .

Therefore, maximization of the ratio association is equiva-
lent to designing the most effective autoencoder, the effec-
tiveness being measured by the average similarity.

Now we consider the average log-likelihood23 of data
�xi�i=1

N ,

�
�=1

q � dxP�x,��log P�x	�� . �A7�

We may easily obtain an estimate of this quantity, which
measures how good the autoencoder frame is to model the
dataset. Using kernel density estimation,24 we easily obtain

L =
1

N
�
i=1

N

log
 links��i�,���i��

	���i�	
�; �A8�

the numerator, in the formula above, is the number of links
from node i to nodes in the same module as i, whereas the

denominator is the cardinality of the module to which i be-
longs.
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