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Abstract—This paper deals with the behavior of a chain
of vehicles controlling their motion on basis of local relative
positions. It is well-known that in such a chain, under any
standard linear control (see paper), the deviations of the vehicles
from their nominal behavior in reaction to an event at the
leading vehicle, grows without bound along the chain as the
number of vehicles increases. A saturated linear controller does
not appear to solve the issue. We here propose to solve this
with a nonlinear controller which ensures that the deviations
stay bounded. Our controller design is based on an appropriate
discretization of continuous flow equations (partial differential
equations) that exhibit stable propagation behavior, namely the
Korteweg-de Vries and modified Korteweg-de Vries equations.
We propose controllers both for unidirectional links (vehicles only
look ahead) and for symmetric bidirectional links, both situations
that fail with linear controllers. We argue which mathematical
properties motivate these controllers and illustrate the resulting
improvement in simulations.

I. INTRODUCTION

The problem of controlling platoons of vehicles in auto-
mated transit systems has been extensively studied during the
recent years. Although the physical characteristics vary widely
from one system to another, the control problems encountered
are similar. It has been shown that grouping vehicles into
platoons may provide potential capacity improvements as high
as 20 percent, which would also lead to fewer pollution caused
by both the reduction of time the vehicles spend on the
highway and a low emission intelligent driving model based on
smoother speeds. Other benefits include increased safety and
reliability, time savings and enhanced related productivity. In
order to benefit the most from controlling vehicle platoons, all
the technologies must collaborate towards maximum efficiency
[1]. Furthermore, the control actions should be reasonable
to implement, adaptable to all operational conditions, and
simple enough to ensure reliability. Hence most recent works
consider acceleration control based on relative measurements
and locally distributed decision-making strategies [2], [3], [4].

Consider the problem of one dimensional platooning of
N identical vehicles moving on a line, where each of them
is separated by a small distance from its front and rear
neighbors and required to move in one direction. When even
small external disturbances act on the system, the vehicle
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platoon can undergo strong performance degradation through
string instability. String stability means, for any perturbation
bounded in L2 norm that is injected at one vehicle, the L2

norm of the resulting perturbation on the last vehicle N should
be bounded independently of N , see [5]. The same authors
have shown that essentially, string stability cannot be achieved
with linear controllers based on relative measurements and
locally distributed decision-making. The string instability of
vehicle chains has been further studied for linear control
systems [6], [7], [8], [9], [10], [12].

This impossibility to satisfy string instability holds for
vehicles modeled as second-order pure integrators. When drag
is added the problem gradually disappears. However, as more
efficient vehicles should have minimal drag, it seems poorly
acceptable to develop future technologies which must rely
precisely on drag in order to keep the controlled system string
stable. In some systems (space vehicles or the new vacuum
tube transit proposal), drag would in fact be absent. Some
authors achieve string stability by using absolute velocity in
the controllers [16], [12], [13], [14], [15]. Although this essen-
tially corresponds to re-introducing drag, it can be formulated
in a smart, possibility optimized way in the framework of
passivity-based controllers [15] or of a time headway policy.
In the latter, the absolute velocity enters through the time it
takes for a following vehicle, at its current speed, to reach
the position currently occupied by its predecessor. We here
try to avoid relying on this additional knowledge. Another
key assumption is that vehicles base their decision on those
in front of them. When the control decision is based on
distance to one directly preceding vehicle, a quick proof of
necessary string instability follows from the Bode integral,
as the transfer function from vehicle i to i + 1 takes the
form of a sensitivity function [17]. Allowing coupling with
vehicles in front and behind oneself, information along the
vehicle chain can also travel from the rear to the front and
performance must be adapted. Nevertheless, it has been shown
that linear controllers also unavoidably imply string instability
when vehicles apply a symmetric treatment to one vehicle in
front and one vehicle behind them, [11], [18]. We are currently
investigating whether a non-trivial variation on the “mistuning-
based control” [19], which in simple systems improves the
negativity of the eigenvalues from O(1/N2) to O(1/N), might
circumvent string instability.

In this paper however, we propose nonlinear unidirectional
and bidirectional controllers to guarantee string stability of
vehicle platoons. The nonlinear control design is not trivial.
Indeed, a nonlinear controller resulting from the saturation
of a linear one has been considered in [20] both for the
bidirectional and unidirectional cases; and simulations show
that the ratio from the input injected at the first vehicle to the
motion of the last vehicle keeps growing through the vehicle



chain, although it does so much more slowly than in the linear
case (which is indeed the contribution of [20]). In contrast, we
derive nonlinear unidirectional and bidirectional control laws
by trying to emulate nonlinear partial differential equations,
explicitly the (Modified) Korteweg-de Vries equations, which
are third order and provide important examples of a dispersive
nonlinear wave process with stable transport phenomena (so-
called “soliton solutions”). We apply an appropriate finite dif-
ference methods to spatially discretize those partial differential
equations towards nonlinear control laws for the discrete chain
of vehicles that only use the relative information of neighbor
vehicles. Besides a few analysis arguments, simulation results
show the ability of our proposed nonlinear controllers to
guarantee string stability.

The paper is organized as follows. Section II clarifies the
problem setting. Section III presents the (Modified) Korteweg-
de Vries equations and the controller design procedure. In
Section IV we analyze the resulting vehicle chain behavior
with approximation arguments. In Section V we provide
further evidence for string stability through simulations.

II. PROBLEM DESCRIPTION

Consider N vehicles following each other and modeled as
double integrators:

ÿi = ui , i = 1, 2, ..., N (1)

where yi is the position of vehicle i and ui is an acceleration
control. The objective of each vehicle is to follow its preceding
vehicle at a fixed desired distance d. To achieve this task, it
will adapt ui as a function of observed information. In this
paper a main assumption is that this information only conveys
the relative situation of consecutive vehicles, i.e. their relative
position yi− yi−1 or relative velocity ẏi− ẏi−1. However, we
do allow this information to be communicated over a small
distance, e.g. vehicle i + 2 might be aware of the value of
yi − yi−1. For simplicity of notation in all the following, we
introduce a constant change of variables such that the desired
reference is ei := yi − yi−1 = 0 for all i, e.g. in the vehicle
chain we make the change of notation yi → yi − i d.

We consider two scenarios for the flow of information,
shown on Fig. 1. In the first scenario, called unidirectional
coupling, the control action ui of vehicle i only depends on
relative states of a few preceding vehicles j < i. The first few
vehicles are considered as “leaders” and do not follow the
control laws of the chain. In bidirectional coupling, a vehicle
i can react to a few vehicles in front (j < i) or behind (j > i)
itself. The last vehicle is then supposed to react according
to the corresponding unidirectional control law, i.e. as if its
(absent) follower was perfectly synchronized at distance d.

The objective is more explicitly to guarantee a bounded
reaction of all the vehicles to bounded disturbances injected
into the system. We here state as formal objective a string
stability property which is somewhat adapted from the original
definition in [5], but which boils down to the same for linear
systems. It might also appear closer to practical requirements.

Definition 1: A system parameterized by control parameters
c is string stable if given any ε > 0 there exists a σ > 0 and
a controller tuning c, independent of the number of vehicles
N , such that ‖u‖L2

< σ ensures ‖yN − yN−1‖L2
< ε.

For a linear system based on local relative measurements
and either unidirectional or bidirectional symmetric commu-
nication, it has been proved that it is impossible to achieve
string stability [5], [11], [18]. In the nonlinear case, for large
N the error ‖yN −yN−1‖ might converge to some limit value
that depends on c, but not on N nor essentially on the input
disturbance σ — think of e.g. a stable limit cycle. If adapting
c can scale down the amplitude of that limit arbitrarily, then
we would accept the situation as string stable. The purpose
of this paper is to show that indeed such designs exist with
nonlinear controllers.

III. NONLINEAR CONTROL DESIGN FROM THE
KORTEWEG-DE VRIES AND MODIFIED KORTEWEG-DE

VRIES PARTIAL DIFFERENTIAL EQUATIONS

In this section we provide nonlinear unidirectional and
bidirectional feedback designs to control the vehicle chain in
a “string stable” manner. These designs are inspired by the
practical stable behavior of the following nonlinear continuous
flow equations (partial differential equations = PDEs). We
will hence design the coupling among vehicles — unlike the
most traditional PDE-based approaches which focus on the
design of inputs at the boundary of the domain — to mimic
microscopic interactions which would give rise to the flows
associated to such PDEs. We then expect the vehicle chain to
behave like the continuous medium, which is desirable, for all
long-range deformations. For too short-range deformations we
will have to analyze the system of discrete vehicles as such;
the behavior turns out to be satisfactory as well (Section IV-B).

A. The (modified) Korteweg-de Vries PDE
Denote the position along a continuous string by η ∈ R

and time by τ ∈ R. The value of some distributed property
(e.g. deformation, temperature, strain) along the string is given
by a function v(η, τ). Using the typical short notations

vτ (η, τ) = ∂v(η,τ)
∂τ ; vη(η, τ) = ∂v(η,τ)

∂η ; vηη(η, τ) = ∂2v(η,τ)
∂2η

and so forth, the Korteweg-de Vries (KdV) and modified
Korteweg-de Vries (MKdV) equations write, respectively:

vτ (η, τ) + βv(η, τ)vη(η, τ) + γvηηη(η, τ) = 0 ; (2)
vτ (η, τ) + βv2(η, τ)vη(η, τ) + γvηηη(η, τ) = 0 . (3)

The parameters β and γ are just scaling factors. These equa-
tions were first derived in studies of shallow water waves [21].

Authors have characterized so-called soliton solutions of the
KdV and MKdV equations [23], [24], [26], i.e. perturbations
which propagate along the spatial direction without deforma-
tion. Indeed (2) and (3) have respectively the solutions:

v(z) = ±3C

β
sech2(3z

√
C

2
√
γ

+ η0) ; (4)

v(z) = ±

√
6C

β
sech(z

√
C

2
√
γ

+ η0) , (5)
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Fig. 1. (a) Unidirectional interconnection scheme. (b) Bidirectional interconnection scheme

where z = η − Cτ . This expresses that a v-distribution with
shape 1/ cosh2, resp. 1/ cosh (visually similar to a Gaussian)
starting around position η0, preserves its shape and amplitude
as it propagates over time τ along the spatial dimension
η at velocity C. More “peaked” solitons propagate faster.
Moreover, it has been proved [24], [27] that (4) and (5)
describe stable solutions of the KdV and MKdV equations,
as effects of dispersion and nonlinearity cancel each other.

B. Unidirectional control design procedure

We now explain the procedure of nonlinear control design
inspired by KdV and MKdV equations, for the case of
a unidirectional vehicle chain (see Fig. 1(a)). I.e., each
vehicle i only measures its relative behavior w.r.t. its front
vehicle i-1, sends the associated relative position information
ei = yi-1 − yi to a few following vehicles i+1, ..., i+M and
receives the same information ek = yk-1 − yk from a few
preceding vehicles k = i-1, ..., i-M . To mimic the nonlinear
PDE behavior, we will need M = 3.

We start with the KdV equation (2). The procedure, inspired
by arguments in [28, p.49-p.50], is similar for the other cases.

To link the KdV equation to the vehicle chain, we must get
a second-order time derivative. To this end we make a first
substitution v = yη , for which (2) implies:

yητ (η, τ) + βyη(η, τ)yηη(η, τ) + γyηηηη(η, τ) = 0 . (6)

We then define a change of variables η = x + h
√
ωt and

τ = h3

24
√
ω
t, where the roles of h and ω will be specified later.

Then by the chain rule ∂k

∂xk = ∂k

∂ηk
, ∂
∂t = h

√
ω ∂
∂η + h3

12
√
ω
∂
∂τ ,

and ∂2

∂t2 = h2ω ∂2

∂η2 + h4

12
∂2

∂ητ + ( h6

242ω ) ∂2

∂τ2 . To facilitate
later expressions we further define β′ = hβ

24 . In these new
coordinates, from (6) we get

ytt = h2ωyxx − 2h3β′yxyxx −
h4

12
γyxxxx , (7)

up to a term proportional to hyττ which we will intentionally
keep very small (see analysis section).

We discretize (7) in space with finite differences looking
only at vehicles in front. Parameter h is taken as discretization
step to map the consecutive vehicles to values of x. Note thus
that the x coordinate characterizes the index of the particle
in the continuous chain model, in other words its topological

place in the chain, not its actual position in space; the latter
is given by y:

yx ' yi − yi−1
h

(8)

yxx ' (yi − yi−1)− (yi−1 − yi−2)

h2
− λh

2

12
yxxxx

yxxxx ' (yi − yi−1)− 3(yi−1 − yi−2)

h4

+
3(yi−2 − yi−3)− (yi−3 − yi−4)

h4
.

For λ = 0 we approximate yxx up to terms of order h4yxxxx
and this is enough for the nonlinear part of the controller; but
for the linear part we must use a more accurate expression
including the order h4yxxxx, which is obtained with λ = 1.

Substituting (8) into (7) we get:

ÿi = −(γ−11ω)
12 (yi − yi−1)− (3ω−γ)

4 (yi−1 − yi−2)

+ (γ+ω)
12 [−3(yi−2 − yi−3) + (yi−3 − yi−4)]

−2β′ [(yi − yi−1)2 − (yi − yi−1)(yi−1 − yi−2)] .

The KdV equation features a large invariant space, of all
propagating solitons. So to damp deformation modes we add
a term proportional to relative velocity and get our final
controller design:

ÿi =
−(γ-11ω)

12
(yi − yi-1)− (3ω-γ)

4
(yi-1 − yi-2) (9)

+
(γ + ω)

12
[−3(yi-2 − yi-3) + (yi-3 − yi-4)]

−2β′ [(yi − yi-1)2 − (yi − yi-1)(yi-1 − yi-2)]

−b (ẏi − ẏi-1) .

For the MKdV equation, we can make the same substitution
v = yη and get:

yητ (η, τ) + βy2η(η, τ)yηη(η, τ) + γyηηηη(η, τ) = 0 . (10)

Using the same change of variables and with β′ = β
36 , we

have

ytt = h2ωyxx − 3h4β′y2xyxx −
h4

12
γyxxxx (11)

up to a small term proportional to hyττ . Finally with the same
discretization method only looking vehicles at front, we obtain



after adding the velocity damping term:

ÿi = −(γ-11ω)
12 (yi − yi-1)− (3ω-γ)

4 (yi-1 − yi-2) (12)

+
(γ + ω)

12
[−3(yi-2 − yi-3) + (yi-3 − yi-4)]

−3β′ [(yi − yi-1)3 − (yi − yi-1)2(yi-1 − yi-2)]

−b(ẏi − ẏi-1) .

C. Bidirectional control design procedure

We now design a bidirectional controller where the feedback
action of each vehicle i is based on measurements of its
relative position with respect to its directly preceding (i − 1)
and directly following (i+ 1) vehicles. Hence in principle no
communication is required. However, this controller relies on
the fact that (induced) events at the back of the chain influence
what happens at the front, while for a moving chain of vehicles
it may be more desirable to isolate the front from what happens
behind. Also, in this particular structure, we are not free to
tune all the parameters of the PDE independently. This is not
surprising since a 4th order derivative (see below) cannot be
approximated, independently, with only 3 values (namely at
i, i−1, i+1). Thus the communication-free method works only
if we are happy with the resulting particular tuning values.

The design proceeds as for the unidirectional case, just
with a different discretization and change of variables.

We start again with the KdV equation (2). We then define
η = x−h

√
ωt and τ = h3

24
√
ω
t. By the chain rule ∂k

∂xk = ∂k

∂ηk
,

∂
∂t = −h

√
ω ∂
∂η + h3

12
√
ω
∂
∂τ , and ∂2

∂t2 = h2ω ∂2

∂η2 −
h4

12
∂2

∂ητ +

( h6

242ω ) ∂2

∂τ2 . With β′ = hβ
24 , equation (6) becomes

ytt = h2ωyxx + 2h3β′yxyxx + h4

12γ yxxxx , (13)

again up to a term proportional to hyττ which we will
intentionally keep very small (see analysis section).

We discretize the 1st order derivative as usual, but we merge
the 2nd and 4th order derivatives. Indeed, writing:

yx ' yi − yi−1
h

=
yi+1 − yi

h
(14)

yxx ' yi+1 − 2yi + yi−1
h2

− h2

12
yxxxx ,

we see that the second expression directly covers two terms
of (13), provided ω = γ. Regarding the yxx appearing in
the nonlinear term, like for the unidirectional controller, it
is multiplied by small enough factors such that the yxxxx is
of higher order and can be dropped. Thus the two elements
in (14) are enough for us to discretize (13) for ω = γ.
Then substituting (14) into (13) and adding as before a term
proportional to relative velocity, we get:

ÿi = −γ[(yi − yi+1) + (yi − yi−1)] (15)
−β′[(yi − yi−1)2 − (yi+1 − yi)2]

−b(ẏi − ẏi−1) .

If we want ω 6= γ, then a different discretization has to
be used, looking at two vehicles in front and two behind to

cover the yxxxx term in (13) with the proper coefficient.

The MKdV equation works very similarly, using the same
change of variables and finite differences, but just defining
β′ = β

36 . This yields respectively the PDE and the final
controller for ω = γ:

ytt = h2ωyxx + 3h4β′y2xyxx +
h4

12
γyxxxx , (16)

ÿi = −γ[(yi − yi+1) + (yi − yi−1)] (17)
−β′[(yi − yi−1)3 − (yi+1 − yi)3]

−b(ẏi − ẏi−1) .

IV. ANALYSIS OF THE RESULTING VEHICLE CHAIN

In this section we provide a partial analysis of the systems
described by (9), (12), (15) and (17). We argue that for
long-range and slowly propagating modes, the system is
string stable by approximating the transport behavior of the
KdV and MKdV equations. On the other hand, short-range
and fast varying disturbance signals usually have a smaller
amplitude (to have a similar energy), therefore their effect is
analyzed on the linearized system. Those arguments do not
constitute a full proof (yet) of string stability of our system,
but in conjunction with the simulation results of Section
V, these are good indications that the KdV and MKdV
approximation approach improves on all linear controllers.

A first important observation is that the nonlinear equations
feature a natural rescaling. Indeed, for a given value β′ = β̄
denote ȳ1(t), ..., ȳN (t) a solution of the equations describing
one of the controlled vehicle chains, with arbitrary additive
noise ū1(t), ..., ūN (t) acting as inputs to the vehicles. Then it
is obvious that y1(t) = ȳ1(t)/α, ..., yN (t) = ȳN (t)/α is a
solution of the same equations, under additive noises u1(t) =
ū/α1(t), ..., uN (t) = ūN (t)/α, if we use the different value
β′ = αβ̄ in case of (9) or (15) (KdV-based) and if we use
β′ = α2β̄ in case of (12) or (17) (MKdV-based). This just
expresses that as the vehicle chain becomes more and more
nonlinear (larger β′), the same qualitative behavior will appear
at smaller and smaller disturbance amplitudes. This relation is
exact and may inform the tuning of the controller. In particular,
it reduces our task to showing that for some controller tuning
and disturbance scale, the error on vehicle N can be bounded
by some ε̄ > 0 independently of N . Then indeed just by
rescaling β′, the resulting nonlinear controller can be ensured
to comply with any requested ε > 0 in Definition 1.

A. Slowly varying perturbations

The objective of this section is to argue how the controlled
vehicle chains governed by (9),(15), (12) or (17), are good
approximations of the KdV and MKdV equations respectively,
at least for slowly varying boundary conditions i.e. slow
variations in the motion of the leading vehicles. We then
hope that such perturbations propagate along the vehicle chain



without amplification. Indeed, the stable, “pure transport”
behavior of the KdV and MKdV equations were the initial
motivation for our controller design.

Concretely: typical solutions of the Korteweg-de Vries
PDEs take the form of solitons (4) or (5), which propagate
without damping nor amplification [24]. Our addition of
velocity damping suggests that we would rather have damped
solitons, if things go well. Towards this last hypothesis, it has
been proved [23], [27] that (4) and (5) describe stable solutions
of the KdV and MKdV equations respectively, as effects of
dispersion and nonlinearity, which precisely cancel each other
on the soliton, in fact push the system back towards it when
departing from that shape. This would be a string stable
behavior for the vehicle chain, just evacuating the disturbance
towards its boundary (and damping it, as we add b > 0).

We will therefore here check what happens when the vehicle
chain approximately follows a soliton solution. More precisely,
under that assumption, we will check that the perturbations
induced into the original KdV or MKdV equations by our
discretizing approximations, remain small. Such perturbations
would indeed be stably rejected by the PDE, hence as usual
in the discretization literature, one might hope that the dis-
cretized vehicle chain system will indeed be drawn towards
the soliton solutions. This is true because we have checked
by linearization that the discretized system, i.e. the actual
controlled vehicle chain, is indeed a stable system for input
y1 (although maybe not string stable, i.e. the transfer function
to yN is bounded but not independently of N ).

We first check the transition from e.g. (6) to (7), where we
neglected a term in yττ . Since the soliton solution is a function
of z = η − Cτ , the order of magnitude of yττ that appears
in the change of variables is C times the order of magnitude
of yτη. From this, the term in yττ can be viewed as a small
perturbation with respect to the KdV and MKdV term in yτη,
provided Ch2 is small.

We next check the discretization approximation. The full
explanation is a bit technical and deferred to the Appendix.
• First note: the objective is to show that when the leader

motion (or other input disturbance) is compatible with a
soliton, then the vehicles in the vehicle chain will have
a motion close to the PDE’s soliton solution sampled at
discrete steps. The change of variables for unidirectional
and bidirectional controllers respectively yield

z = x+ (h
√
ω − Ch3/(24

√
ω))t and

z = x− (h
√
ω − Ch3/(24

√
ω))t with ω = γ,

where individual vehicle indices i = 0, 1, 2, ... correspond
to sampling at x = 0, h, 2h, ....

• A first condition (see appendix) is that we must select h
small enough. Hence we retrieve the intuitive condition
of good discretization, namely that a characteristic length
of the soliton should cover a large number of vehicles.

• A second condition (see appendix) is that C must be
small enough. This means slow velocity of the PDE
soliton. The velocity of propagation between vehicles
however, as h is also small, is computed as |(

√
ω −

Ch2/(24
√
ω))| hence dominated by

√
ω, where ω = γ

in the bidirectional case. Thus the perturbation does
not necessarily propagate slowly among the vehicles.
Nevertheless the relative variation of yi(t) over time, at
a given vehicle i, remains small: this is just because the
soliton covers many vehicles, so moving the soliton center
from i to i+ 1 implies little change in yi.

• The first condition also has an indirected effect, as β′

the control parameter and β in the soliton amplitude
are related by h. Together with the condition on C, this
implies that for given β′ only solitons of sufficiently small
amplitude will be well approximated. Such bound is also
standard in discretization schemes. For smaller β′, i.e. a
closer to linear system, the KdV-like propagation of larger
solitons will be well approximated.

The formal conclusion can be summarized as follows. For
given β′, γ, ω in the vehicle chains (9), (12), (15) or (17),
there exist sufficiently small h̄ > 0 and C̄ > 0 such that:
If the motion of the leading vehicles is compatible with a
succession of soliton solutions (4) (resp. (5)) with |C| < C̄
and with β > 24β′/h̄ (resp. β > 36β′), then we can expect
the vehicle chain with b = 0 to move similarly to the solutions
implied by sampling the KdV and MKdV solitons at discrete
points in space. The practical implication – see simulations
below – is that the nonlinearly coupled vehicles can avoid
string instability for slow and long-range perturbations, which
are usually the worst ones for linear controllers.

Remark: A surprising effect of the change of variables is
that for the unidirectional controller, the well-approximated
solitons would propagate from back to front of the vehicle
chain – i.e. the rear vehicles appear to be anticipating the
soliton before the front vehicles actually feature it. This is
confirmed in simulations, see Fig. 2. Correctly predicting
solitons, and only solitons, on the basis of a small interval of
the leaders’ trajectory, might seem counterintuitive and fragile
but it is certainly not logically impossible. The bidirectional
controllers do not feature this particularity.

B. Linear Stability Analysis

The effect of higher-frequency disturbances, superimposed
on these long-range soliton-type inputs, can be investigated by
linearization, assuming that they would typically feature small
amplitudes.

For the unidirectional controllers, linearizing with δei =
ei − ēi around ēi, approximating ai := ēi − ēi−1 as a static
situation, we get in Laplace domain

δei(s) =

4∑
k=1

Tk(s) δei−k(s) ,

where for (9) and (12) we have respectively:

Tk(s) =
Qk(s)

s2 + bs+ ( (γ−11ω)
12 + 2β′(2ai − ai-1))

(18)

Tk(s) =
Qk(s)

s2 + bs+ ( (γ−11ω)
12 + 3β′(3a2i − 2aiai-1))
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Fig. 2. (top) Motion of ten following vehicles under bidirectional control
law (9) with b = 0, when the leading vehicle follows an integrated soliton
solution, which takes the form atanh(·). The soliton appears to move forward
as the nonlinear reaction of followers transforms ever tinier soliton-compatible
fluctuations of their leader into solitons that switch ever earlier. (bottom)
Motion of ten following vehicles under unidirectional control law (15) with
b = 0, when the leading vehicles follow an integrated soliton solution, which
takes the form atanh(·). The soliton appears to move backward.

and Qk(s) are a first-order polynomial for k = 1 and some
constants for k > 1. For the bidirectional controllers, we have

δei(s) = T1(s) δei−1(s) + T2(s) δei+1(s)

where for (15) and (17) respectively:

Tk(s) =
Qk(s)

s2 + bs+ 2(γ + β′(ai − bi))
(19)

Tk(s) =
Qk(s)

s2 + bs+ 2(γ + 3/2β′(a2i − b2i ))

and the Qk(s) are first-order polynomials in s.
These four linear models are composed of stable transfer

functions, provided b ≥ 0 and additional conditions respec-
tively γ−11ω

24β′ > (ai−1 − ai), γ−11ω
36β′ > (2aiai−1 − 3a2i ),

γ
β′ > (bi−ai) and γ

β′ > (b2i −a2i ) which relate our controllers’
tuning and the expected state around which we linearize
the vehicle chain. Explicitly, given a typical bound on low-
frequency tracking errors, one would satisfy the conditions
for stability of the linearized system by choosing β′ not too
large and γ > 0 large enough.

For high enough frequencies, the transfer functions in (18)
and (19) all have a small modulus, implying string stability,
like in most linear systems. For low frequencies, we hope
to observe a soliton-like behavior. The domain of medium-
frequency and medium-amplitude perturbations remains open,
as we were not able to mathematically characterize the non-
linear vehicle chain system in this range. We next present
simulations which show that apparently, string stability indeed
holds with our controllers.

V. SIMULATIONS

The main goal of the simulations is to show that our
nonlinear unidirectional control laws (9) and (12) looking only
at four vehicles in front and bidirectional controllers (15) and
(17) looking only at one vehicle in front and one behind,
lead to bounded disturbances as the number of vehicles in
the chain grows. For reference, we also compare the results to
simulations with other controllers. The first ones are simple
linear controllers, unidirectional and symmetric bidirectional
respectively:

ÿi = −k(yi-yi-1)− b (ẏi-ẏi-1) , (20)
ÿi = −k(yi-yi-1 + yi-yi+1)− b (ẏi-ẏi-1 + ẏi-ẏi+1) ,

with some k, b > 0. The second ones are saturated versions
of such linear controllers, as studied in [20]. Recall that
any linear controller — unidirectional looking at an arbitrary
fixed number of preceding vehicles, or symmetric bidirectional
looking at one vehicle in front and one behind — is provably
string unstable; this is also what simulations will show with
(20). The saturation-based controller would be an easy attempt
to bound the vehicle chain’s reaction to disturbances, although
[20] has not investigated it in this sense. Our simulations will
show however that this saturation is apparently not enough to
ensure string stability in a second-order system.

In contrast, our PDE-inspired controllers all seem to be
able to ensure string stability. This conclusion is of course
based on a finite sample of simulations, which is not a
proof for a nonlinear system. Moreover, we cannot verify the
definition of string stability but only check how a necessarily
finite signal seems to get amplified along a necessarily finite
chain. However, theses conclusions should be relevant for all
practical purposes. After all, the linear and saturation-based
controllers are all “robustly string unstable”, as a component
that is amplified along the chain emerges for random inputs.

The first simulation results, see Figure 3, show typical
system trajectories obtained for a random input at the leading
vehicles. Visually, with our 4 controllers, the error on all
vehicles up to the last one (here N = 50) are amplified by a
bounded factor (∼2) with respect to the first one – i.e. we seem
to have string stability. The reader may want to track how some
signal features propagate along the chain. Remember that our
communication-less bidirectional coupling leaves less choice
in the controller tuning. Larger values of N and random inputs
with other frequency spectra (not shown) feature qualitatively
similar behavior.
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Fig. 3. Behavior of our PDE-inspired control laws under random motions of the leading vehicles. The control parameters are chosen to be γ = 200, ω = 10
for unidirectional, β′ = 80, b = 1. The left plots consider unidirectional coupling: 4 leaders’ inputs on top row, KdV-based followers (9) on middle row,
MKdV-based followers (12) on lower row. The right plots concern bidirectional coupling: 1 leader input on top row, (15) on middle row, (17) on lower row.
In all the cases, the followers’ deviations does not increase along the vehicle chain.

We next investigate the effect of disturbance amplitude and
of β′. For better visualization, we do not show sets of trajec-
tories anymore, but instead we estimate by MonteCarlo simu-
lations the standard deviation of the last vehicle

√
E(e2N (T )),

for T a sufficiently large time such that transients die out
(here T = 4000s) and the expectation taken over leading
vehicle inputs. Figure 4(top) shows how this indicator evolves
with N , for the bidirectional controller (15). Similar results
are obtained with the other controllers. A very nice feature
appears, which we anticipated but did not rigorously prove:
the disturbance on the last vehicle N convergences to a
bounded value, independent of N and of the input disturbance
amplitude. If we want

√
E(e2N (T )) to be α times smaller,

according to the rescaling mentioned at the beginning of
Section IV, we need both to divide the input amplitudes by α
and to multiply β′ by α. This prediction is confirmed on the
bottom figure with α = 5.

Finally, we compare the performance of our different con-
trollers with the linear and saturation-based controllers. We
quantify the effect of random disturbances by using like in

[20] the expected first-to-last ratio for random inputs:

RFTL :=

√
E(e2N (T ))

δ0
, (21)

where δ0 is the L2 norm of the random input. In the linear case,
RFTL is exactly the H2 norm of the transfer function from the
random motion of first vehicle to the position tracking error of
last vehicle. Figure 5 shows RFTL versus number of vehicles
N for a fixed δ0 = 0.5. For all our nonlinear controllers (9),
(12), (15) and (17), the ratio RFTL appears to converge to
a constant value, hinting at string stability, while in contrast
both for the linear controllers (20) and for the saturation-based
nonlinear controllers of [20] the ratio keeps growing with N .

This behavior can also be observed on single trajectories,
as illustrated e.g. on Fig. 6 with the step response. With our
nonlinear controller the edge of the step is damped, while with
the linear controller it rather leads to amplified peaks along
the chain. Similar damping behavior is observed with other
PDE-inspired controllers, and similar amplified peaks with
other linear or saturation-based controllers (not shown). The
peaks can be understood similarly to the Gibbs phenomenon:
as a few low frequencies get amplified by the linear controller
while the others do not, the behavior towards the end of the
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Fig. 4. Standard deviation of the last vehicle
√
E(e2N (T )), as a function

of the length of the vehicle chain, for random inputs of different amplitudes.
The controller is (15) with the same tuning as for Fig. 3 on the top figure,
in particular β′ = 80; and with modified β′ = 400 on the bottom figure.
The key nice feature is that the value of

√
E(e2N (T )) converges to a bound

independent of N and of the input amplitude. Multiplying β′ by 5 divides
this bound by 5, as predicted by the theory.

chain gets closer and closer to the truncated Fourier series of
the input signal’s edges.
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Fig. 6. Reaction to a two-step input at the leader. Motion error of following
vehicles with (top) our nonlinear unidirectional control law and (bottom) the
linear unidirectional control law (20).

VI. CONCLUSION

We have proposed a nonlinear controller for a chain of
vehicles with double-integrator dynamics inspired by the
Korteweg-de Vries nonlinear partial differential equation. The
vehicles are controlled based only on relative position mea-
surements between consecutive vehicles. We have obtained
two schemes, depending on the discretization used to relate the
PDE to the discrete chain of vehicles. In the first one, each
vehicle only reacts to those in front, and communication of



measurement values from three preceding vehicles is needed.
In the second one, each vehicle reacts to errors with respect
to the directly preceding and the directly following vehicle,
and no communication is required. We have shown, through
simulations, that these controllers appear to ensure string
stability, i.e. a perturbation is not amplified indefinitely along
an infinite chain. This is a striking improvement with respect to
linear controllers — for which it has been proved that string
stability cannot be achieved — and also with respect to a
linear controller with saturation. We give some mathematical
arguments as to why this string stability might hold, although
currently a complete proof is still lacking.

From a more general perspective, this paper shows that
PDE models, which are widely used to model flows of large
numbers of vehicles, can also be used to inform the design of
control laws that couple vehicle behaviors at the microscopic
scale. Such approach has already been proposed for linear
systems [19], but its power for control design could be more
striking in the nonlinear context. We have here focused on
a particular control-theoretic objective. The positive results
could motivate this approach towards mimicking other desir-
able flow features.
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APPENDIX

In the following, we investigate under which conditions the
nonlinear controllers (9), (15) and (12), (17), with b = 0, are
good approximations of (22) and (23), respectively.

A. Controllers Derived from the KdV equation

To investigate the approximation, we go back from (9) and
(15) to the PDE but keeping all error estimations in the Taylor
developments. The discretizations yield respectively:

ytt = ω(h2yxx + h4

12 yxxxx + h6

360yxxxxxx +O(h8)) (22)

−(γ + ω)(h
4

12 yxxxx + h6

360yxxxxxx +O(h8))

−β′(2h3yxyxx + h5

6 yxyxxxx + h5

3 yxxyxxx +O(h7))

ytt = γ(h2yxx + h4

12 yxxxx + h6

360yxxxxxx +O(h8)) (23)

+β′(2h3yxyxx + h5

6 yxyxxxx + h5

3 yxxyxxx +O(h7))

which a priori are relevant if we select a small value for h,
compared to the characteristic length of the solutions y(x, t)
of the PDE corresponding to a particular boundary condition.
The leading vehicles must induce slow perturbations in this
sense.

Working back the change of variables (η, τ) ↔ (x, t),
equations (22) and (23) become respectively:

0 = yτη + 24β′

h yηyηη + γyηηηη (24)
+2hβ′yηyηηηη + 4hβ′yηηyηηη

+h2

30γyηηηηηη + h2

48ωyττ +O(h3) ;



0 = yτη + 24β′

h yηyηη + γyηηηη (25)
+2hβ′yηyηηηη + 4hβ′yηηyηηη

+h2

30γyηηηηηη −
h2

48γ yττ +O(h3) .

The first line of (24) and (25) represents the KdV equation with
v = yη . Hence we want to show that under some conditions,
the other terms can be seen as small perturbations.

We will therefore assume that the systems follow a soliton
solution of the KdV equation. Since the soliton solution is a
function of z = η − Cτ , the order of magnitude of yττ is C
times the order of magnitude of yτη. Hence the terms h2

48ωyττ
and h2

48γ yττ above can be viewed as a small perturbations
with respect to the KdV term in yτη provided Ch2 is small.
Similarly, plugging in the solution (4), we can establish that
the order of magnitude of (X1) is (X2) times the magnitude
of (X3), with respectively

((X1),(X2)(X3)) ∈ { (yηyηηηη,
Ch
β′ , yηηηη)

(yηηyηηη,
Ch
β′2 , yηyηη)

(yηηηηηη,
Ch
β′3 , yηyηη) } .

Hence if we take C and h sufficiently small, in equations
(24),(25) and (28),(29) the associated perturbative terms (X1)
are all strongly dominated by a (X3) term from the target KdV
or MKdV equations.

B. Controllers Derived from the MKdV equation
Applying a similar treatment to (12) and (17), the discretiza-

tion approximations write respectively

ytt = ω(h2yxx + h4

12 yxxxx + h6

360yxxxxxx +O(h8)) (26)

−(γ + ω)(h
4

12 yxxxx + h6

360yxxxxxx +O(h8))

−β′(3h4y2xyxx + h6

8 y
3xx+ h7

4 y
2
xxyxxx +O(h8))

ytt = γ(h2yxx + h4

12 yxxxx + h6

360yxxxxxx +O(h8)) (27)

+β′(3h4y2xyxx + h6

8 y
3xx+ h7

4 y
2
xxyxxx +O(h8))

and working back the change of variables yields

0 = yτη + 36β′y2ηyηη + γyηηηη (28)

+6h2β′y3ηη + 18hβ′yηy
2
ηη

+h2

30γyηηηηηη + h2

48ωyττ +O(h3) ;

0 = yτη + 36β′y2ηyηη + γyηηηη (29)

+6h2β′y3ηη + 18hβ′yηy
2
ηη

+h2

30γyηηηηηη −
h2

48γ yττ +O(h3) .

The first line of (28) and (29) represents the MKdV equation
with v = yη . Again, plugging in the soliton solution (5), we
see that the term in yττ is negligible with respect to the one
in yτη provided Ch2 is small. We can further establish that
the order of magnitude of (X1) is (X2) times the magnitude
of (X3), with respectively

((X1),(X2)(X3)) ∈ { (y3ηη,
C√
β′γ

, yηηηη)

(yηy
2
ηη,

C√
β′γ

, yηyηη)

(yηηηηηη,
C
β′γ , yηyηη) } .

Thus the approximation is good provided we take C and h
sufficiently small. In practice, for large β′ these conditions
are easier to satisfy, but the well-approximated solitons are
more constrained. This is consistent with the fact that once
the conditions for a good approximation have been fulfilled
for a given β′, we know by rescaling that exactly the same
behavior will hold in the vehicle chain, but just at a different
scale, when we change β′.

In order to rigorously justify that we can neglect such
dominated terms, in particular the higher-order derivative, an
elaborate theory of singular perturbations on PDEs would have
to be used. This is beyond the scope of the present paper. It is
current practice in PDE discretization that such terms can be
safely neglected for stable schemes. Involving a higher number
of neighboring vehicles in the control law would allow better
approximations in this sense; in the PDE discretization this
would be called a scheme of higher order.
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