

Multiple group measurement invariance analysis in Lavaan

Kate Xu

Department of Psychiatry University of Cambridge

Email: mx212@medschl.cam.ac.uk

Measurement invariance

- In empirical research, comparisons of means or regression coefficients is often drawn from distinct population groups such as culture, gender, language spoken
- ➤ Unless explicitly tested, these analysis automatically assumes the measurement of these outcome variables are equivalent across these groups
- Measurement invariance can be tested and it is important to make sure that the variables used in the analysis are indeed comparable constructs across distinct groups

Applications of measurement invariance

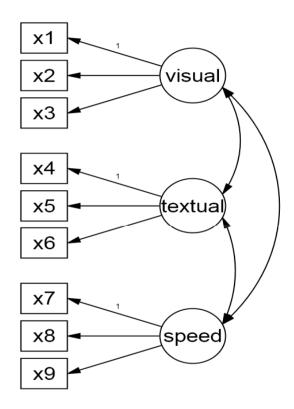
- Psychometric validation of new instrument, e.g. mental health questionnaire in patients vs healthy, men vs. women
- Cross cultural comparison research people from different cultures might have different understandings towards the same questions included in an instrument
- Longitudinal study that look at change of a latent variable across time, e.g. cognition, mental health

Assessing measurement invariance

- Multiple group confirmatory factor analysis is a popular method for measurement invariance analysis (Meredith, 1993)
 - Evaluation on whether the variables of interest is equivalent across groups, using latent variable modelling method
 - Parameters in the CFA model can be set equal or vary across groups
 - Level of measurement equivalency can be assessed through model fit of a series of **nested** multiple group models

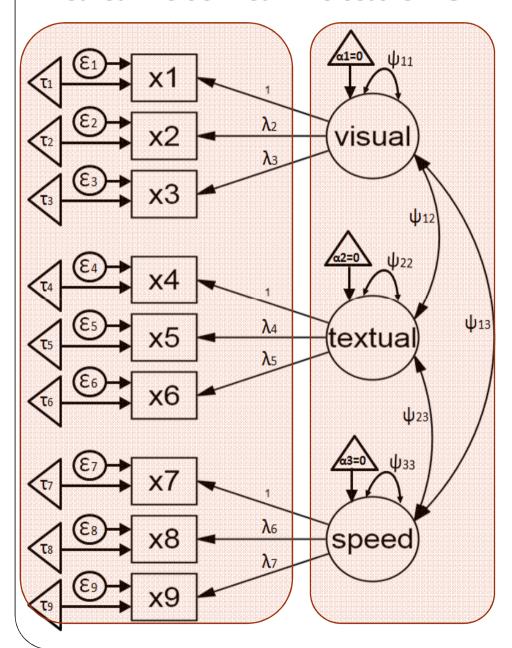
Illustration of MI analysis based on the Holzinger-Swineford study

- Cognitive function tests (n=301)
 - Two school groups: Pasteur=156 Grant-white=145
 - Three factors, 9 indicators
 - x1 Visual perception
 - x2 Cubes
 - x3 Lozenges
 - x4 Paragraph comprehension
 - x5 Sentence completion
 - x6 Word meaning
 - x7 Addition speed
 - x8 Speed of counting of dots
 Discrimination speed between
 - x9 straight and curved capitals



Some indicators might show measurement non-invariance due to different backgrounds of the students or the specific teaching style of the type of schools

Parameter annotations

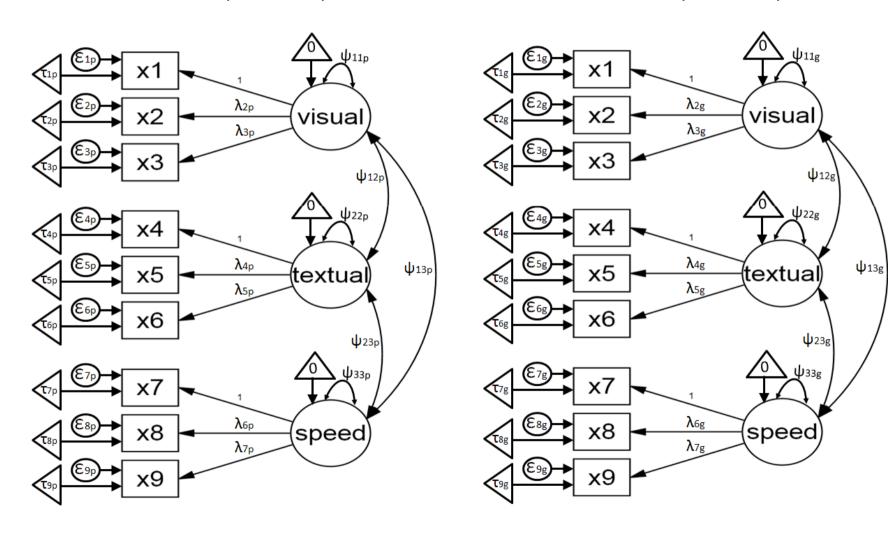


- Measurement parameters
 - 6 factor loadings
 λ2, λ3, λ4, λ5, λ6, λ7
 - 9 factor intercepts
 τ1, τ2, τ3, τ4, τ5, τ6, τ7, τ8, τ9
 - 9 Item residuals
 ε1, ε2, ε3, ε4, ε5, ε6, ε7, ε8, ε9
- Structural parameters
 - latent means
 - α1, α1, α3 (set to 0)
 - 3 factor variances
 - ψ11 ψ22, ψ33
 - 3 factor covariances
 - ψ12 ψ13, ψ23

Multiple group CFA

Pasteur (n=156)

Grand-white (n=145)



Summary of steps in measurement invariance tests

	Constrained		
	parameters	Free parameters	comparison model
configural	FMean (=0)	fl+inter+res+var	
Weak/loading invariance	fl+Fmean (=0)	inter+res+var	configural
Strong/scalar invariance	fl+inter	res+var+Fmean*	Weak/loading invariance
strict invariance	fl+inter+res	Fmean*+var	Strong/scalar invariance
Note fl- factor leadings	inter - item intere	anta raa - itam raa	idual variances Emann -

Note. fl= factor loadings, inter = item intercepts, res = item residual variances, Fmean = mean of latent variable, var = variance of latent variable

^{*}Fmean is fixed to 0 in group 1 and estimated in the other group(s)

Evaluating measurement invariance using fit indices

- Substantial decrease in goodness of fit indicates non-invariance
- ➤ It is a good practise to look at several model fit indices rather than relying on a single one
 - $\Delta \chi^2$
 - ARMSEA
 - ACFI
 - ATLI
 - ΔBIC
 - AAIC
 - •

Identifying non-invariance

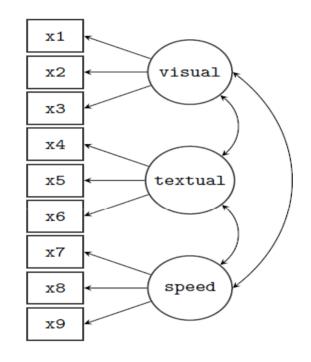
- Modification index (MI)
 - MI indicates the expected decrease in chi-square if a restricted parameter is to be freed in a less restrictive model
 - Usually look for the largest MI value in the MI output, and free one parameter at a time through an iterative process
 - The usual cut-off value is 3.84, but this needs to be adjusted based on sample size (chi-square is sensitive to sample size) and number of tests conducted (type I error)

Lavaan: Measurement invariance analysis

- Data: HolzingerSwineford1939
- School type:
 - 1=Pasteur (156)
 - 2=Grand-white (145)
- Define the CFA model

```
library(lavaan)
HS.model <-
'visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9'
```

> semTools fits a series of increasingly restrictive models in one command:



library(semTools)
measurementInvariance(HS.model,data=HolzingerSwineford1939,
group="school")

measurementInvariance(HS.model,data=HolzingerSwineford1939, group="school")

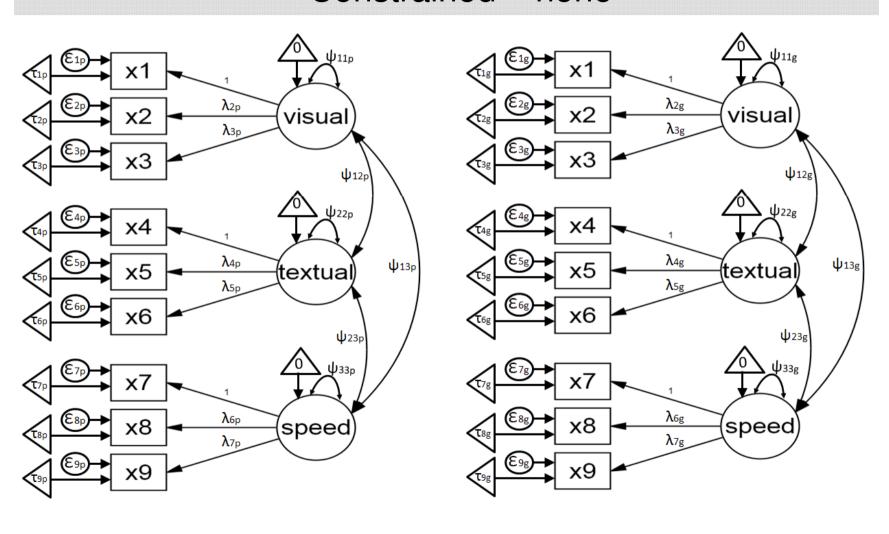

```
Measurement invariance tests:
Model 1: configural invariance:
                                                      <-configural model (Model 1)
   chisa
              df
                  pvalue
                              cfi
                                    rmsea
115.851
                                    0.097 7706.822
          48,000
                    0.000
                            0.923
Model 2: weak invariance (equal loadings):
                                                      <-metric MI model (Model 2)
                                               bic
   chisa
              df
                  pvalue
                              cfi
                                    rmsea
 124.044
          54.000
                    0.000
                            0.921
                                    0.093 7680.771
[Model 1 versus model 2]
                                                             <- Metric MI achieved: non-
                                           delta.cfi
 delta.chisq
                 delta.df delta.p.value
                     6.000
                                  0.224
       8.192
                                               0.002
                                                              significant chi-square
                                                              change
Model 3: strong invariance (equal loadings + intercepts)
              df
                              cfi
   chisq
                  pvalue
                                    rmsea
                                                      <-scalar MI model (Model 3)
 164,103
                    0.000
                            0.882
                                    0.107 7686.588
          60.000
[Model 1 versus model 3]
 delta.chisq
                  delta.df delta.p.value
                                           delta.cfi
      48.251
                    12,000
                                  0.000
                                               0.041
[Model 2 versus model 3]
                                           delta.cfi
 delta.chisq
                  delta.df delta.p.value
                                                              <- Scalar MI failed
                     6.000
                                  0.000
      40.059
                                               0.038
Model 4: equal loadings + intercepts + means:
   chisq
              df
                  pvalue
                              cfi
                                               bic
                                     rmsea
                                                      <- Constrain latent means equal
 204.605
          63.000
                   0.000
                            0.840
                                    0.122 7709.969
                                                         across groups, but this is no
[Model 1 versus model 4]
                                                         longer meaningful because of
 delta.chisq
                  delta.df delta.p.value
                                           delta.cfi
      88.754
                                  0.000
                                               0.083
                    15.000
                                                         non-MI in Model 3.
```


Measurement invariance: Step 1: Configural invariance

- Same factor structure in each group
- First, fit model separately in each group
- Second, fit model in multiple group but let all parameters vary freely in each group
- No latent mean difference is estimated

Configural invariance

Constrained = none



Lavaan: Model 1 configural model

model1<- cfa(HS.model, data=HolzingerSwineford1939, group="school") summary(model1,fit.measures=TRUE)

All parameters are different across groups

chisq df pvalue cfi rmsea bic 115.851 48.000 0.000 0.923 0.097 7706.822

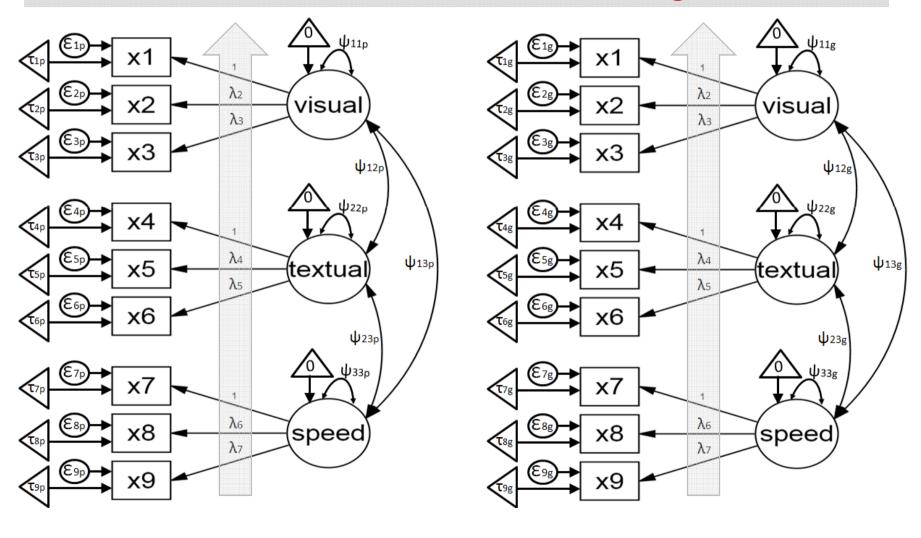
Group 1 [Pasteur]:					Group 2 [Grant-Whi	te]:			
	Estimate	Std.err	Z-value	P(> z)		Estimate	Std.err	Z-value	P(> z)
Latent variables:				- (- 1-1)	Latent variables:				
visual =~					visual =~				
x1	1.000)			x 1	(1.000)		
x 2	0.394	0.122	3.220	0.001	x 2	0.736	0.155	4.760	0.000
x 3	0.570	0.140	4.076	0.000	x 3	0.925	0.166	5.583	0.000
textual =~					textual =~				
x4	1.000				x 4	1.000			
x 5	1.183	0.102	11.613	0.000	x 5	0.990	0.087	11.418	0.000
x 6	0.875	0.077	11.421	0.000	x 6	0.963	0.085	11.377	0.000
speed =~					speed =~				
x 7	1.000				x 7	1.000			
x 8	1.125	0.277	4.057	0.000	x 8	1.226	0.187	6.569	0.000
x 9	0.922	0.225	4.104	0.000	x 9	1.058	0.165	6.429	0.000
Intercepts:					Intercepts:				
x1	4.941	0.095	52.249	0.000	x1	4.930	0.095	51.696	0.000
x 2	5.984	0.098	60.949	0.000	x 2	6.200	0.092	67.416	0.000
x 3	2.487	0.093	26.778	0.000	x 3	1.996	0.086	23.195	0.000
x 4	2.823	0.092	30.689	0.000	x 4	3.317	0.093	35.625	0.000
x 5	3.995	0.105	38.183	0.000	x 5	4.712	0.096	48.986	0.000
x 6	1.922	0.079	24.321	0.000	x 6	2.469	0.094	26.277	0.000
x 7	4.432	0.087	51.181	0.000	x 7	3.921	0.086	45.819	0.000
x 8	5.563	0.078	71.214	0.000	x 8	5.488	0.087	63.174	0.000
x 9	5.418	0.079	68.440	0.000	x 9	5.327	0.085	62.571	0.000
visual	0.000	-			visual	0.000			
textual	0.000				textual	0.000			
speed	0.000				speed	0.000			

Measurement invariance: Step 2: Weak/metric invariance

- Constrain factor loadings equal across groups
- This shows that the construct has the same meaning across groups
- In case of partial invariance of factor loadings, constrain the invariant loadings and set free the non-invariant loadings (Byrne, Shavelson, et al.;1989)
- Based on separation of error variance of the items, one can assess invariance of latent factor variances, covariances, SEM regression paths
- No latent mean difference is estimated

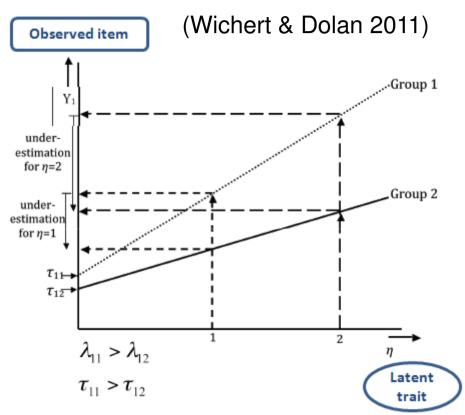
Weak/metric Invariance

Constrained = factor loadings



Weak/metric non-invariance

- Meaning of the items are different across groups
- Extreme response style might be present for some items
 - E.g. More likely to say "yes" in a group valuing decisiveness
 - Or more likely to choose a middle point in a group valuing humility
- One shouldn't compare variances and covariances of the scale based on observed scores that contain noninvariant items



- Non-invariant loading
- Non-invariant intercept

Lavaan: Model 2 metric MI

0.2244

```
model2 <- cfa(HS.model, data=HolzingerSwineford1939, group="school",
        group.equal=c("loadings") )
summary(model2,fit.measures=TRUE)
```

```
Model 1: configural invariance:
 chisa
         df
            pvalue cfi
                             rmsea
                                        bic
115.851 48.000 0.000 0.923 0.097
                                      7706.822
Model 2: weak invariance (equal loadings):
 chisa
         df
                pvalue
                         cfi
                                        bic
                               rmsea
124.044 54.000 0.000 0.921 0.093
                                      7680.771
```

```
Chi Square Difference Test
                    BIC Chisq Chisq diff Df diff Pr(>Chisq)
model1 48 7484.4 7706.8 115.85
model2 54 7480.6 7680.8 124.04
                                  8.1922
```

anova(model1, model2)

➤ Model fit index changes are minimal, hence, metric invariance is established.

Lavaan: Model 2 metric MI

Loadings are the same across groups, but intercepts are freely estimated

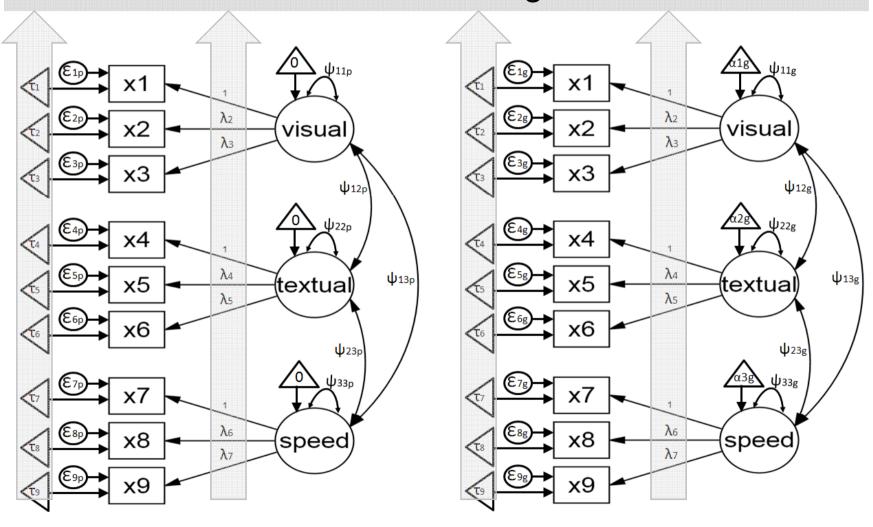
Group 1 [Pasteur]:					Group 2 [Grant-Whi	te]:			
	Estimate	Std.err	Z-value	P(> z)		Estimate	Std.err	Z-value	P(> z)
Latent variables:				- (- 1-17	Latent variables:				
visual =~		\			visual =~				
x1	1.000				x1	1.000			
x 2	0.599	0.100	5.979	0.000	x 2	0.599	0.100	5.979	0.000
x 3	0.784	0.108	7.267	0.000	x 3	0.784	0.108	7.267	0.000
textual =~					textual =~				
x4	1.000				x 4	1.000			
x 5	1.083	0.067	16.049	0.000	x 5	1.083	0.067	16.049	0.000
x6	0.912	0.058	15.785	0.000	x 6	0.912	0.058	15.785	0.000
speed =~					speed =~				
x 7	1.000				x 7	1.000			
x8	1.201	0.155	7.738	0.000	x 8	1.201	0.155	7.738	0.000
x 9	1.038	0.136	7.629	0.000	x 9	1.038	0.136	7.629	0.000
T					Intercepts:				
Intercepts:			F0 004	0.000	x1	4.930	0.097	50.763	0.000
x1	4.941	0.093	52.991	0.000	x2	6.200	0.097	68.379	0.000
x2	5.984	0.100	60.096	0.000		1.996	0.091	23.455	0.000
ж3	2.487	0.094	26.465	0.000	x3	3.317	0.005	35.950	0.000
x4	2.823	0.093	30.371	0.000	x4		0.092	47.173	0.000
x 5	3.995	0.101	39.714	0.000	x5	4,712 2,469	0.100	27.248	0.000
x6	1.922	0.081	23.711	0.000	x6				
x 7	4.432	0.086	51.540	0.000	x7	3.921	0.086	45.555	0.000
x8	5.563	0.078	71.087	0.000	x8	5.488	0.087	63.257	0.000
x 9	5.418	0.079	68.153	0.000	x9	5.327	0.085	62.786	0.000
visual	0.000				visual	0.000			
textual	0.000				textual	0.000			
speed	0.000				speed	0.000			

Measurement invariance: Step 3: Strong/scalar invariance

- Constrain item intercepts equal across groups
- Constrain factor loadings
- This is important for assessing mean difference of the latent variable across groups
- In case of partial invariance of item intercepts, constrain the invariant intercepts and set free the non-invariant intercepts (Byrne, Shavelson, et al.;1989)
- Latent mean difference is estimated

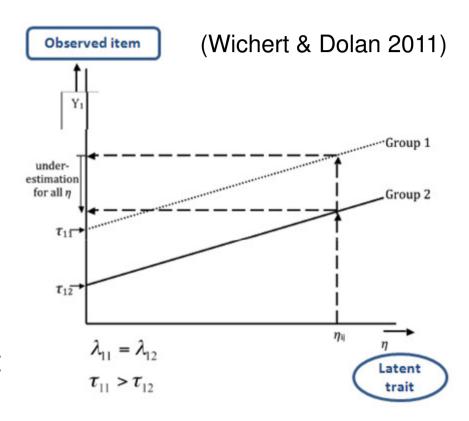
Strong/scalar invariance

Constrained = Factor loadings+ item intercepts



Strong/scalar non-invariance

- A group tend to systematically give higher or lower item response
- This might be caused by a norm specific to that group
 - For instance in name learning tests that involve unfamiliar names for a group
- This is an additive effect. It affects the means of the observed item, hence affects the mean of the scale and the latent variable



- Invariant loading
- Non-invariant intercept

Lavaan: Model 3 scalar invariance CAMBRIDGE

model3 <- cfa(HS.model, data=HolzingerSwineford1939, group="school", group.equal=c("loadings", "intercepts")) summary(model3,fit.measures=TRUE)

```
Model 2: weak invariance (equal loadings):
 chisa
         df
                 pvalue
                          cfi
                                         bic
                              rmsea
124.044 54.000 0.000 0.921 0.093
                                       7680.771
Model 3: strong invariance (equal loadings + intercepts):
 chisa
         df
                 pvalue
                          cfi
                                rmsea
                                         bic
164.103 60.000 0.000 0.882 0.107
                                        7686.588
```

anova(model1, model2)

```
Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)
model2 54 7480.6 7680.8 124.04
model3 60 7508.6 7686.6 164.10 40.059 6 4.435e-07 ***
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 `' 1
```

- Significant χ^2 change indicates intercepts non-invariance
- Modification index can be used to identify which item intercepts are non-invariant

Lavaan: Model 3 scalar invariance W UNIVERSITY OF CAMBRIDGE

model3 <- cfa(HS.model, data=HolzingerSwineford1939, group="school", group.equal=c("loadings", "intercepts"))

Both intercepts and loadings are constrained across groups, but latent means are estimated

Group 1 [Pasteur]:				Group 2 [Grant-Whi	ite]:				
	Estimate	Std.err	Z-value	P(> z)		Estimate	Std.err	Z-value	P(> z)
Latent variables:					Latent variables:				
visual =~					visual =~				
x1	1.000				x 1	1.000			
x 2	0.576	0.101	5.713	0.000	x2	0.576	0.101	5.713	0.000
x 3	0.798	0.112	7.146	0.000	x 3	0.798	0.112	7.146	0.000
textual =~					textual =~				
x4	1.000				x4	1.000			
x 5	1.120	0.066	16.965	0.000	x 5	1.120	0.066	16.965	0.000
x6	0.932	0.056	16.608	0.000	x 6	0.932	0.056	16.608	0.000
speed =~					speed =~				
x 7	1.000				x 7	1.000			
x 8	1.130	0.145	7.786	0.000	x 8	1.130	0.145	7.786	0.000
x 9	1.009	0.132	7.667	0.000	x 9	1.009	0.132	7.667	0.000
Intercepts:					Intercepts:				
x1	5.001	0.090	55.760	0.000	x1	5.001	0.090	55.760	0.000
x2	6.151	0.077	79.905	0.000	x 2	6.151	0.077	79.905	0.000
x 3	2.271	0.083	27.387	0.000	x 3	2.271	0.083	27.387	0.000
x 4	2.778	0.087	31.954	0.000	x4	2.778	0.087	31.954	0.000
x 5	4.035	0.096	41.858	0.000	x 5	4.035	0.096	41.858	0.000
x 6	1.926	0.079	24.426	0.000	x 6	1.926	0.079	24.426	0.000
x 7	4.242	0.073	57.975	0.000	x 7	4.242	0.073	57.975	0.000
x8	5.630	0.072	78.531	0.000	x 8	5.630	0.072	78.531	0.000
x9	5.465	0.069	79.016	0.000	x 9	5.465	0.069	79.016	0.000
visual	0.000	0.000	,5.510	0.000	visual	-0.148	0.122	-1.211	0.226
textual	0.000				textual	0.576	0.117	4.918	0.000
					speed	-0.177	0.090	-1.968	0.049
speed	0.000				Бреси	0.277	0.000	1.500	0.013

Lavaan: Modification index

model3 <- cfa(HS.model, data=HolzingerSwineford1939, group="school", group.equal=c("loadings","intercepts")) modindices(model3)

Se	lhs op epc.nox	group	mi	ерс	sepc.lv	sepc.al	
81 85	x3 ~1 x7 ~1	1 1		_	0.248 0.205		0.206 0.186
171 175	x3 ~1 x7 ~1	2 2			-0.248 -0.205		

- ➤ Modification index showed that item 3 and item 7 have intercept estimates that are non-invariant across groups.
- ➤In the next model, we allow partial invariance of item intercept, freeing the intercepts of item 3 and item 7.

Lavaan: Model 3a scalar invariance with partial invariance

model3a <- cfa(HS.model, data=HolzingerSwineford1939, group="school", group.equal=c("loadings", "intercepts"), group.partial=c("x3~1", "x7~1")) summary(model3a,fit.measures=TRUE)

```
Model 2: weak invariance (equal loadings):
    chisq df pvalue cfi rmsea bic
    124.044 54.000 0.000 0.921 0.093 7680.771

Model 3a: strong invariance (equal loadings + intercepts),
    allowing intercepts of item 3 and item 7 to vary:
    chisq df pvalue cfi rmsea bic
    129.422 58.000 0.000 0.919 0.090 7663.322
```

anova(model3a, model2)

```
Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)
model2 54 7480.6 7680.8 124.04
model3a 58 7478.0 7663.3 129.42 5.3789 4 0.2506
```

The scalar invariance model now has partial invariance, thus latent means can be compared

Lavaan: Model 3a scalar invariance with partial invariance (x3, x7)

Group 1 [Paster	ur]:			Group 2 [Grant-White]:						
	Estimate	Std.err	Z-value	P(> z)		Estimate	Std.err	Z-value	P(> z)	
Intercepts:					Intercepts:					
x1	4.914	0.092	53.538	0.000	x1	4.914	0.092	53.538	0.000	
x 2	6.087	0.079	76.999	0.000	x2	6.087	0.079	76.999	0.000	
x 3	2.487	0.094	26.474	0.000	x 3	1.955	0.108	18.170	0.000	
x4	2.778	0.087	31.953	0.000	x4	2.778	0.087	31.953	0.000	
x 5	4.035	0.096	41.861	0.000	x 5	4.035	0.096	41.861	0.000	
x6	1.926	0.079	24.425	0.000	x 6	1.926	0.079	24.425	0.000	
x 7	4.432	0.086	51.533	0.000	x 7	3.992	0.094	42.478	0.000	
x8	5.569	0.074	75.328	0.000	x 8	5.569	0.074	75.328	0.000	
x 9	5.409	0.070	77.182	0.000	x 9	5.409	0.070	77.182	0.000	
visual	0.000				visual	0.051	0.129	0.393	0.695	
textual	0.000				textual	0.576	0.117	4.918	0.000	
speed	0.000				speed	-0.071	0.089	-0.800	0.424	

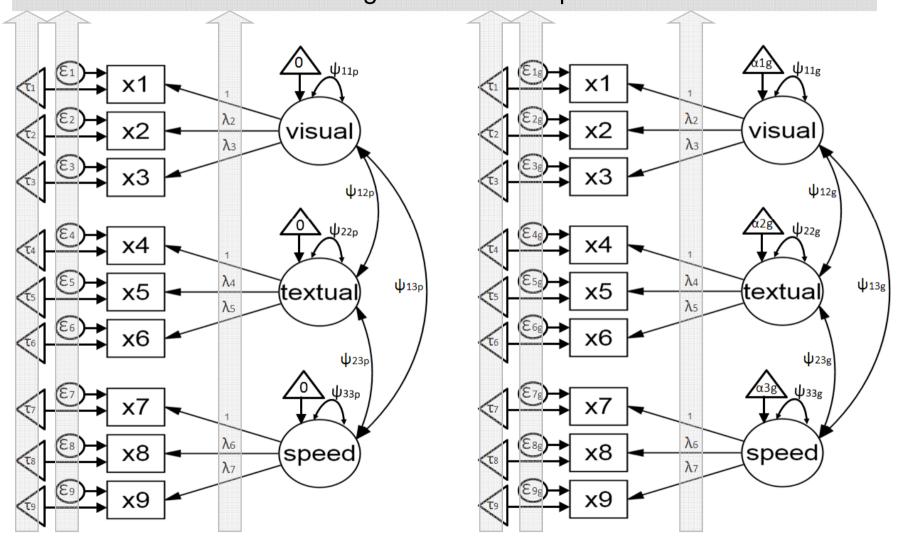
- Grant-White school students does better on textual factor as compared to Pasteur school students
- After allowing for partial invariance, there is no difference in speed between Grant-While school and Pasteur school

Measurement invariance: Step 4: Strict invariance

- Constrain item residual variances to be equal across groups
- Constrain item factor loadings and intercepts equal across groups. In case of partial invariance constrain the invariant parameters and set free the non-invariant parameters
- Strict invariance is important for group comparisons based on the sum of observed item scores, because observed variance is a combination of true score variance and residual variance
- Latent mean difference is estimated

Strict invariance

Constrained = factor loadings + item intercepts + residual variances



Lavaan: Model 4 strict invariance


```
model4<- cfa(HS.model, data=HolzingerSwineford1939, group="school", group.equal=c("loadings", "intercepts", "residuals"), group.partial=c("x3~1", "x7~1")) summary(model4,fit.measures=TRUE)
```

```
Model 3a: strong invariance (equal loadings + intercepts), allowing intercepts of
   item 3 and item 7 to vary:
                  pvalue cfi rmsea
                                           bic
 chisa
129.422 58.000 0.000 0.919 0.090 7663.322
Model 4: strict invariance (equal loadings + intercepts + item residual
   variances)
                  pvalue
 chisa
                            cfi
                                  rmsea
                                            bic
147.260 67
                  0.000
                           0.909 0.089
                                           7629.796
```

➤ The chi-square difference is borderline significant (p=0.037), but the BIC and RMSEA showed improvement. Based on the number of tests in the model, it is probably safe to ignore the chi-square significance ➤ This imply that items are equally reliable across groups. If all items were invariant, it would be valid to use sum scores for data involving mean and regression coefficient comparisons across groups

Structural invariances

- Factor variances
- Factor covariances (if more than one latent factors)
- Regression path coefficients (in multiple group SEM analysis)

Lavaan: Model 5 factor variances and covariances


```
model5 <- cfa(HS.model, data=HolzingerSwineford1939, group="school", group.equal=c("loadings", "intercepts", "residuals", "Iv.variances", "Iv.covariances"), group.partial=c("x3~1", "x7~1")) summary(model5,fit.measures=TRUE)
```

```
Model 4: strict invariance (equal loadings + intercepts + item residual variances)
 chisa
                  pvalue
                           cfi
                                  rmsea
                                           bic
147.260 67 0.000 0.909 0.089
                                           7629.796
Model 5: factor variance and covariance invariance (equal loadings + intercepts
   + item residual variances + factor var&cov)
                           cfi
 chisa
                  pvalue
                                  rmsea
                                           bic
153.258 73
                  0.000
                                           7601.551
                           0.909 0.085
```

- The chi-square difference is not significant (p= 0.42), and the RMSEA showed improvement. The variance and covariance of latent factors are invariant across groups
- As a matter of fact, if one does analysis with latent variables, then strict invariance if not really a prerequisite, since measurement errors are taken into account of as part of the model

Summarising the MI analysis

Model	χ²	DF C	CFI	RMSEA	BIC	Base	Δχ2	ΔDF	ΔCFI	ΔRMSEA	ΔΒΙϹ	
m1	115.851	48 C	0.923	0.097	7707							inv=none, free=fl+inter+uniq+var+cov
m2	124.044	54 0	0.921	0.093	7681	m1	8.193	6	-0.002	-0.004	-26	inv=fl, free=inter+uniq+var+cov
m3	164.103	60 C	0.882	0.107	7687	m2	40.059	6	-0.039	0.014	6	inv=fl+inter, free=Fmean+uniq+var+cov
m3a	129.422	58 0	0.919	0.090	7663	m2	5.378	4	-0.002	-0.003	-17	<pre>inv=fl+inter, free=inter(x3+x7)+uniq+var+cov inv=fl+inter+uniq,</pre>
m4	147.260	67 C	0.909	0.089	7630	m3a	17.838	9	-0.010	-0.001	-34	free=inter(x3+x7)+Fmean+var+cov inv=fl+inter+uniq+var+cov,
m5	153.258	73 C	0.909	0.085	7602	m4	5.998	6	0.000	-0.004	-28	free=inter(x3+x7)+Fmean

- MI analysis includes a series of nested models with an increasingly restrictive parameter specifications across groups
- > The same principle applies for longitudinal data
 - Testing measurement invariance of items over time
 - This is a basis for analysis that compares latent means over time, for instance, in a growth curve model

Measurement invariance

other issues

- Setting of referent indicator
 - Identify the "most non-invariant" item to use as referent indicator
 - Or set factor variance to 1 to avoid selecting a referent item
- Multiple testing issue
- Analysing Likert scale data
 - Number of categories and data skewness (Rhemtulla, Brosseau-Liard, & Savalei; 2012)
 - Robust maximum likelihood
 - Ordinal factor analysis treating data as dichotomous or polytomous (Millsap & Tein, 2004; Muthen & Asparouhov, 2002)

Some references

- 1. Sass, D. A. (2011). "Testing Measurement Invariance and Comparing Latent Factor Means Within a Confirmatory Factor Analysis Framework." Journal of Psychoeducational Assessment 29(4): 347-363.
- Wicherts, J. M. and C. V. Dolan (2010). "Measurement invariance in confirmatory factor analysis: An illustration using IQ test performance of minorities." Educational Measurement: Issues and Practice 29(3): 39-47.
- 3. Gregorich, S. E. (2006). "Do self-report instruments allow meaningful comparisons across diverse population groups? Testing measurement invariance using the confirmatory factor analysis framework." Medical Care 44(11 Suppl 3): S78.
- 4. Byrne, B. M., R. J. Shavelson, et al. (1989). "Testing for the equivalence of factor covariance and mean structures: The issue of partial measurement invariance." Psychological bulletin 105(3): 456-466.
- 5. Millsap, R. E. and J. Yun-Tein (2004). "Assessing factorial invariance in ordered-categorical measures." Multivariate Behavioral Research 39(3): 479-515.
- 6. Meredith, W. (1993). "Measurement invariance, factor analysis and factorial invariance." Psychometrika 58(4): 525-543.
- 7. Rhemtulla, M., Brosseau-Liard, P. É., & Savalei, V. (2012). When can categorical variables be treated as continuous? A comparison of robust continuous and categorical SEM estimation methods under suboptimal conditions. Psychological Methods, 17(3), 354-373. doi: 10.1037/a0029315

Acknowledgement:

Dr. Adam Wagner provided thoughtful comments on earlier drafts